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Preface

The fields of electrochemistry and electrochemical engineering as scientific disciplines have
a long tradition, dating back about two and a half centuries (Laidler, 1997). A two-volume
book titled “Electrochemistry: History and Theory” by W. Ostwald, with over 1000 densely
printed pages, was published in Leipzig in ... 1896!

In addition to its long history, there is much active research in our field which shapes
a vibrant scientific community, of importance to society, and positioned at the forefront
of modern developments in energy, sustainability, and hightech devices. Methods of
electrochemistry play important roles in understanding many processes in physiology and
microbiology as well.i

Much relevant scientific literature and many important textbooks have been published
over the years describing key aspects of electrochemistry, and these sources are of significant
importance to new students and specialists alike. We hope that our book is a relevant addition
to this important body of literature.

In our book we focus on certain aspects of electrochemical processes more than on other
aspects. Our general aim and focus is captured by the words in the title, ‘physics’ and
‘processes’. These words highlight that our aim is to describe the underlying physical
principles of transport, adsorption, and reaction kinetics in electrochemical processes.

Because of our personal background and interests, the theoretical level we consider is that
of the ‘mean field’, which is a modeling philosophy where physical reality is described using

iWhen we use the term ‘electrochemistry’ in this book, we also refer to ‘electrochemical engineering’ and
vice-versa.
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continuum equations, formulated as mass balances and flux equations, based on averaged-
out properties such as concentrations, pressures, and various potentials. In our experience,
mean field theories are extremely powerful in describing physical reality, and their study
provides extensive insight in the problem at hand. Mean-field theories are very flexible and
can always be adjusted to incorporate knowledge from experiments, from other theories, and
from detailed (theoretical) analysis at atomistic scales.

In our book we describe for transport processes in and around electrodes, and membranes,
combined with models for the electrical double layer. Typical elements of the theory are the
Poisson-Boltzmann equation (or, electroneutrality), mass and charge balances, and ion flux
equations based on force balances. We focus on electrolytes where the solvent is water, i.e.,
we study solutions of water containing dissolved molecules such as ions. Ions can be fully
dissociated and unreactive, or associate with other ions to ion pairs, or (de-)protonate and
become neutral.

The theoretical models often assume the solute molecules or ions to be ideal ‘point
charges’, but the volume of hydrated ions is also addressed in several chapters.

It is important to explain how the water (or other solvent) is described in our book. In brief,
water is the incompressible continuum fluid that fills up all space between (hydrated) ions
and other dissolved solutes and structures. Thus, in the theories that we use, the water has
no molecular structure of any importance except for its viscosity (relevant for transport) and
the dielectric constant (relevant in some EDL theories). Thus, in this book, the molecular
volume of a water molecule, or the concentration of water, is not part of the theory. Related,
the theories in this book are not based on molar fractions, 𝑥, of water, or of ions, in starting
equations for thermodynamics or transport. Instead, the theory is based on concentrations
of ions and other solutes, each of which may or may not have a non-zero molecular volume.
The molecular volume of an ion includes the solvent molecules that are tightly bound in the
ion’s solvation shell. Thus, at various points, right from the start, the continuum water is
treated differently from how we treat ions and other solutes. Thus, in summary, there are
dissolved solutes such as molecules and (hydrated) ions, and there are also larger (colloidal)
particles, and we often have a porous medium through which all solutes and water flow. The
water is the continuum fluid occupying all space in between these entities and structures.

A technical clarification of choices of certain words and mathematical conventions
is provided at the very end of this book, starting at p. 507.



Part I

The Electrical Double Layer
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The electrical double layer (EDL) is at the heart of many topics in this book, and therefore
several chapters in this book discuss the structure of the EDL.

The EDL is a concept which has both a structural (microscopic) side to it, and an
experimental (observable, phenomenological) side. The structural side refers to how we
think the EDL ‘looks like’, how ions and other charges are distributed within the EDL and
what are the associations between them. On the other hand, the experimental side refers to
what we can measure about the EDL, its behavior that is of importance in a description of an
electrochemical process, such as the EDL capacitance, and the dependence of ion adsorption
on EDL voltage. These two aspects can be well distinguished but in a discussion of the EDL
one often switches repeatedly between these two perspectives.

The structural part of the EDL concept relates to the concentration profiles of charge
carriers (ions, electrons) inside the EDL, and the details of charge separation between
different regions inside the EDL, where we have an excess of positive charge in one region
and an excess of negative charge in another region. This charge distribution, or separation,
results in a voltage difference across the EDL.

An EDL can form when two or more phases (materials) come in contact with ions being
mobile in at least one phase, i.e., an electrolyte. The other phase can also have mobile charge
carriers (ions, electrons), or only provides a surface to which ions can adsorb. This surface
will then be part of the EDL. Thus there can be multiple bulk phases coming into contact
and forming an interface, which is the EDL, or one bulk phase and a surface.

Let us briefly discuss the word interface. We use it in this book to describe the layer (of
unknown thickness) where two phases or materials come in contact and an EDL forms. Inside
the EDL there are regions of positive charge and negative charge (which microscopically can
often be associated with one of the phases or materials that are in contact). Thus the word
interface is not used in the sense of a perfect ideal 2D ‘mathematical’ surface or plane, i.e. a
plane or surface without thickness, which tracks for instance the outer positions of the atoms
in a piece of metal. We do not use the word interface in this sense of an ideal plane, because
it turns out that various aspects of an EDL are better understood when the word interface is
taken as equivalent to the EDL, referring to the entire layer that encompasses regions with
positive and negative charge, with electroneutral bulk phases adjacent to the EDL. Instead,
the idea of an ideal surface is useful in constructing a microscopic theory, for instance for
ion and electron distributions in the EDL, because we can for instance state that electronic
charge can only come up to a certain surface and not beyond.

The difficulty with the concept of an ideal plane or surface also shows up with EDLs
formed in porous materials: is the surface to be drawn around such a porous structure, or
wrapped around the atomic structure of the solid constituents inside the crystal lattice? Thus,
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the concept of a surface or plane is not very obvious to define. This is why ‘interface’ is
more useful – and it is synonymous to the EDL as a whole.

If we look at the charge of an EDL, we know that the EDL is a region which as a whole
is electroneutral, but includes two or more regions of different charge. Across the EDL a
voltage difference develops. With two such regions, ‘the charge of the EDL’ then refers to
the charge in one of those regions, with the charge in the other region of the same magnitude
but of opposite sign.

An EDL forms in two types of situations:
(I) An EDL forms at the interface between two bulk (volumetric) phases, where both

these bulk phases participate in the EDL structure, and at least one of the ions can
move between the two bulk phases, or electrons can do that.

(II) The same as situation I, but without ions or electrons transferring between the two
bulk phases. i.e., there might be two bulk phases that form an interface (the EDL)
but none of the ions, and neither the electrons, are able to transfer from one to the
other bulk phase. Or, an EDL forms at the interface between one bulk (volumetric)
phase, and a material of which the surface participates in EDL formation (for instance
the surface of a silica particle or protein molecule), or, a material will simply in its
totality become part of the EDL, such as the polymer network of a polyelectrolyte
gel. In these latter cases, there is no second bulk phase ‘in the background’.

The two categories, I and II, described above, are explained in more detail in the preamble
to part III on page 349.

—

An EDL forms when any pair of the following types of phases is brought in contact:
1. A metal, or other electron-conducting phase, which stores and transports electronic

charge;
2. A solid material which contains chemical groups on its surface that carry a charge. This

class includes many types of materials, ranging from globular protein molecules, to virus
nanoparticles, to oxidic inorganic surfaces such as silica and alumina;

3. A liquid electrolyte, for instance an aqueous solution, which is a phase which allows the
transport and storage of ions;

4. A solid electrolyte, which can be the ion-conducting materials used in certain fuel cells,
or as another example the solid salt of AgCl or AgI;

5. A charged polymer network of which the pores fill up with electrolyte. Ion-exchange
membranes have a more dense and rigid network, while the network of a polyelectrolyte
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gel is more dilute and can expand and contract;
6. An intercalation material that allows the absorption and free movement of ions (often

cations) through the (often solvent-filled) interstitial pores that are inside the lattice
structure of the material. The intercalation materials can store electronic charge in their
crystal lattice structure.

When two such phases or materials are brought in contact (also when both are from the
same class), an EDL is formed. Inside the EDL there will be regions that are positively
charged, and regions that are negatively charged. The EDL is overall electroneutral, and thus
the charges in the two or more regions sum up to zero. With some exceptions that we discuss
below, in the EDL all ions and other solutes are in chemical equilibrium in the EDL, from
one ‘end’ of the EDL to the other. Thus their chemical potential is the same at each position
in the EDL. This requirement is generally met because EDLs are very thin, no more than
a few nm in most cases, and as a consequence concentrations quickly equilibrate, relative
to transport and reaction rates in the overall electrochemical process. Thus, inside this type
of EDL, profiles in potential and concentration can be calculated as if there is no transport,
thus we have local chemical equilibrium. Because of chemical equilibrium, concentrations
at one position in the EDL (or just on the outside) directly relate to concentrations at another
position in the EDL (or just on the other side). Because of this equilibrium, the EDL can
then often be treated separately from transport processes outside this very thin layer, in the
charge-neutral bulk solutions (or ‘reservoirs’) where transport takes place over distances of
microns, millimeters, and more. In an EDL we also have mechanical equilibrium, which
implies that the change in osmotic pressure across the EDL equals the change in hydrostatic
pressure. (Thus, a total pressure, defined as the difference between hyrostatic and osmotic
pressure, is invariant across the EDL.) So there can be current running across an EDL, and
ion transport, but these flows are low enough for the structure of the EDL to be unperturbed:
the structure of the EDL is the same as if there is no current.ii An interesting situation is
when in the EDL reactions take place that have a finite rate, such as an electrode reaction
which involves the combination of an ion with an electron to another ion (or neutral solutes).
Even though this reaction is off-equilibrium, with the reacting species not at equilibrium
with one another, the entire structure around the reaction plane, is an EDL where ions in the
EDL are at chemical equilibrium with those in an adjacent bulk solution. Another important
situation is when we have a porous material of macroscopic dimensions, such as a porous
electrode or ion-exchange membrane, all in contact with an external electrolyte phase. When

iiOf course the flows change conditions right next to the interface, and this changes properties such as the EDL
charge, or ion adsorption in the EDL, but the equations that describe the EDL remain the same, and that is
meant with ‘the EDL structure stays the same.’
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this structure is at equilibrium with an outside solution (so no flows through the material,
no changes in time), then the entire porous structure and the boundaries, can be described
as an EDL (for instance for titration studies). Now, when there is flow of ions and solvent
through such a porous medium, along a coordinate z, then the situation changes. For a
porous medium where all transport pathways are of nanoscopic dimensions, such as for an
ion-exchange membrane, or a membrane for reverse osmosis, then on the outsides of the
membrane we have Donnan equilibrium (an EDL structure), the same as described above.
Inside the membrane at each z-position, there is a kind of EDL structure where locally
ions and wall charge are in chemical equilibrium with concentrations in a virtual solution.
Concentrations in the virtual solution, 𝑐v,𝑖 , change gradually from one to the other end of the
membrane. During transport, with 𝑐v,𝑖 a function of z, we do not refer to the inner structure
of a membrane as an EDL, because this structure is described by transport equations. Only
when 𝑐v,𝑖 is invariant across the membrane is the entire structure an EDL.

When the porous layer is connected from one end to the other by larger transport
pathways, such as for a porous electrode, with porous particles of electrode material (carbon,
intercalation material) ‘lining’ these pathways, or ‘macroscopic pores’, then also with flow
through these pores, ion adsorption, pressure, charge, and voltages, in each porous particle
are described by an EDL.iii The structure of the EDL is the same at each z-position, i.e., the
equations are the same, though the actual value of charge, etc., will be dependent on z. So
for the nanoscopic porous material discussed in the previous paragraph, we do not have an
EDL inside the layer when there is transport across it, while we do for a porous material with
larger (locally charge neutral) transport pathways, such as for a porous electrode, when the
particles that form the porous electrode each by themselves have an equilibrium structure.

—

In the above, examples were provided of an EDL at the interface between two bulk phases,
and inside the EDL it was implied in some cases that there are two regions of opposite
charge, because overall the EDL is charge-neutral. However, it is also possible that an
EDL forms at the interface between three or more phases, for instance when two metals
touch while submerged in water with salt. Or inside a fuel cell electrode it is possible that
electrolyte, catalyst, conducting substrate, and gas phase, are in contact at distinct points.

iiiAt least, when inside these particles transport does not change the EDL structure, for instance because the
particles are small enough, thus across its volume there are no gradients in concentration. But when inside
these particles transport limitations (between its outer surface and more inner regions) influence the distribution
of ions and charge, then such an individual particle is not (described by) an EDL, see West et al., “Modeling of
porous insertion electrodes with liquid electrolyte,” J. Electrochem. Soc. 129, 1480–1485 (1982).
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It is furthermore possible that the EDL has more than two regions which are charged. For
instance inside a pore in a porous carbon particle, charged surface groups are attached to
the carbon surface, while the pore is filled with ions and water. Thus we have a region of
electronic charge in the carbon, (chemical) surface charge on pore walls, and a region of
ionic charge in the electrolyte that fills the pores. Even though we now have more than two
charged regions in the interface, still the term EDL is used, because from an experimental
perspective, the same macroscopic information can be derived such as capacitance, salt
adsorption, etc. Instead, details of the theoretical models are always up for discussion, such
as the question of whether there are two or three or more charged regions.

We now turn our attention to the experimental (observable) side of the EDL. Here, focus
is on the relations between various attributes of an EDL that are measurable, such as charge,
voltage, ion adsorption, and surface pressure. For instance, when applying a force to
squeeze a gel-like charged polymer material, filled with water and ions, thereby bringing
charged polymer groups closer together, we increase the internal energy of the EDL, and
this opposes the applied force, and that force can be measured. Another example is when
charged molecules are adsorbed at the interface of a gas and liquid, and they are squeezed
together by reducing the available surface area. And in capacitive electrode processes we
can store ions and charge, depending on the electrode voltage (an electrode is a special type
of EDL). We can derive data for the capacitance, which is the change in electrode charge
over electrode potential. This property, often with unit Farad, is a key feature of a capacitive
electrode process.

Important is the realization that we can record these data of voltage, charge, capacitance,
and pressure, and in this way describe the performance of an EDL (the experimental side
of the EDL), and we can do so irrespective of the chosen structural theory of what are
the chemical, microscopic or atomistic details of what we believe might take place exactly
inside the EDL. An example is that for certain electrodes we can calculate a capacitance by
measuring the electrode charge and voltage. And we can then conclude that this electrode
(EDL) is capacitive, and we can come to that conclusion irrespective of what is the proposed
theory for the electrostatic and chemical mechanism of how ions and charge are stored (and
that microscopic theory can always change). Data of capacitance can be used to construct
or test a microscopic EDL model for the storage of ions and charge as function of electrode
voltage.

Also for non-capacitive electrode processes an EDL forms at the interface between
electrode and electrolyte, with a separation of charge between different regions inside the
EDL, and resulting profiles of ions and electrons. However, it is much more difficult to obtain
experimental data of this EDL structure, because the electrode does not have a capacitance.
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These non-capacitive, i.e., Faradaic, electrodes are not described by an extended isotherm
(see Ch. 1), but a more simple theory suffices to describe key electrode features, relating the
voltage across the electrode to the concentrations of the ions that participate in the electrode
reaction (concentrations just outside the electrode). This is the Nernst equation used in
Faradaic processes (which are processes that can run forever because they do not store
charge or ions in the electrode) when the electrode reaction has sufficiently fast kinetics. In
the Nernst equation there is no dependence on stored amount of charge or ions in the EDL,
which is the ‘additional electrical variable’ that defines a capacitive electrode process, as
identified by Mohilner (1966).

In the preamble to Part II, starting on p. 349, we continue our discussion of different
types of EDL structures (theories for the EDL).

Let us end with some words by Mohilner (1966):

Mohilner (1966) on the EDL: [The e]lectrical double layer is a term used to denote
the arrays of charged particles and/or oriented dipoles believed to exist at every material
interface [such as] interfaces formed by metals in contact with electrolyte solutions.

Strictly speaking, EDL is a misnomer, in view of modern ideas about the structure
of the interfacial region. A more descriptive term would be electrochemical multilayer,
since (a) the forces which lead to its formation include, in addition to long-range
electrostatic forces, shorter-range forces of types usually considered chemical, and (b)
the interfacial region consists of not two, but at least three, and sometimes more, distinct
subregions or layers. However, the old name has persisted for so long and has been used
so widely in the electrochemical literature that an attempt to change it now would lead
to confusion. Hence EDL will refer to the interfacial region formed by a metal electrode
dipping into an electrolyte solution, regardless of the actual structural complexity of the
phase boundary.
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The extended Frumkin isotherm for the EDL in

intercalation materials

The extended Frumkin isotherm is one of the most elegant electrical double layer (EDL)
models, and we show how it closely relates to the classical Van der Waals equation of state.
We demonstrate how this isotherm accurately describes the capacitance of intercalation
materials, and discuss extensions to multi-cation mixtures and materials with a distribution
of sites with different adsorption energies.
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Models for the electrical double layer (EDL) in capacitive electrodes relate three
properties: solution conditions (ion concentrations in solution), absorbed amounts of ions
and charge, and the EDL potential, i.e., the change in (electrical) potential across the interface
(i.e., across the electrode, across the EDL), which is the potential (voltage) in the electron-
conducting bulk phase (e.g., metal) near the interface, relative to the potential in the nearby
bulk electrolyte phase (solution). This difference is the electrode potential.

EDL models for capacitive electrodes are equilibrium models and we can also interpret
them as extensions of adsorption isotherms, extended because they include the electrode
potential as a variable. They are also an equation of state (EOS) because via measurable
capacitances they describe the dependence of charge density and concentration on pressure
and voltage.

In this chapter we derive and use one particular EDL model, the extended Frumkin
isotherm. This is a very elegant EDL model and it also has practical relevance, because
it accurately describes cation adsorption in intercalation materials, which are promising
materials for water desalination by capacitive deionization (CDI). As an introduction to the
extended Frumkin equation, we start with the Van der Waals equation of state.

1.1 The equation of state for gases
One of the most successful equations of state (EOS) for gases is the classical Van der Waals
(VdW) equation which describes the pressure of a gas, 𝑃, as(

𝑃
VdW + 𝑎

𝜈2

)
(𝜈 − 𝑏) = 𝑅𝑇 (1.1)

where a is a force of attraction between molecules, b a measure of the molecular volume,
and 𝜈 a volume available per molecule, i.e., an inverse concentration, while R and T have
their usual meaning of the gas constant and temperature (in K). We use an overbar notation
to indicate that pressure is dimensional, i.e., it has a unit, which in this case is Pa. We can
rearrange Eq. (1.1) to

𝑃
VdW

=
𝑐𝑅𝑇

1 − 𝑏𝑐 − 𝑎𝑐
2 (1.2)

where we implemented that 𝜈=1/𝑐, with 𝑐 the concentration of the (gas) molecules. Eq. (1.2)
shows that the pressure of a VdW gas has an ideal part, 𝑃

id
= 𝑐𝑅𝑇 (which we obtain from

Eq. (1.2) when we insert that 𝑎=𝑏=0), modified by a volume exclusion effect (often called
an ‘excess’ term, abbreviated as ‘exc’), related to the term 1−𝑏𝑐, and in addition there are
intermolecular attractions. The strength of the attraction between the molecules is described
by the parameter 𝑎. Because of this last part, when 𝑎 > 0 the VdW equation predicts that
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phase separation is possible, with a gas and liquid coexisting. The same can happen in
the (extended) Frumkin isotherm that we discuss later on in this chapter, if the attraction
between adsorbed species is high enough.

In a solution, the chemical potential of a solute, 𝜇𝑖 , relates to osmotic pressure, Π, by the
Gibbs-Duhem (GD) equation, which is given by

𝜕Π

𝜕𝑐
=

∑︁
𝑖

𝑐𝑖
𝜕𝜇𝑖

𝜕𝑐
(1.3)

where 𝑐 is a summation over all concentrations, and differentiations with respect to c are at
constant composition of the solution (ratios between concentrations fixed).i It is not easy to
derive this equation for a mixture. But for a single type of solute, this derivation can be easily
made, because in that case 𝑐 = 𝑐𝑖 . For a single component, the GD equation follows from
combining how the chemical potential relates to the free energy density, f, by 𝜇𝑖 = 𝜕 𝑓 /𝜕𝑐𝑖 ,
and how osmotic pressure relates to f according toΠ = −𝜕 ( 𝑓 ·𝑉) /𝜕𝑉 = − 𝑓 +𝑐𝑖 ·𝜕 𝑓 /𝜕𝑐𝑖 .ii In
this differentiation, the total number of molecules, 𝑁𝑖 , in the volume V, is fixed (𝑁𝑖 = 𝑐𝑖𝑉);
thus, in this derivation we make the replacement d𝑉 = −𝑁𝑖/𝑐2

𝑖
d𝑐𝑖 . We now arrive at

Π = 𝑐𝑖𝜇𝑖 − 𝑓 , and if we again take the derivative with respect to 𝑐𝑖 , and again insert
𝜇𝑖 = 𝜕 𝑓 /𝜕𝑐𝑖 , we arrive at

𝜕Π

𝜕𝑐𝑖
= 𝑐𝑖

𝜕𝜇𝑖

𝜕𝑐𝑖
(1.4)

which is the Gibbs-Duhem equation for a solution containing a single solute at concentration
𝑐𝑖 . In a gas, pressure 𝑃 functions similarly to what is the osmotic pressure Π in a solution.
Thus Π in Eq. (1.3) can be replaced by 𝑃 to describe the thermodynamic properties of a gas
phase. In a solution, osmotic pressure Π is not like a hydrostatic pressure in that it can be
measured directly as a force on an external object, but it is solely a ‘mathematical’ function
of solute concentrations. Only under certain conditions will it lead to a hydrostatic pressure,
for instance when a membrane that blocks some solutes is placed between two solutions
of unequal solute concentration (J.L. Anderson and D.M. Malone, “Mechanism of osmotic
flow in porous membrane,” Biophys. J. 14, 957–982, 1974).

If we first analyze the ideal gas law for a system with a single component, 𝑃id = 𝑅𝑇𝑐𝑖 ,
and use the GD equation, Eq. (1.4), what do we arrive at? Inserting the ideal gas law and

iHere the GD equation is written with the ‘overbar’-sign, which is used for dimensional pressures and potentials.
However, Eq. (1.3) equally applies when non-dimensional pressures and energies are used.

iiIn a mixture, in the derivation of 𝜇𝑖 , we differentiate f with respect to 𝑐𝑖 while we keep all other concentrations
constant. For osmotic pressure, in case of a mixture, when we do the differentiation 𝜕 𝑓 /𝜕𝑐, the composition
is kept the same (i.e., the ratios between the concentrations of all solutes stay the same).
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making the differentiation on the left we arrive at

𝑅𝑇 = 𝑐𝑖
𝜕𝜇𝑖

𝜕𝑐𝑖
(1.5)

and then integrating from 𝑐ref to 𝑐𝑖 , and from 𝜇ref,𝑖 to 𝜇𝑖 , we obtain

𝜇𝑖 = 𝜇ref,𝑖 + 𝑅𝑇 ln (𝑐𝑖/𝑐ref) (1.6)

which immediately provides us with a reference term (relevant for chemical reactions) and
the ideal entropy-term. The only assumption was the ideal gas law, and this derivation
equally applies to molecules in a gas, and to solutes in a solvent. Thus, the ideal gas law is
all we need to derive the entropic contribution to the chemical potential, ln 𝑐𝑖 , and we do not
need a derivation based on the entropy of a lattice of sites that are occupied or not, Stirling’s
equation, etc.

For the Van der Waals equation, if we apply Eq. (1.4) we obtain from Eq. (1.2)

𝜇VdW = 𝜇ref + ln 𝑐/𝑐ref + ln
𝑏𝑐ref

1 − 𝑏𝑐 +
𝑏𝑐

1 − 𝑏𝑐 − 2𝑎′𝑐 (1.7)

where we introduce the non-dimensional chemical potential 𝜇𝑖 , which is the dimensional
chemical potential, 𝜇𝑖 , divided by RT. The attraction term is now 𝑎′ = 𝑎/𝑅𝑇 with unit
m3/mol. In Eq. (1.7) the third and fourth terms together relate to volume exclusion, and
unfortunately they do not have a clear physical interpretation. This relates to the empirical
manner in which the Van der Waals EOS was derived.

It is therefore better to use the Langmuir and Frumkin equations of state, which are models
that have a microscopic, atomistic, background, namely they assume that there is a finite
number of lattice sites that can be occupied or not. These two models are closely related,
with Frumkin an extension of Langmuir by including a term describing attraction between
molecules. For the chemical potential, for the Frumkin equation of state, we obtain

𝜇Frumkin = 𝜇ref + ln 𝑐/𝑐ref − ln (1 − 𝑣 𝑐) − 2𝑎′𝑐 (1.8)

where 𝑣 is the molecular volume (in m3/mol) in the context of such a lattice model, not to be
confused with the factor 𝜈 in Eq. (1.1)! For the Langmuir equation, the chemical potential is
also given by Eq. (1.8) but with 𝑎′ = 0. In Eq. (1.8) we have a reference term, an ideal term,
the Langmuir excess term due to volume exclusion, and an attraction between molecules.
In Eq. (1.8), the third term, which describes volume exclusion, has a logical appearance,
related to a derivation in which the chemical potential of a solute is ln 𝑐∗/𝑐ref with 𝑐∗ the
concentration per available, not total, volume. And the available volume, relative to the
total, is 1−𝑣𝑐, see also p. 50. Thus, 𝑐∗ = 𝑐/(1 − 𝑣𝑐).
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Based on Eq. (1.4) we can rewrite Eq. (1.8) to a pressure according to the Frumkin
equation of state (EOS), or according to the Langmuir equation of state (𝑎=0), resulting in

𝑃Frumkin = −𝑣−1 · ln (1 − 𝑣 𝑐) − 𝑎′𝑐2 (1.9)

where pressure P relates to pressure 𝑃 according to 𝑃 = 𝑃/𝑅𝑇 . The dimension of pressure
P is mol/m3, the same as for concentration. Pressures P can always be multiplied by RT to
obtain a pressure, 𝑃, with the conventional unit of Pa. (We use this convention for pressures
P and Π throughout this book.) Eq. (1.9) can be rewritten to

𝑃Frumkin = 𝑃id + 𝑃exc + 𝑃int (1.10)

where ‘int’ refers to a molecular interaction (e.g., attraction), with 𝑃id = 𝑐, and 𝑃int = −𝑎′𝑐2.
The excess pressure, which relates to the volumes of the molecules, is given in the Frumkin
equation by

𝑃exc,Frumkin = −𝑣−1 · ln (1 − 𝑣 𝑐) − 𝑐 = 1/2𝑣𝑐2 + 1/3𝑣2𝑐3 + O
(
𝑐4

)
. (1.11)

It is interesting to compare the volumetric part of the Van der Waals EOS, with that in the
Langmuir/Frumkin EOS. We obtain the best correspondence if we relate the factor 𝑏 in
the VdW EOS to the molecular volume 𝑣 in the Langmuir/Frumkin equation according to
𝑣=2𝑏. Then the second virial coefficients match (i.e., the EOS matches up until the term 𝑐2

in pressure), though for higher concentrations Eq. (1.9) increases faster than the VdW EOS.
The chemical potential according to the Frumkin EOS, Eq. (1.8), is the basis of the

derivation of the Frumkin isotherm in §1.3, and later on for the extended Frumkin isotherm
for intercalation materials in §1.4.

Volume effects in the Carnahan-Starling equation of state. To describe volume
(excess) effects more accurately than in the VdW or Langmuir/Frumkin EOS, the
Carnahan-Starling (CS) EOS is best used. The CS EOS very accurately describes
pressures in a ‘hard sphere fluid,’ i.e., a gas in which we describe all molecules as
hard spheres. In the CS equation the term 1/(1 − 𝑏𝑐) of Eq. (1.2) is then replaced
by

(
1 + 𝜂 + 𝜂2 − 𝜂3) /(1 − 𝜂)3 where 𝜂 is the volume fraction occupied by the (gas)

molecules, given by 𝜂 = 𝜐𝑐, where 𝜐 is the ‘real’ molecular volume of a solute or gas
molecule. Now we can elegantly separate the ideal contribution, 𝑃id = 𝑐, from the
excess contribution to the pressure, which then becomes

𝑃exc,CS =
2𝜂 (2 − 𝜂)
(1 − 𝜂)3

𝑐 = 4𝜐𝑐2 + O
(
𝑐3

)
.
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Comparison of these equations shows that to make the VdW EOS match the CS EOS,
at least in the dilute limit, the parameter 𝑏 in the VdW equation must be interpreted
as 4× the molecular volume, i.e., 𝑏 = 4 𝜐. And thus, in the dilute limit, the Langmuir
equation predicts an 8× lower pressure effects because of volume exclusion than the
Carnahan-Starling equation, if we would treat 𝑣 and 𝜐 as equivalent.

The CS model is an extremely powerful starting point because it can be extended in
many ways, for instance when the molecules, instead of being considered as spheres,
are better described as doublets or triplets (or as a long string of connected spheres).
The CS EOS can also be extended to mixtures of molecules of all kinds of sizes and
shapes, see the next section, and see Ch. 4. And finally, the equation allows for all
of these interactions to take place inside a porous medium. The porous medium we
describe as if it is built from a large array of connected beads.

1.2 The equation of state for a charged film
Next we apply these equations of state to the problem of a charged film. Here, charged
molecules are adsorbed in an interface (liquid-gas, or liquid-liquid) and because they are
mobile within the interface they exert a surface pressure, 𝑃s, i.e., a pressure directed along
the surface (unit J/m2 = N/m), similar to how a gas exerts a pressure volumetrically (unit
Pa=J/m3). For the pressure of these molecules adsorbed in the interface, Eq. (1.2) is often
used, with a surface concentration 𝑐s in mol/m2 generally translated to a concentration in
numbers per area, 𝑛s = 𝑐s · 𝑁av, and then 𝑛s is replaced by 1/𝐴 with 𝐴 the area available for
one molecule, while 𝑏 is now equal to the area occupied by one molecule, 𝐴0 (i.e., this is
the minimum area that a molecule needs). We then arrive at

𝑃s =
𝑘B𝑇

𝐴 − 𝐴0
− 𝑎

(𝑁av 𝐴)2
. (1.12)

To this surface pressure a contribution can be added when the adsorbed molecules are
charged and a ‘diffuse layer’ of counterions forms in one of the two bulk (electrolyte) phases.
According to Gouy-Chapman theory, which we will discuss further on, this contribution
is given by Eq. (5.13) with the required surface potential 𝜙D given by the GC-equation,
Eq. (3.15). In these equations, surface charge Σ relates to 𝐴 according to Σ = 𝑒 𝑛s = 𝑒/𝐴
when each molecule carries one 𝑒 charge.

—
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To improve on Eq. (1.12), we set up a modified equation of state for a charged film where
we model the surfactant molecules in the interface as the short polymer chains that they often
are. We use the modified CS equation for the volume exclusion of packing these (relatively
short) polymer chains, which has as inputs the cross-sectional area of each of these polymer
chain, 𝐴ch, and the number of monomers in a chain,N (i.e., in one surfactant molecule). For
instance, based on a chain diameter of 𝐷ch =0.36 nm, we have 𝐴ch =0.10 nm2, and N ∼10
can be a reasonable number for moderately long surfactant molecules. (N does not have to
coincide exactly with the number of monomers, but can be chosen more freely.)

The excess contribution to the surface pressure due to packing these surfactant molecules
is now given by

𝑃exc
ch

𝐴ch

N 𝑘B𝑇
= 3𝜂2 + 9𝜂3 + O

(
𝜂4

)
(1.13)

in which the volume fraction 𝜂 relates to surface concentration according to 𝜂 = 𝑛s 𝐴ch. This
expression shows how the volumetric exclusion depends on the number of monomers in the
molecule, and their cross-sectional area.

The full equation of state for a charged film now becomes

𝑃s = 𝑐s 𝑅𝑇 + 𝑃exc
ch + 𝑃elec − 𝑎N𝑐s

2 (1.14)

where we implement the electrostatic contribution, 𝑃elec, given by Eq. (5.13) or Eq. (5.14)
(noting that charge is Σ = 𝐹𝑐s, when we assume one charge per surfactant molecule).

In Eq. (1.14) the ideal contribution to the surface pressure, 𝑐s𝑅𝑇 , and the electric
contribution, do not depend on the length of the surfactant molecules (assuming the charge
per molecule remains the same), while the volumetric excess term, and the attraction between
chains, they do. We highlight this length-dependence for the attractive term (last term
in Eq. (1.14)), by multiplying with N . For so-called ‘theta-conditions’, the first virial
coefficient, 3𝜂2 in Eq. (1.13) and the attraction term exactly cancel which happens when
𝑎/

(
𝑁2

av𝐴ch
)
=3 kT.

1.3 The Frumkin isotherm for molecular adsorption
In the previous sections we discussed the equation of state, first for a volume of gas, and
after that for molecules adsorbed at an interface. We now continue with a more complicated
situation, which is the isotherm. An isotherm describes the exchange of molecules between
multiple phases. We first discuss the exchange of one type of molecule between bulk solution
and a layer in which molecules adsorb. This layer can be modelled as a two-dimensional
surface or a three-dimensional volume.
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To derive an isotherm one must equate the chemical potential of the molecule in bulk
solution (often denoted by ‘∞’), with that in the surface, i.e., in the adsorption layer, thus
𝜇𝑖,∞ = 𝜇𝑖,ads. For the solution phase we only use the first two terms on the right side of
Eq. (1.8), while in the adsorption layer we use the same equation but now we use all terms,
with the adjustment that the reference concentration becomes the maximum concentration
in the layer, thus 𝑐ref → 𝑐max (= 1/𝑣).iii We also add to both sides an ‘affinity’ term, which is
a chemical interaction of the species with the respective phase. This relates to the solubility
in that phase. There are no volume- or charge-effects included in this affinity. Leaving out
index i, the result of this equality of chemical potential is

𝜇ref + 𝜇aff,∞ + ln 𝑐∞/𝑐ref = 𝜇ref + 𝜇aff + ln 𝜗 − ln (1 − 𝜗) + 𝑔′𝜗 (1.15)

where the volume fraction occupied by the molecules in the adsorption layer is𝜗=𝑐ads/𝑐max=

𝑣 𝑐ads, and we use a factor 𝑔′ for the interaction energy which is negative when the molecules
within the adsorption layer attract each other. This factor relates to the earlier used parameter
𝑎′ according to 𝑔′=−2𝑎′ 𝑐max.

We rearrange Eq. (1.15) to arrive at the Frumkin adsorption isotherm, which is an implicit
relationship between the occupancy of the adsorption layer, 𝜗, and the solution concentration,
𝑐∞, given by

𝜗

1 − 𝜗 = 𝐾 · 𝑐∞ · exp (𝑔′𝜗) (1.16)

where𝐾 =𝑒−Δ𝜇aff/𝑐ref , in whichΔ𝜇aff =𝜇aff,ads−𝜇aff,∞. Eq. (1.16) is also called the Frumkin-
Fowler-Guggenheim (FFG) equation. In the FFG equation, instead of g’, the symbol b is
used, called the lateral interaction parameter. For sufficiently negative values of g’, Eq. (1.16)
predicts that for a range of values of 𝑐∞ there are multiple solutions for 𝜗, i.e., it is possible
to have phase separation within the surface. (This does not always occur for many reasons
related to the absence of nucleation points, and that lateral transport of molecules can be
slow.)

The FFG equation can be simplified to the Langmuir isotherm when 𝑔′=0, which results
in

𝜗 =
𝑐ads

𝑐max
=

1
1 + 𝐾 · 𝑐∞

(1.17)

which for low adsorptions simplifies to

𝜗 = 𝑐ads/𝑐max = 𝐾 · 𝑐∞ (1.18)
iiiIf the adsorption layer is modelled as a volume, then 𝑐ads is a concentration in mol/m3 and 𝑣 is the volume per

molecule (or per mole of molecules). But if the layer is modelled as an area, then 𝑐ads is expressed in mol/m2

and 𝑣 is the area per molecule (or per mole of molecules).
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and when 𝑐ads and 𝑐max are defined as concentrations per volume, this can be written as

𝑐ads = Φaff 𝑐∞ (1.19)

where Φaff = 𝑐max · 𝐾 = 𝑐max/𝑐ref · 𝑒−Δ𝜇aff is a partition coefficient, or solubility, of a
molecule, due to a difference in affinity, which relates to its preference to be in phase 𝑘 rather
than in phase 𝑗 , i.e., the factor Φaff describes the distribution of a certain solute between
two phases for chemical reasons (reasons unrelated to ‘excess’ ion volume effects, or to the
charge of the species), see p. 503.

A modification of Eq. (1.17) to account for surface heterogeneity is the Langmuir-
Freundlich isotherm1,2 which is

𝜗 =
𝑐ads

𝑐max
=

1
1 + (𝐾 · 𝑐∞) 𝑝

(1.20)

where p is the width of the affinity distribution (0< 𝑝<1).3

A generalized distribution function based on the the Langmuir equation, Eq. (1.17), is
given by

𝑐ads = 𝑐∞Φaff Φexc (1.21)

where Φexc is the partition coefficient related to volume exclusion, which for the lattice
model used in this chapter simply is Φexc = 1 − 𝜗.

We will encounter Eq. (1.21) multiple times throughout this book, often supplemented
with an electrostatic effect –resulting in an extended Boltzmann equation–, and with more
sophisticated expressions for the volumetric, excess, contribution considered, for instance
described by (modifications of) the Carnahan-Starling approach, see e.g., Eq. (2.34) in Ch. 4.

The Gibbs adsorption isotherm. Interestingly, the simplified Langmuir equation,
Eq. (1.18), is compatible with the ‘Gibbs equation for adsorption’, d𝛾 = −𝑅𝑇Γs d ln 𝑐∞,
where 𝛾 is surface tension and Γs surface concentration, i.e., Γs is equal to 𝑐ads. Surface
tension is the negative of the surface pressure, and for an ideal solution −𝛾 = Πs =

𝑅𝑇𝑐ads, and thus the Gibbs adsorption isotherm becomes d𝑐ads = 𝑐ads d ln 𝑐∞, which
implies d ln 𝑐ads = d ln 𝑐∞ which is compatible with the simplified Langmuir equation,
Eq. (1.18).
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The isotherm when adsorbing species are charged. It is possible to extend Eq. (1.16)
to include that adsorbing molecules, or for instance nanoparticles, are charged, by
adding to Eq. (1.15) a term 𝑧𝜙 with z the valency of the surfactant (particle, ion) and
𝜙 the electrical potential in the surface, relative to bulk. To solve for 𝜙, we need
to set up an EDL model that includes surface charge in the absence of surfactant
adsorption, the charge of adsorption surfactant molecules, and the diffuse layer of
counterions. Ishiguro and Koopal discuss this topic for a diffuse layer model in the
low-potential limit.3 When surfactants have a charge opposite to that of the surface,
then at one surfactant concentration in bulk, the influence of salt concentration on
adsorption vanishes; below this concentration, we have more surfactant adsorption
when salt concentration decreases, while above this point the situation is reversed.
More advanced models include how (counter-)ions can also adsorb, and then H+ and
OH– are of special relevance.

1.4 The extended Frumkin equation for the EDL
structure in intercalation materials

We can now use the general expression that was derived for equilibrium, thus for equality of
chemical potential in two adjacent phases, Eq. (1.15), and add to both sides an electrostatic
term. Assuming that the absorbing species are monovalent cations, the additional term on
the left is +𝜙∞ and on the right is +𝜙ads. We continue to use 𝜗 = 𝑣𝑐ads = 𝑐ads/𝑐max, which
from this point onward we call the intercalation degree, and we rearrange Eq. (1.15) to obtain
for the electrode potential

𝜙𝑒 = 𝜙ref − ln
𝜗

1 − 𝜗 + ln
𝑐∞
𝑐ref
− 𝑔′ (𝜗 − 1/2) (1.22)

where 𝜙e=𝜙ads+𝜙extra−𝜙∞ and 𝜙ref =𝜇aff,∞−𝜇aff,ads− ln 𝑐max−𝜙extra−1/2𝑔′. In dimensional
voltages, with 𝑉𝑒=𝑉T 𝜙𝑒, we obtain

𝑉𝑒 = 𝑉 ref −𝑉T

(
ln

𝜗

1 − 𝜗 − ln
𝑐∞
𝑐ref

)
− 𝑔 (𝜗 − 1/2) (1.23)

where 𝑔 = 𝑉T · 𝑔′ with 𝑉T = 𝑅𝑇/𝐹 the thermal voltage, which at room temperature is
𝑉T∼25.6 mV. In using Eqs. (1.22) and (1.23) it must be recalled that an attraction between
ions within the adsorption layer means that 𝑔 is negative.
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The equation just derived is the extended Frumkin isotherm (here for monovalent cations),
which is a very accurate and elegant EDL model, for instance for intercalation materials,
which are promising capacitive materials for desalination in capacitive deionization (CDI).
Intercalation materials are charged porous materials into which ions can enter, or intercalate,
moving into the small micropores that are inside the framework of the intercalation ‘host
compound’, or ‘active material’. Ions are free to move within these interstitial spaces and
will be expelled from the material, or attracted inside, dependent on the charge of the
host structure. In some well-known examples only cations adsorb (not anions) because the
host compound structure is strongly negative charged. These examples are Prussian Blue
Analogues (PBA) and sodium manganese oxide (NMO).

Using Eq. (1.23) we can evaluate the electrode charge, −𝜗𝑐max, which is a concentration
per volume of intercalation host compound, as function of electrode potential. Here a minus-
sign is implemented because electrode charge is the negative of the cation concentration in
the pores of the material. It is interesting to analyze the derivative of charge with electrode
potential, which is the capacitance of the intercalation material. Based on Eq. (1.23)
capacitance is given by

𝐶 = −𝐹𝑐max

𝜌

𝜕𝜗

𝜕𝑉𝑒
=
𝐹2 𝑐max

𝑅𝑇 𝜌

{
1
𝜗
+ 1

1 − 𝜗 + 𝑔
′
}−1

(1.24)

where 𝜌 is the mass density of the intercalation material. The maximum in capacitance is
obtained when the material is occupied for 50% with cations (𝜗 = 1/2), i.e., the other half
of available sites is still unoccupied. Then the term within brackets is 4+𝑔′. We can have
an infinite capacitance when ions are so attracted to one another that they (almost) phase
separate, and we arrive in this situation when the attraction term is 𝑔′=−4 or more negative.
For water als electrolyte, for the two materials mentioned above, PBA and NMO, which are
both often used in CDI, the factor 𝑔′ is negative, but not so negative that phase separation
takes place. We discuss these materials in more detail in §15.2.1.

In Fig. 1.1 we compare data and theory based on Eq. (1.24) and notice the good fit of
theory to the data, especially in reproducing the broad plateau and symmetric behavior around
𝜗∼ 1/2, i.e., when the material is halfway charged, when capacitance is at a maximum. Theory
is in agreement with data that these high capacitances, beyond 1000 F/g, can be obtained
in a large window of charge (∼ 150 C/g). The capacitance of other capacitive materials is
generally lower. For instance for microporous carbons typical values for capacitance are in
the range of 50–100 F/g.
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Fig. 1.1: The capacitance of an intercalation material in 1 M Na2SO4 in water. The material is a
Prussian Blue Analogue (nickel hexacyanoferrate) (𝜌 = 2.0 g/mL, 𝑐max = 4.40 M, 𝑔 = −90 mV).

1.5 Extensions of the extended Frumkin isotherm for
multi-ionic solutions or multi-region electrodes

The extended Frumkin isotherm, Eq. (1.23), can be further extended to describe the
simultaneous adsorption of multiple ionic species in the electrode. It is often the case
that the attraction for one ion is higher than for another, which leads to differences in 𝑉ref,𝑖 .
For two types of monovalent cations, it is possible to use the following ‘multicomponent
extended Frumkin isotherm,’ which in effect are two equations that must be solved jointly to
calculate the intercalation degree of each cation, 𝜗𝑖 , for a given value of 𝑉𝑒 and for a given
solution composition, i.e., for known cation concentrations in solution, 𝑐∞,𝑖 . This equation
is

𝑉𝑒 = 𝑉ref,𝑖 −𝑉T

(
ln

𝜗𝑖

1 − 𝜗𝑖 − 𝜗 𝑗
− ln

𝑐∞,𝑖
𝑐ref

)
− 𝑔𝑖 (𝜗𝑖 − 1/2) − 𝑔avg𝜗 𝑗 (1.25)

where 𝑔avg is the average of the two 𝑔-values of the two cations, based on the assumption
that that value is representative of the mutual attraction 𝑖− 𝑗 between these two cations inside
the electrode. Eq. (1.25) simplifies to Eq (1.23) for ion 𝑖 when the other ion 𝑗 is absent
(𝑐∞, 𝑗 =0, and therefore 𝜗 𝑗 =0).

—
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Another modification of Eq. (1.23) is to consider a single adsorbing cation, but to realize
that not all sites in the intercalation material have the same adsorption energy. Instead, there
can be a distribution in energy amongst the sites in the material, with the values of 𝑉 ref and
𝑔 different in different regions of the material.

We set up a model based on Eq. (1.23) where we assume three types of sites, 𝑗 = 1, 2, 3
(each with a concentration 1/3rd of the total number of adsorption sites), with a difference
in 𝑉 ref between the three types of sites of 50 mV. Thus we simultaneously solve Eq. (1.23)
three times with three different values of 𝑉ref, 𝑗 while 𝜗 in Eq. (1.23) is replaced by 𝜗 𝑗 (we
assume no interaction between the three types of sites). The total occupancy as presented
in Fig. 1.2 is 1/3rd the summation of the three values of 𝜗 𝑗 , obtained at the same electrode
potential, 𝑉𝑒.

What is the most relevant in Fig. 1.2 is that the predicted sequence of multiple plateaus has
similarities to observed charging curves for certain intercalation materials, especially NMO
(but not observed for PBA). And we can note that when the number of different adsorption
sites (with different energies) increases, the resulting curve will become smoother and
smoother, and finally it can be described by the extended Frumkin equation as if there is
only a single region, but now with a much larger (more positive) 𝑔-value than the value
used in the more precise multi-region calculation that considers many types of sites with
different energies. So this ‘new g’ has an empirical character; it no longer really describes
the attraction energy between cations in the material.

Or in other words, by adjusting 𝑔 in a model based on only a single Frumkin isotherm,
one can in good approximation simulate a material that in reality has many regions with
different absorption energies. This may also suggest that an intercalation material that
shows a relative steep change 𝜕𝑉𝑒/𝜕𝜗 may on closer inspection contain multiple regions
with different adsorption energies, 𝑉ref, 𝑗 .
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Fig. 1.2: The extended Frumkin adsorption isotherm for an intercalation material with three types of
sites with a 50 mV difference in adsorption energy for cation adsorption (for all three sites, 𝑔=−80 mV).
Electrode potential, 𝜙, versus total cation adsorption degree, 𝜗. Dashed blue curve is based on an
effective ‘single region’ Frumkin model with more positive 𝑔-value, approximating the three-region
Frumkin prediction.



2
The Donnan model: the EDL in small pores

The Donnan model is an elegant model for the electrical double layer (EDL) which extends
the Frumkin isotherm equation by allowing both anions and cations in the pores of a charged
material. The Donnan model has many applications in describing ion adsorption and voltages
in membranes and porous electrodes. It is not difficult to extend the Donnan model and
include both electronic charge and/or chemical charge, as well as ion volume effects and
other contributions to the partitioning of ions. Just like the extended Frumkin isotherm,
it can be readily included in models for the transport of ions across porous electrodes and
membranes.
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2.1 Introduction

As already discussed in the preamble to Part I, the concept of the electrical double layer
(EDL) has two sides to it. On the one hand it is the microscopic structure of how we envision
the interface to look like which is formed when two bulk phases or materials are in contact,
and on the other hand it is the set of mathematical equations that describe measurable
properties of the EDL such as a voltage difference across the EDL, ion adsorption, and
surface pressure.

The EDL is formed between two bulk phases, of which one can be a metal (conductor
of electronic charge) and the other can be electrolyte (conductor of ionic charge). It is also
possible that the EDL includes a material that contributes (a surface with) chemical charges,
such as a charged polymer network, or the surface of a globular protein molecule. Overall,
the EDL is electroneutral. There can be multiple regions with charge, but they all add up
to an overall zero charge. Also, the EDL is generally in equilibrium: even when ions are
transported across the EDL, for instance when an electrode process is going on, the EDL
structure in almost all cases can be assumed to be at chemical and mechanical equilibrium.

In the present chapter we extend the Frumkin isotherm that was discussed in Ch. 1
by allowing adsorption of both anions and cations in the EDL. We furthermore include
a constant-capacity element (the Stern layer), and include the possibility of fixed (i.e.,
immobilized) chemical charge in the pores. This chemical charge can be a function
of local pH. We call this approach the Donnan model. The Donnan model is a very
powerful modelling approach and has applications in many problems in physiology, hydrogel
materials, membrane technology, and ion adsorption in the pores of carbon electrodes.

2.2 Simplified Donnan model

The same as for the extended Frumkin isotherm for intercalation materials, the Donnan
model is based on the idea that within a certain small volume, which in this section we call a
pore, that is a few nm across at most, with charges on the pore walls, that within this volume
ions have a concentration that is different from what it is outside the pore, but within the pore
volume, their concentration is independent of position. Related, in this model it is assumed
that at all positions in the pore the electrical potential is the same, and likewise other forces
and energies are independent of exactly where we are in the pore.

To describe ion concentrations in the pore, relative to outside the pore, we use a general
Boltzmann equation, which describes the partitioning of an ion between two phases due to
effects such as affinity and volume exclusion, and also includes an electrostatic term which
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leads to an attraction or repulsion of the ion into the pore dependent on the charge of the ion
and of pore walls (neutral species are not affected)

𝑐𝑖 = 𝑐∞,𝑖Φ𝑖𝑒
−𝑧𝑖 𝜙D (2.1)

where 𝑧𝑖 is the valency of the ion (e.g., 𝑧𝑖 = +1 for a monovalent cation), and 𝜙D is the
jump in electrostatic potential upon entering the pore (electrical potential in the pore, minus
that outside). These dimensionless potentials 𝜙 can always be multiplied by the thermal
voltage, 𝑉T = 𝑅𝑇/𝐹 ∼ 25.6 mV at room temperature, to arrive at a dimensional potential
or voltage, 𝑉 , with unit V. We use the index ‘∞’ to describe (concentrations at) a position
outside the pore where we have neutral electrolyte bulk solution.i We include in Eq. (2.1)
a partition coefficient, Φ𝑖 , due to contributions to the chemical potential of an ion in a pore
other than the Boltzmann, electrostatic, effect. Examples of forces that are included in Φ𝑖

are an affinity (to be in the pore, rather than outside), and another example is the effect of ion
volume (excess term). Affinity is a general term encompassing many effects that can lead to
a solute-medium interaction energy. The partition coefficient will be discussed in detail in
§2.8, Ch. 4 and Ch. 11. In a multi-ion problem, differences in Φ𝑖 between different ions can
be the reason why out of several ionic species with the same charge, one adsorbs more than
another. We assume Φ𝑖 = 1 until §2.8, and with that assumption arrive at the most common
version of the Boltzmann equation, given by

𝑐𝑖 = 𝑐∞,𝑖𝑒
−𝑧𝑖 𝜙D . (2.2)

Within the pore we have overall electroneutrality, thus the charge on the walls of the pore,
and the charge of ions in the pore volume, add up to zero (the possibility of additional
chemical charge will be discussed further on). This can be expressed as

𝐹𝑉pore
∑︁
𝑖

𝑧𝑖𝑐∞,𝑖𝑒
−𝑧𝑖 𝜙D + 𝐴wallΣwall = 0 (2.3)

where 𝐹 is Faraday’s constant (𝐹 = 96485 C/mol), 𝑉pore is pore volume, 𝐴wall pore wall
area, and Σwall pore wall charge in C/m2. The summation over 𝑖 includes all ions in the
system.

Next we introduce 𝜎w, which is the charge on the pore walls, defined as a charge density
per unit pore volume (thus it has unit mol/m3)

𝜎w = Σwall𝐴wall/
(
𝑉pore𝐹

)
. (2.4)

iThis can also be the electroneutral ‘macropore’ electrolyte that fills the larger (transport) pores in a porous
electrode, see Ch. 15.
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The ratio of pore volume over pore area, 𝑉pore/𝐴wall, is the characteristic pore dimension,
ℎp, which depends on pore size and pore geometry: for a planar slit, ℎp =½·𝑤, where 𝑤
is the width of the slit, while for a cylindrical pore, ℎp = 𝑑/4 with 𝑑 the pore diameter.
Combination of Eqs. (2.3) and (2.4) leads to∑︁

𝑖

𝑧𝑖𝑐∞,𝑖𝑒
−𝑧𝑖 𝜙D + 𝜎w = 0 . (2.5)

Eq. (2.5) can be simplified when we only have monovalent ions (a 1:1 salt solution, see
p. 495). In that case we have a salt solution with cations and anions that all have a charge of
𝑧𝑖 =+1 or 𝑧𝑖 =−1, and we arrive at

−2𝑐∞ sinh 𝜙D + 𝜎w = 0 (2.6)

where 𝑐∞ is the salt concentration outside the pore, which for a 1:1 solution is equal to the
total cation concentration (the sum of the concentrations of all monovalent cations), which is
also the total anion concentration. Eq. (2.6) can be rewritten to express the Donnan potential
as function of 𝜎w and 𝑐∞ii

𝜙D = sinh−1 𝜎w

2𝑐∞
. (2.7)

At very high wall charge density (relative to the external salt concentration), Eq. (2.7)
simplifies to

𝜙D = ln
𝜎w

𝑐∞
. (2.8)

The wall charge density can have various origins, for instance it can be due to electronic
charge in a porous electrode, or it can be the chemical fixed charge of the polymer material
of which an ion-exchange membrane is made. In the latter case, the charge of the polymer
material is generally denoted by the symbol 𝑋 , defined as membrane charge per volume
of pores in the material, which for membranes used in reverse osmosis is predicted to be a
few mM, while many commercial ion-exchange membranes have charge densities as high
as 𝑋 ∼ ±5 M. The sign of the membrane charge can be denoted by a symbol 𝜔, which is
𝜔 = +1 or 𝜔 = −1 for a membrane with positive or negative fixed charges, respectively. A
membrane with positive fixed charges provides easy access to anions, and is therefore called
an anion-exchange membrane (AEM), while a membrane with 𝜔=−1 is a cation-exchange
membrane (CEM). Rewriting Eq. (2.8) for such a membrane, thus making the replacement

iiOn the notation of hyperbolic functions sinh, cosh and tanh: index −1 implies that the inverse function is used,
thus sinh−1 (𝑥 ) = a(rc)sinh(𝑥 ) . However, index 2 implies the function as a whole is squared. See p. 512 for
details on these functions.
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𝜎w= 𝑋 =𝜔 |𝑋 |, where | | refers to taking a positive quantity, we obtain

𝜙D = sinh−1 𝜔 |𝑋 |
2𝑐∞

. (2.9)

While Eqs. (2.7)–(2.9) describe the relation between Donnan potential and wall charge,
another element of an EDL model, i.e., a property that an EDL model must predict, is the
concentration of ions in the pores. For each individual ion, this is given by the Boltzmann
relation, Eq. (2.2). The total concentration of all anions plus cations in the pore, 𝑐T, assuming
a 1:1 solution, is given by

𝑐T = 2𝑐∞ cosh 𝜙D . (2.10)

Making use of cosh
(
sinh−1 (𝑥)

)
=
√
𝑥2 + 1, Eqs. (2.9) and (2.10) can be combined to arrive

at a direct relation between 𝑐∞, 𝑋 , and 𝑐T, given by

𝑐2
T = 4𝑐2

∞ + 𝑋2 (2.11)

independent of the sign of the membrane charge. For the same analysis as in this section but
generalized to Φ𝑖≠1, see §2.8.

For applications in ion-exchange membranes, the above equations often suffice.
Modifications are required when the membrane charge is pH-dependent, which we will
discuss in §2.4. Other modifications account for electronic charge and are discussed in the
next section. Other contributions to the partitioning of ions (for instance due to volume
exclusion, because of an energy penalty for ions to fit in the narrow pores) are discussed in
§2.8, Ch. 4, and Ch. 11.

Effect of temperature on electric double layer structure. An interesting topic is the
effect of temperature on the EDL structure, for instance according to the just-discussed
Donnan model. Often chemical potentials are described as ‘𝑅𝑇 ln 𝑐𝑖’ which suggests
for this entropic part a significant temperature effect, while the electrostatic part, 𝐹 ·𝑉 ,
is not temperature dependent. However, when converting to a dimensionless electrical
potential, 𝜙, we notice the same RT-term in both contributions and thus temperature
turns out to not matter. Indeed, an equation such as Eq. (2.11) correctly does not include
temperature. Volumetric effects can be included too, and still temperature does not play
a role. Instead, ‘chemical’ affinity effects, such as described by the constants a and g in
the last chapter, have a strong dependence on temperature.

Interestingly, EDL models based on the Poisson equation, evaluated for ions in water,
see the next chapter, are also quite temperature-insensitive, for the coincidental reason
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that the factor 𝜀 ·𝑇 is quite independent of temperature. This is because the dielectric
constant of water decreases with temperature in such a way that after multiplication
with temperature 𝑇 (in K), the result is an almost T-independent factor. When we have
transport, the effect of temperature is interesting too, which we discuss in a box on
p. 197.

For capacitive processes where small pores are used to store ions, the concept of charge
efficiency, Λ, plays a key role. Charge efficiency on the one hand is an experimental
parameter, obtained from experiments with an electrochemical cell pair, and on the other
hand it is a theoretical property of an EDL model. Here we focus on the second aspect, and
define charge efficiency as the additional number of ions incorporated in a pore when the
charge goes from zero to a particular value, and then divided by that final charge. In this
case charge efficiency is given by

Λ = 𝐴−1
(√︁
𝐴2 + 1 − 1

)
= tanh (|𝜙D |/2) (2.12)

where 𝐴 = |𝜎w |/(2𝑐∞) is a dimensionless pore wall charge. The charge efficiency Λ is
a number between 0 and 1, and quantifies how much salt is adsorbed when an electrode
is charged. Clearly, a number above unity is not possible, and numbers close to this ideal
maximum require that the electrode charge, or Donnan potential, is high.

The simple Donnan model discussed above, is completed by consideration of one final
property, the difference in pressure between inside and outside the pore. When the
assumptions of the Boltzmann equation are valid, as in the above equations, then the osmotic
pressure in the pore is given byiii

Π = 𝑐T (2.13)

while the osmotic pressure of a 1:1 solution outside the pore is given by Π = 2𝑐∞. Now,
because of mechanical equilibrium that we can assume in an EDL, it is the case that the total
pressure, 𝑃tot, is invariant across the EDL. Because this total pressure has two contributions,

𝑃tot = 𝑃h − Π (2.14)

where 𝑃h is the hydrostatic (hydraulic) pressure, combination of Eqs. (2.13) and (2.14) leads
to the conclusion that the increase of the osmotic pressure across the EDL equals the increase
in hydrostatic pressure

Δ𝑃h = 𝑃h
pore − 𝑃h

∞ = Πpore − Π∞ = 𝑐T − 2𝑐∞ . (2.15)
iiiThroughout most of this book, ‘reduced’ pressures Π and 𝑃h are used, as well as a reduced (chemical) potential
𝜇𝑖 . These parameters can be multiplied by 𝑅𝑇 to obtain pressures in J/m3=Pa and potentials in J/mol.
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This result is of importance in describing the flow of fluid through a porous medium, such
as a membrane, see Chs. 11 and 12, or to calculate the forces that an EDL exerts on particle
(pore) walls, which can lead to swelling or fracture of porous charged materials (Biesheuvel,
2017). We will discuss this relation in more detail in Ch. 8.

Mixtures of different ions. Electrolytes generally contain mixtures of ions (e.g.,
different types of cations), and this situation is described at several points in this book:
in §1.5 we provided the theory to describe differences in absorption between two
cations in an intercalation material, and in §2.7 we discuss mixtures of ions of different
valencies. The Donnan model is particularly useful because it leads to equations that
are tractable and describe many relevant situations.

Here we only address an almost trivial, but very relevant point. Namely, in the
Donnan model, and neglecting partition effects due to affinity and ion volume, thus
only considering ion charge, then the ratio of concentration of a certain ion 𝑖 in the pore
over that in solution, relates in a very simple way to the same ratio for all other ions 𝑗
(the other ions can have the same valency, 𝑧𝑖 = 𝑧 𝑗 , or have a different valency) by(

𝑐𝑖

𝑐∞,𝑖

) 𝑧𝑖
=

(
𝑐 𝑗

𝑐∞, 𝑗

) 𝑧 𝑗
. (2.16)

This result is used in §2.7 to describe the absorption of two cations of a different valency
(and one anion) in a negatively charged porous material.

2.3 Donnan model including Stern layer

The Donnan model of the last section is a very suitable framework that can be extended in
multiple ways. The first relevant extension is the inclusion of a Stern layer, which is a layer
envisioned to be located between the charged wall and the ionic solution in the pore. This
is a layer (also called Helmholtz layer) that is uncharged. Assuming this layer to be planar,
the voltage difference that arises across the Stern layer is proportional to the charge density
on either side (which are equal in magnitude, but opposite in sign), according to

𝑉T𝜙S = Σwall𝐹/𝐶S,A (2.17)

where 𝐶S,A is the areal Stern (layer) capacitance, with unit F/m2. In Eq. (2.17), 𝜙S is the
difference in electric potential across the Stern layer, defined as that at the wall minus that
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in the pore solution. Within the context of the Donnan model, where concentrations and
charge are defined per unit pore volume, it is useful to make use of 𝐶S = 𝐶S,A/ℎp, after
which Eq. (2.17) becomes

𝑉T𝜙S = 𝜎w/𝐶S (2.18)

where 𝐶S is a Stern capacitance with unit F/m3.
Note that the Stern layer, or Helmholtz layer, is a layer free of charge. That is why

a (linear) relationship describes the charge (on either side) to the voltage drop across it.
In many textbooks, erroneously, the Stern layer is conceived of as a ‘layer of condensed
counterions’ (and pictorially represented in that way) but this depiction is not correct.
A plane of condensed charge mathematically leads to a change in field strength, but not
necessarily to a voltage difference. That is very different from the Stern layer concept.

The total potential across the EDL, from outside the pore, to right at the wall, now becomes

𝑉EDL = 𝑉T (𝜙D + 𝜙S) . (2.19)

This finalizes the introductory discussion of the Donnan layer, including also the Stern
layer. The Stern layer concept is very relevant in the modelling of ion adsorption in
carbon micropores, and has also been successfully implemented in a transport model for
nanofiltration with conductive pore walls (Zhang et al., 2019).
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Donnan model in an electrochemical cell with capacitive electrodes. In this box we explain
how to use the Donnan model for an electrochemical cell with two capacitive electrodes,
operated at equilibrium, thus neglecting any voltage drops between the electrodes due to
transport. In this case the voltage between the two metal wires, which is called the cell
voltage, 𝑉cell, is equal to

𝑉cell = 𝑉EDL |1 − 𝑉EDL |2 . (2.20)

Important for an EDL model for capacitive electrodes is the ability to describe capacity
and capacitance. The capacity of an electrode is the charge of an electrode relative to the
charge at another condition, expressed per area, volume, or mass. If charge is zero at that
other condition, it can be given the symbol 𝜎e. In that case capacity is defined per unit
pore volume, and to obtain it per unit mass of an electrode, information of the pore volume
per electrode mass, 𝑣∗pore, is required. To calculate capacity in a Donnan-Stern model, the
Donnan part of the EDL model must be combined with the Stern part, and jointly solved,
often numerically.
Different from capacity, the capacitance of an electrode, of an EDL, 𝐶EDL, is the change
in electronic charge over a change in 𝑉EDL, 𝐶EDL = 𝜕Σ𝑒/𝜕𝑉EDL. When charge Σ𝑒 has unit
C/m3, then capacitance is in F/m3 (per m3 pore volume). For the Donnan-Stern model (as
wel as the GCS model), it relates in a simple manner to the capacitances of the separate
sub-elements of the EDL model, namely by

1
𝐶EDL

=
1
𝐶S
+ 1
𝐶D

(2.21)

where the capacitance of the diffuse, Donnan, part, 𝐶D, is given by

𝐶D ·
𝑅𝑇

𝐹2 =
𝜕𝜎w

𝜕𝜙D
= 2𝑐∞ cosh 𝜙D (2.22)

All capacitances in F/m3 can be multiplied by 𝑣∗pore to obtain a capacitance with dimension
F/g. Because 𝐶D is not a constant but is a function of 𝜙D, the entire Donnan-Stern model
must be numerically solved when a Stern layer is included.

2.4 Donnan model for electrodes with chemical charge
The charge of ions in solution (in the diffuse layer, in a pore) can be compensated by charge
in the Stern plane (i.e., at the interface between Stern and diffuse layers) which can be ‘fixed
charge’ or can be due to ion adsorption there (see Eq. (3) in Stern, 1924). Beyond the Stern
layer is the ‘0-plane’ which is also charged, which is either because of chemical groups there,
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or electronic charge, or both.
In this section we describe the Donnan model for a porous carbon electrode, considering

both electronic wall charge and chemical ‘fixed’ charge. This chemical charge is assumed
to be located in the Stern plane, and is due to the acidic and basic groups inside the carbon
pores. In such an electrode, all of the equations of the previous section remain valid, with
just a few modifications. In all equations previously discussed, 𝜎w must be replaced by
the summation of two separate terms, 𝜎e for the electronic charge, and 𝜎c for the fixed
chemical charge due to the acidic and basic groups. The overall charge balance, Eq. (2.5),
now contains three terms ∑︁

𝑖

𝑧𝑖𝑐∞,𝑖𝑒
−𝑧𝑖 𝜙D + 𝜎c + 𝜎e = 0 . (2.23)

The other modification is in the equations for the voltage across the Stern layer, Eqs. (2.17)
and (2.18). Here, 𝜎w must be replaced by the electronic charge, 𝜎e, because the electronic
charge is located at one side of the Stern layer, and the chemical charge, together with
ionic charge, on the other side. Exactly this model has shown to be extremely powerful in
predicting various non-intuitive operational modes found in CDI, such as inverted operation,
and inversion peaks (Biesheuvel et al., 2015).

A further modification is to include that the porous carbon contains two different regions,
where one region carries negative chemical charge, and the other region contains positive
chemical charge. This amphoteric Donnan model successfully describes many data sets
for CDI as function of cell voltage and salt concentration, also for mixtures of salts with
monovalent and divalent cations (Biesheuvel, 2015). It also describes how much salt is
adsorbed by carbon powder when it is mixed with electrolyte solution. In the next section
we briefly address how this chemical charge often does not have a fixed value, but the charge
depends on the local concentration of ions in the pores, most notably the H+/OH– -ions.

2.5 Donnan model with ionizable chemical charge
In most cases, the chemical charge in an electrode, or at the surface of a colloidal particle,
or inside a porous membrane or gel, does not have a fixed value, but it can change because
ions can adsorb to it. Focusing on the ions H+ and OH– , their concentration determines
the degree of protonation/deprotonation of acidic and basic groups.iv Thus the charge of
chemical groups is not fixed (or ‘quenched’ in the terminology of polyelectrolyte theory)
but is ionizable (‘annealed’). Next we discuss a gel or ion-exchange membrane with such
ivIt is common to write H+ for the hydronium ion, even though more chemically correct is H3O+.
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ionizable groups and make a simple analysis of ionization degree and osmotic pressure. We
neglect the Stern layer.

Outside the charged porous structure (i.e., outside the EDL), we have a certain bulk pH
and salt concentration, 𝑐∞ (we consider a 1:1 salt), while the surface has a charge 𝑋 that
depends on pHp (the pH in the pore) according to

𝑋/𝑋max = 𝛼 =
1

1 + 10−(pK−pHp) =
1

1 + 10−(pK−pH) 𝑒𝜙D
(2.24)

where we introduce the ionization degree, 𝛼, which has a value between 0 and 1. (Note
that without an index, pH refers to that outside the EDL, in the nearby bulk phase.) In
Eq. (2.24) we assumed the material to be basic, thus to be either neutral (at very high pH)
or positively charged (at lower pH). In Eq. (2.24), pHp is pH in the pore, which relates
at equilibrium to the pH outside the pore by 10pHp = 10pH · 𝑒𝜙D . We can jointly solve
Eqs. (2.10), (2.11), (2.15) and (2.24) to obtain the results presented in Figure 2.1 for the
ionization degree and hydrostatic pressure in a charged porous material.

We here present Eq. (2.24) without a derivation. In Ch. 1 the related Langmuir
equation was derived for adsorption of neutral species, Eq. (1.17), while in §3.7 the
Langmuir equation is derived for materials that are acidic, basic, or amphoteric.

Fig 2.1 shows that the ionization degree of a material with high pK (relative to pH) stays
close to unity also at low salt concentration. For all values of pK, the pressure is low at high
salt concentration and increases when 𝑐∞ decreases. But only for the material with high pK
will the pressure stay at a high value. For materials with lower values of pK, thus with pH
closer to the pK of the material, at very low salt concentration the pressure starts to drop
off again, because the ionization degree also goes down, i.e., the material discharges at low
𝑐∞. Thus, a gel with ionizable charge will have an internal pressure (pushing against the
polyelectrolyte structure, to make it swell) which will be at a maximum at an intermediate
salt concentration. Similar phenomena are also found in the theory of swelling of ionizable
polyelectrolyte brushes.

2.6 The EDL at the interface between two porous layers
of opposite charge

It is quite interesting to evaluate what happens when two charged porous materials, such
as ion-exchange membranes, which have a difference in the sign of the fixed charges, are
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Fig. 2.1: The ionization degree 𝛼 and hydrostatic pressure 𝑃h in a charged gel as function of salt
concentration 𝑐∞, pH, and membrane charge density, 𝑋m (The charge of the gel is positive, i.e., it is a
basic material).

placed in direct contact (while submersed in water). This happens for instance in bipolar
membranes (BPMs), where a porous layer with a fixed positive charge, and one with fixed
negative charge, are placed in direct contact, forming an EDL at the interface. Thus we
have two adjacent layers with an opposite value of 𝑋 . The cation-exchange layer contains
many cations, and few anions, and the reverse is the case for the anion-exchange layer. At
the interface, where these two layers are in contact, an EDL forms with a very large EDL
voltage drop Δ𝑉 , the value of which depends on the charge density 𝑋 in the two layers. How
to solve for Δ𝑉?

One method is to solve Eq. (2.9) twice, once for each layer, and adding up the two Donnan
potentials. But the question then is, how to find the value of salt concentration outside
the EDL, 𝑐∞, that is required in this calculation? And what does 𝑐∞ even mean? This
question arises because there is no bulk electrolyte phase in between these two layers. The
mathematical solution is that though there may indeed not be such a reservoir in reality, we
can still conceive of a virtual reservoir here that has a certain salt concentration. Indeed, the
calculation outcome will be the same if there really is a reservoir (the two layers are slightly
apart) or when they are in close contact and we use the concept of a virtual reservoir.

But how to find the unknown concentration 𝑐∞ in this (virtual) reservoir? If the BPM is in
equilibrium, surrounded on all sides by water of the same salt concentration and composition,
thus without imposed driving forces such as current or a pressure difference, then 𝑐∞ in this
(virtual) reservoir is the same as outside the membrane. If instead the BPM is operated in a
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process, with ions and water flowing through the BPM, then determination of 𝑐∞ is part of
the full calculation of transport of ions through the two layers of the BPM. For instance when
a current is applied, then dependent on the magnitude and direction of the current, the salt
concentration in the virtual reservoir at the interface between the two layer can dramatically
change from very high values (in the mol/L range) to values in the nM-range. The first case
leads to repulsion between the layers and that may lead to the layers coming apart, while in
the reverse situation, the layers are being firmly pressed onto one another (Pärnamäe et al.,
2023).

2.7 Donnan equilibrium for a mixture of cations:
‘anomalous’ Ca2+-adsorption in collagen

Collagen is a natural polymer and this material is a porous (water-filled) structure of charged
polyelectrolytes and protein. Overall this polymer is negatively charged. One observation
in the study of collagen is that when it is submersed in water with monovalent and divalent
cations, say Na+ and Ca2+, that when the electrolyte is diluted, that the material not simply
desorbs ions, like in any regular adsorption/desorption process, but that while the monovalent
cations desorb, the divalent cations are taken up. That is indeed a quite remarkable result,
and unexpected at first sight. But when we realize that collagen is charged, we can make
sense of these observations.1.

Though collagen is a complex mixture with many different surface groups, both acidic
and basic, with different pK-values, here we use a fixed value of the charge density |𝑋 |, with
𝜔 =−1 the sign of charge of the collagen. We also neglect expansion or contraction of the
collagen, and we assume Boltzmann’s law to hold for all ions.

So, what happens when a negatively charged material is equilibrated with a solution
containing monovalent and divalent cations, for instance Na+ and Ca2+, and containing Cl–

as anions, and then this mixture is diluted by a certain fraction? The charge balance for a
negatively charged gel in equilibrium with an electrolyte solution is

𝜔 |𝑋 | + 𝑐c
Na+ + 2 𝑐c

Ca2+ − 𝑐c
Cl− = 0 (2.25)

where superscript ‘c’ refers to concentrations inside the collagen gel.
To analyze this problem, we use 𝑐∞ for the concentration of Cl− in bulk solution, and

define 𝛼 as the Ca2+/Na+ mixing ratio in bulk solution, thus 𝛼 = 𝑐∞,Ca2+/𝑐∞,Na+ . Then the
concentrations of the cations in bulk solution are 𝑐∞,Ca2+ = 𝑐∞ · 𝛼/(2𝛼 + 1) and 𝑐∞,Na+ =

𝑐∞/(2𝛼 + 1). We also define 𝛽 = |𝑋 |/𝑐∞. If the membrane charge is fixed, 𝛽 can be
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Fig. 2.2: The concentration of Ca2+-ions inside a negatively charged hydrogel such as the natural
polymer collagen, as function of dilution, 𝛽. The salt solution contains both monovalent and divalent
cations in a concentration ratio 𝛼 = 𝑐∞,Ca2+/𝑐∞,Na+ . At low 𝛼, then with dilution (increasing 𝛽), the
Ca2+-concentration in the hydrogel steadily increases; thus, while the water around the material is
diluted, Ca2+-ions are absorbed.

interpreted as a degree of dilution: if we dilute the solution, then 𝛽 increases (while dilution
keeps the ratio 𝛼 constant). We implement these definitions and Boltzmann’s law, Eq. (2.2),
in Eq. (2.25), after which we obtain a relation between 𝛼, 𝛽, and the Donnan potential, 𝜙D

𝛽 = (2𝛼 + 1)−1
(
𝑒−𝜙D + 2𝛼 𝑒−2𝜙D

)
− 𝑒+𝜙D (2.26)

which can be solved numerically in 𝜙D after which the ion concentrations in the collagen can
be calculated with Boltzmann’s law. An analytical solution is possible but is complicated.
To obtain a more insightful analytical solution, we assume that 𝜙D is sufficiently negative
(which is the case when 𝜔=−1 and |𝑋 | is sufficiently large), and then we can leave out the
coion Cl– from Eq. (2.26), i.e., we omit the term −𝑒+𝜙D . We then solve Eq. (2.26), see here,
and obtain

𝑐c
Ca2+ = 𝑋 ·

(√︁
1 + 𝛾 − 1

)2
/
(
2 𝛾

)
(2.27)

where 𝛾 = 8 · |𝑋 | · 𝑐∞,Ca2+/𝑐2
∞,Na+ = 8𝛼 𝛽 (2𝛼 + 1).

The dependence of the Ca2+-concentration on 𝛼 and 𝛽 as described by Eq. (2.27) is
analyzed in Fig. 2.2 which shows that especially at a low mixing ratio 𝛼, when the solution
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is diluted (and thus 𝛽 goes up), that the Ca2+-concentration in the collagen matrix increases.
Thus one will observe that Ca2+ is absorbed from solution into the collagen matrix, even
when the solution is diluted.v This result shows how absorption in a porous material such
as a polyelectrolyte gel, in which charge neutrality must be maintained, is fundamentally
different from the absorption of neutral molecules in a neutral material. In aqueous systems
most if not all absorbents carry a charge and thus Donnan effects such as just discussed play
a key role in absorption.

2.8 Donnan equilibrium at the membrane/solution
interface

In this section we discuss the Donnan layer at the interface between a solution phase
(electrolyte) and a charged gel or membrane, where we derive and then use the general
Boltzmann equation, Eq. (2.1). Thus we now combine the electrostatic Donnan effect with
partitioning due to volume effects or due to the affinity of an ion with a certain phase, but
other contributions are possible too. Solute partitioning is of importance for instance in
Ch. 11 that deals with ion adsorption in charged membranes and transport across them. For
some membranes the water-filled pore phase is highly constricted, thus partitioning because
of size exclusion plays an important role besides Donnan electrostatics.

We can derive the general Boltzmann equation from an expression for the chemical
potential of an ion 𝑖, including an affinity term, and an excess (volume exclusion) term,
which for an ion in each separate phase is written as

𝜇𝑖, 𝑗 = 𝜇ref,𝑖 + ln
(
𝑐𝑖, 𝑗/𝑐ref

)
+ 𝜇aff,𝑖, 𝑗 + 𝜇exc,𝑖, 𝑗 + 𝑧𝑖𝜙 𝑗 (2.28)

where 𝜇aff,𝑖 includes all possible effects not related to charge or ion volume, generally called
affinity, which can include contributions such as dielectric exclusion, image forces, and ion
dehydration energy. In Eq. (2.28) index 𝑗 refers to position, which can be in solution, ‘∞’,
or in the membrane, ‘m’.vi,vii If we equate the chemical potentials in solution with that just

vAt very low 𝛽 we must include the anions in the charge balance, i.e., Eq. (2.27) is not valid at low 𝛽. At very low
𝛽, 𝑐c

Ca2+/𝑋 increases again. The lines in Fig. 2.2 are for 𝛽 high enough that anions have a low concentration
in the collagen and Eq. (2.27) is valid.

viSee p. 507 for an explanation how each 𝜇-term in Eq. (2.29) can be multiplied by a term 𝑅𝑇 to arrive at a
dimensional potential with unit of J/mol.

viiEDL models are solved for conditions of chemical equilibrium, and then mechanical equilibrium is also
established. In problems of flow of solutes, these equilibria conditions do not apply, and then Eq. (2.28)
has an additional term, 𝜐𝑖𝑃tot that is discussed in several upcoming chapters. At mechanical (and thus also at
chemical) equilibrium, this term is zero.



50 The Donnan model: the EDL in small pores

inside the membrane, we arrive at

ln 𝑐∞,𝑖 + 𝜇aff,∞,𝑖 + 𝜇exc,∞,𝑖 + 𝑧𝑖𝜙∞ = ln 𝑐∗m,𝑖 + 𝜇aff,m,𝑖 + 𝜇exc,m,𝑖 + 𝑧𝑖𝜙m (2.29)

where constant terms 𝜇ref,𝑖 and ln 𝑐ref , that show up on both sides, are cancelled. On the
right side of Eq. (2.29), we use a term 𝑐∗m,𝑖 to denote a concentration of ions or other solutes
defined per unit total membrane volume (i.e., for the totality of the water- and ions-filled
pores together with the solid polymer membrane matrix structure). When we are not at
mechanical equilibrium, an ion’s chemical potential also includes the insertion pressure (a
term which is zero at equilibrium), which is the last term in Eq. (7.63) in Ch. 7.

One contribution to 𝜇exc,m,𝑖 relates to the exclusion of ions from the membrane matrix,
where by ‘matrix’ we refer to the polymer network and structure of which the membrane is
made. This exclusion effect simply implies: where there is polymer (membrane structure),
there can not be an ion (and neither a water molecule). We can quantify this excess term
by using the Carnahan-Starling equation of state (CS-EOS), or any of its extensions to
multicomponent systems, and to porous structures, such as Eq. (4.11) in Ch. 4. When we
assume that the ions do not have any volume, i.e., they are point charges, only being excluded
from the volume occupied by the membrane structure, the consequence of the CS equation
of state is that 𝜇exc,m,𝑖 = − ln 𝑝m where 𝑝m is the porosity of the membrane, i.e., the fraction
of the total volume that is available to water and ions, i.e., the fraction of the total volume
that consists of pores, see Fig. 7.7. If we combine this term with the concentration term, we
have

𝜇exc,m,𝑖 + ln 𝑐∗m,𝑖 = − ln 𝑝m + ln 𝑐∗m,𝑖 = ln 𝑐m,𝑖 (2.30)

where the ion concentration per unit pore volume, 𝑐m,𝑖 , is given by 𝑐m,𝑖 = 𝑐∗m,𝑖/𝑝m. We
include this result in Eq. (2.29), and we can do the same for an ion in solution, where 𝑝∞=1
and thus the related term is 𝜇exc,∞,𝑖 =0. In general there is still an excess contribution on top
of the effect just described, so the conversion just discussed does not make volume effects go
away, and thus in the equations below,there still is an excess term. Detailed expressions for
these excess, volume, effects will be discussed in §4.2, §7.8, and §8.1. Volume is important
to consider because it has a significant effect on ion partitioning and thus on ion selectivity
in membrane processes.

To further simplify Eq. (2.29), we implement the definition of the Donnan potential,
Δ𝜙D = 𝜙m − 𝜙∞, and we use the notation of Δ𝜇𝑘,𝑖 to describe a difference in each of the
𝜇𝑘,𝑖-contributions between inside the membrane, and in solution. We then arrive at

ln 𝑐∞,𝑖 = ln 𝑐m,𝑖 + Δ𝜇aff,𝑖 + Δ𝜇exc,𝑖 + 𝑧𝑖Δ𝜙D . (2.31)
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Now, all of these contributions to an ion’s chemical potential (except the ln 𝑐-term) can be
rewritten to a contribution to the partition coefficient, Φ𝑘,𝑖 , where k refers to the type of
energy (excess, affinity, etc.), and i to the species, according to

Φ𝑘,𝑖 = exp
(
−Δ𝜇𝑘,𝑖

)
, Δ𝜇𝑘,𝑖 = 𝜇𝑘,m,𝑖 − 𝜇𝑘,∞,𝑖 (2.32)

and if we apply it to the affinity and volume (excess) terms, we then have

Φaff,𝑖 = exp
(
−

(
𝜇aff,m,𝑖 − 𝜇aff,∞,𝑖

) )
, Φexc,𝑖 = exp

(
−

(
𝜇exc,m,𝑖 − 𝜇exc,∞,𝑖

) )
. (2.33)

Including these conversions in Eq. (2.31) we arrive at a detailed general Boltzmann equation

𝑐m,𝑖 = 𝑐∞,𝑖 · Φaff,𝑖 · Φexc,𝑖 · exp (−𝑧𝑖𝜙D) (2.34)

and if we combine the contributions to the partitioning of a species across an interface
(those that we identified here) into a single term, Φ𝑖 , thus Φ𝑖 =Π𝑘Φ𝑘,𝑖 (except for the term
exp (−𝑧𝑖𝜙D)), then Eq. (2.34) simplifies to the general Boltzmann equation, Eq. (2.1). In
Eq. (2.34), and throughout this book, we described the Donnan (Boltzmann) term separately,
and only subsume non-Donnan effects into the Φ𝑖-function. However, one can also define a
Donnan (contribution to the) partition function,ΦD = exp (−𝑧𝑖𝜙D) and consider this Donnan
partitioning as another contribution to Φ𝑖 .

In a real membrane process, there are many types of ions to consider, and for all of them
we evaluate Eq. (2.1). All ions have a different value for Φ𝑖 , and will also have different
valencies, 𝑧𝑖 . Also for neutral species such as carbonic acid and ammonia we use Eq. (2.1),
with 𝑧𝑖 =0. All of these Donnan equations for each ion separately are solved simultaneously
with local electroneutrality in the solution phase just outside the membrane, as well as local
electroneutrality just inside the membrane (just ‘beyond’ the Donnan layer), where local EN
inside the membrane also includes the membrane charge, 𝑋 , and thus we have∑︁

𝑖

𝑧𝑖𝑐m,𝑖 + 𝑋 = 0 . (2.35)

For all ions, Eq (2.1) can be inserted in Eq. (2.35), to arrive at a relation between membrane
charge 𝑋 , solution concentrations, and Donnan potential, 𝜙D. Note that the membrane
charge, 𝑋 , is defined –like ion concentrations– as a concentration per unit pore volume.
The resulting Donnan potential can be used again in Eq. (2.1) to calculate for each ion the
concentration just inside the membrane. When membrane charge is a function of local pH
(just in the membrane) or dependent on any other ion concentration, this adds an additional
relation to the set of equations to be solved simultaneously, such as 𝑋 = 𝑓

(
𝑐m,H+

)
, but

otherwise this addition does not change the Donnan model equations.
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Thus we can insert the general Boltzmann equation, Eq. (2.1), in Eq. (2.35) and that leads
to ∑︁

𝑖

𝑧𝑖𝑐∞,𝑖Φ𝑖 exp (−𝑧𝑖𝜙D) + 𝑋 = 0 (2.36)

which can always be solved if for all ions we know Φ𝑖 . [Note that in the derivation which
follows Φ𝑖 is assumed to be independent of ion concentrations. Equations until the present
point did not require that assumption.] If we have a symmetric salt (with 𝑧=1 for a 1:1 salt,
𝑧=2 for a 2:2 salt, etc.), and all cations have the value Φ+, and all anions Φ− , this simplifies
to

𝑧𝑐∞ (Φ+ exp (−𝑧𝜙D) −Φ− exp (𝑧𝜙D)) + 𝑋 = 0 (2.37)

which can be rewritten to

𝑧𝑐∞
√︁
Φ+Φ− (exp (− (𝑧𝜙D +½ ln (Φ−/Φ+))) −Φ− exp (𝑧𝜙D +½ ln (Φ−/Φ+))) + 𝑋 = 0

(2.38)
and thus

−2𝑧𝑐∞
√︁
Φ+Φ− sinh (𝑧𝜙D +½ ln (Φ−/Φ+)) + 𝑋 = 0 (2.39)

and thus

𝑧𝜙D +½ ln (Φ−/Φ+) = sinh−1
(

𝑋

2
√
Φ+Φ−𝑐∞

)
. (2.40)

We can write an equation for the total ions concentration in the membrane, 𝑐T,m =

𝑐m,+ + 𝑐m,− , similar to Eq. (2.40), which leads to

𝑧𝜙D +½ ln (Φ−/Φ+) = cosh−1
(

𝑐T,m

2
√
Φ+Φ−𝑐∞

)
(2.41)

and thus combination of Eqs. (2.40) and (2.41) leads to

𝑐2
T,m = (𝑋/𝑧)2 +Φ+Φ− (2𝑐∞)2 (2.42)

and this relation depends on the geometric mean partition coefficient,
√
Φ+Φ− , but not on

the individual factors Φ− and Φ+. It turns out that the same holds for the cation and anion
concentration in the membrane, as long as X is fixed and as long as

√
Φ+Φ− is the same.

Thus, even when for one ion the factor Φ𝑖 is increased, if we lower that for the other ion such
that the geometric mean stays the same, the cation and anion concentrations stay the same.
This result implies that for a symmetric binary solution, with one value of Φ𝑖 for all cations,
one for all anions, the only property of relevance is the geometric mean partition coefficient,√
Φ+Φ− . This implies that we cannot experimentally distinguish between the two values,
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and theory only requires consideration of the geometric mean.viii So from this point onward,
we use Φ𝑖 as if both ions have the same partition coefficient, or as the geometric mean in
case they are different.

In that latter case, differences between Φ𝑖 for cat- and anions (as long as the geometric
mean is the same) will influence the Donnan potential 𝜙D, and this will influence proton
adsorption thus pH, and then individual values for Φ𝑖 do matter, but except for such indirect
effects, the use of one Φ𝑖-value for both ions does not influence the predicted EDL structure,
thus does not influence 𝑐T,m and neither does it influence co- and counterion concentrations
just in the membrane. So we continue now using Φ𝑖 as the geometric mean of the individual
partition coefficients, or, in a simplified situation, we just assume it is the same for all ions.
When all ions are monovalent (or some are zero-valent, i.e., neutral), and we now use the
same Φ𝑖 for all ions, then the Donnan potential follows from

𝑋 = 2𝑐∞Φ𝑖 sinh 𝜙D (2.43)

and the total ions concentration (anions plus cations) in the membrane becomes

𝑐T,m =

√︃
𝑋2 + (2Φ𝑖𝑐∞)2 (2.44)

which is always larger than |𝑋 |. With 𝛼 = 𝑋/(2Φ𝑖𝑐∞), the counterion (‘ct’) concentration
in the membrane is given by

𝑐m,ct

Φ𝑖𝑐∞
=

√︁
1 + 𝛼2 + |𝛼 | (2.45)

which is always larger than |𝑋 |, just like 𝑐T,m, while the coion (‘co’) concentration is

𝑐m,co

Φ𝑖𝑐∞
=
Φ𝑖𝑐∞
𝑐m,ct

=

(
|𝛼 | +

√︁
1 + 𝛼2

)−1
=
𝑐T,m − 𝑐m,ct

Φ𝑖𝑐∞
=

√︁
1 + 𝛼2 − |𝛼 | . (2.46)

which is smaller than |𝑋 | as long as 𝑐∞ is smaller than
√

2|𝑋 |/Φ𝑖 .
This concludes the description of the Donnan layers formed at the interface of membrane

and solution. These results are used again in Ch. 11 to describe desalination of water.

references
1. M. Higa, A. Kira, A. Tanioka, and K. Miyasaka, “Ionic partition equilibrium in a charged

membrane immersed in a mixed ionic solution,” J. Chem. Soc. Faraday Trans. 89, 3433–3435 (1993).

viiiTo find the individual values we need very precise experiments with at least three different ions.





3
The EDL for a planar surface: The

Gouy-Chapman-Stern model

The most well-known electrical double layer (EDL) model is the one named after Gouy,
Chapman, and Stern, abbreviated as the GCS-model. This EDL model describes the ion
distributions, and potential profile, in a thin layer next to a planar surface in contact with
electrolyte with free ions. We also discuss extensions of the GCS-model that include ion
volume effects and fixed background charge.
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3.1 Introduction

The Gouy-Chapman-Stern (GCS) model is the textbook example of an EDL model. It may
even be the case that some have come under the impression that the concept of an EDL is
equivalent to the GCS model. This is of course not correct: the EDL is a much broader
concept than just the GCS approach and the GCS model is just one example amongst many
(see previous chapters) of EDL models. In practice, the GCS model is not very widely
used in electrochemical process modelling, where preference is given to the Donnan- and
isotherm-based models of earlier chapters. What the GCS model does is to describe the
EDL of a planar charged surface in contact with an electrolyte phase where other surfaces
are absent or sufficiently far away (for instance, at 10 mM salt concentration in water, far
enough away would be a separation of more than ∼ 20 nm), see Fig. 3.1. In the electrolyte,
ions –mainly of a charge sign opposite to the charge of the surface, i.e., counterions– reside
near the surface in the diffuse layer (DL). The DL is a theoretical element of the GCS EDL
model. Sometimes the DL is called the space charge region.

In the DL, concentrations of ions change from a bulk value outside the DL to a different
value near the surface. In bulk solution, the electrolyte is chargeneutral (for a 1:1 solution
this means we have equal concentrations of cations and anions) but coming nearer to the
surface, ‘entering’ the DL, the concentration of counterions (those ions with a charge sign
opposite to that of the surface) increases gradually, while the concentration of co-ions (ions
with the same charge sign as that of the surface) decreases. Thus a local charge density, 𝜌,
develops (positive when the counterions are cations), and integrated over the DL, this charge
density will exactly compensate the charge of the surface, Σ, thus

∫ ∞
D 𝜌 d𝑥 + Σ = 0 where

‘D’ refers to the Stern plane, see Fig. 3.1, and where ‘∞’ refers to a position outside the DL.
The EDL as a whole is electroneutral.

The DL has a certain thickness, describing the distance over which the ion concentration
profiles are clearly different from those in bulk solution, and this thickness is a few times
the Debye length, 𝜆D, which is a number that is inversely proportional to the square root of
salt concentration. For instance, for a 1:1 solution, at 10 mM salt concentration, at room
temperature, in water, 𝜆D ∼ 3.1 nm (at 1 mM it is ∼ 10 nm, at 100 mM it is ∼ 1 nm).
For the GCS model to be accurate, the separation between two surfaces must at least be
several times the Debye length. ‘Overlap’ of diffuse layers (also called overlap of EDLs, i.e.,
interaction of two EDLs) is discussed in Ch. 6, as well as the resulting disjoining pressure,
which describes the problem of colloidal stability.

The GCS model is of relevance in electrochemistry where it is involved in models for
electrochemical reactions at flat electrodes, and in porous electrodes when the material is
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Fig. 3.1: The Gouy-Chapman-Stern (GCS) model consists of a charged 0-plane, an uncharged Stern
layer, an uncharged Stern plane, and a charged diffuse layer. The diffuse layer contains counterions
and coions distributed over space. The Stern plane, or ‘D-plane’ is uncharged and functions as a
closest-approach distance for (the centers of) the ions to come near the surface. In the standard GCS
model there is no layer of ‘condensed’ counterions in the Stern layer or on the Stern plane.

sufficiently flat and there is not much EDL overlap (for instance for a porous electrode made
of isolated graphene sheets, or the EDL on the outside of carbon nanotubes with sufficiently
large diameters.) Otherwise deviations from the Cartesian geometry must be included in
the EDL model, or the overlap of the EDLs. The GCS model is also of use for the EDL
structure on ‘hard’ surfaces in water, for instance oxidic materials such as silica, alumina and
titania, or a material such as mica or glass. And also for the EDL structure around spherical
nano-particles such as micelles or globular protein molecules, a (spherical version of) GCS
theory can be used.

In the present chapter we focus on the structure of the single planar EDL, and describe
microscopic aspects (such as profiles of concentration), as well as phenomenological aspects
(for instance, ion adsorption as function of EDL voltage). Application of the GCS model to
the surface pressure of an ionizable surface, and the EDL forces involved in electrowetting
of an electrode, these two topics are discussed in Ch. 5.
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3.2 The Gouy-Chapman-Stern model

To describe the distribution of ions in the diffuse layer (DL), the starting point is Maxwell’s
first law, also called Gauss’s law in differential form, or the Poisson equation

∇ · (𝜀E) = 𝜌 (3.1)

where 𝜀 is the dielectric permittivity of the electrolyte, given by 𝜀 = 𝜀r𝜀0, where for
water the dielectric constant is 𝜀r ∼ 78, while 𝜀0 is the permittivity of vacuum, given by
𝜀0 = 8.854 · 10−12 C/(V ·m). In Eq. (3.1), E is the field strength, which is minus the
gradient of the electric potential, E = −∇𝑉 , and 𝜌 is the local charge density in C/m3.
Assuming 𝜀 to be a constant, we arrive ati

𝜕2𝑉

𝜕𝑥2 = − 𝜌
𝜀

(3.2)

where we also assumed a one-dimensional planar (Cartesian) geometry, with a single
coordinate axis, 𝑥. Next we replace the dimensional voltage 𝑉 with the nondimensional
electrical potential 𝜙, according to 𝜙 = 𝑉/𝑉T, where 𝑉T = 𝑅𝑇/𝐹 is the thermal voltage,
which at room temperature is 𝑉T ∼ 25.6 mV, and we arrive at

𝜕2𝜙

𝜕𝑥2 = − 𝐹

𝜀𝑅𝑇
𝜌 . (3.3)

The ionic charge density 𝜌 has contributions from all free ions in the electrolyte, 𝜌 =

𝐹
∑
𝑖 (𝑧𝑖𝑐𝑖), and thus Eq. (3.3) becomes

𝜕2𝜙

𝜕𝑥2 = − 𝐹2

𝜀𝑅𝑇

∑︁
𝑖

𝑧𝑖𝑐𝑖 . (3.4)

Up to this point the equation we considered is the Poisson equation, valid irrespective of
whether (locally) the system is at equilibrium or not. When equilibrium can be assumed
for the EDL, and for ions as ideal point charges, the Boltzmann equation, Eq. (2.1), applies,
which can be written as

𝑐𝑖 = 𝑐∞,𝑖 𝑒
−𝑧𝑖 𝜙 (3.5)

iIt is a major assumption to set 𝜀 as a constant, independent of composition and frequencies of changes in
the electric field. Many fundamental physical theories, for instance to describe the Van der Waals energy
of the interaction between polarizable materials across another medium, consider the entire spectrum of the
𝜀-dependence on the frequency of changes in the electrical field due to dipole effects. This is beyond the scope
of this book.
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where 𝜙 is the potential at some position 𝑥 in the DL relative to a position just outside the
EDL in a charge neutral bulk phase. This outside position is often identified with an index
∞. We describe here the ion distribution within the same phase, water in most cases, and
thus a non-electrostatic contribution to the chemical potential of an ion, which would be
described by a partition coefficient Φ𝑖 , can be left out in Eq. (3.5). Combining Eqs. (3.4)
and (3.5), we obtain a general form of the Poisson-Boltzmann (PB) equation

𝜕2𝜙

𝜕𝑥2 = − 𝐹2

𝜀𝑅𝑇

∑︁
𝑖

𝑧𝑖𝑐∞,𝑖𝑒
−𝑧𝑖 𝜙 . (3.6)

When we have a symmetric salt solution (1:1, 2:2, etc.) with |z| the magnitude of the valency
of the ions in the salt pair, i.e., |𝑧 |= {1, 2, etc.}, then Eq. (3.6) becomes

𝜕2 |𝑧 |𝜙
𝜕𝑥2 = 𝜅2 sinh |𝑧 |𝜙 (3.7)

where 𝜅, which is the inverse of the Debye length, is given by Eq. (3.19) that is discussed
below. For a 1:1 solution (all ions monovalent), |𝑧 |=1, and thus Eq. (3.7) becomes

𝜕2𝜙

𝜕𝑥2 = 𝜅2 sinh 𝜙 . (3.8)

The charge-voltage relationship in the GCS model can be derived from Eq. (3.6), by
multiplying both sides with 𝜕𝜙/𝜕𝑥 and integrating, to

1
2
𝜕

𝜕𝑥

(
𝜕𝜙

𝜕𝑥

)2
= + 𝐹

2

𝜀𝑅𝑇

∑︁
𝑖

𝑐∞,𝑖
𝜕

𝜕𝑥
𝑒−𝑧𝑖 𝜙 . (3.9)

Now, with the potential 𝜙 set to zero far away, where 𝑥=∞, and with the gradient 𝜕𝜙/𝜕𝑥
zero there as well, we arrive at(

𝜕𝜙

𝜕𝑥

)2
= + 2𝐹2

𝜀𝑅𝑇

∑︁
𝑖

𝑐∞,𝑖
(
1 − 𝑒−𝑧𝑖 𝜙

)
. (3.10)

This equation is valid at each point in a DL. At the Stern plane, which is boundary of the
DL, denoted with label ‘D’, we have an additional condition, which is Gauss’s law

Σ = 𝜀𝐸 (3.11)

where Σ is the surface charge density (unit C/m2), and where we assume we only have to
consider the electric field in 𝑥-direction. With x pointing from the surface into solution, then
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𝐸 = −𝑉T · 𝜕𝜙/𝜕𝑥. Gauss’s law, Eq. (3.11), does not depend on the structure of the diffuse
layer, such as ion concentration or valencies of ions. Eq. (3.11) can be rewritten to

Σ = −𝜀𝑅𝑇
𝐹

𝜕𝜙

𝜕𝑥

����
D
. (3.12)

We combine Eqs. (3.10) and (3.12) and obtain

Σ = sgn (𝜙D)
√︄

2𝜀𝑅𝑇
∑︁
𝑖

𝑐∞,𝑖 (𝑒−𝑧𝑖 𝜙D − 1) (3.13)

where 𝜙D is the diffuse layer potential, i.e., the potential at the Stern plane, relative to the
potential in bulk solution, 𝜙∞=0. The Stern plane is the position nearest to the surface up to
which we still consider the PB-equation to hold.ii Eq. (3.13) is a generalized Gouy-Chapman
equation, valid for mixtures of salts, within the PB framework. The sign of Σ is the same
as that of 𝜙D. When we have a symmetric salt solution (all ions monovalent, or all ions
divalent, etc.), then Eq. (3.13) simplifies to

Σ = sgn (𝜙D)
√︁

4𝜀𝑅𝑇𝑐∞
√︁

cosh (|𝑧 |𝜙D) − 1 =
√︁

8𝜀𝑅𝑇𝑐∞ sinh (|𝑧 |𝜙D/2) (3.14)

and when we only have monovalent ions, i.e., a 1:1 solution, then Eq. (3.14) simplifies to

Σ =
√︁

8𝜀𝑅𝑇𝑐∞ sinh (𝜙D/2) . (3.15)

This is the classical Gouy-Chapman (GC) equation for a 1:1 solution, which can be inverted
to

𝜙D = 2 · sinh−1
(

Σ
√

8𝜀𝑅𝑇𝑐∞

)
. (3.16)

We can also express Eq. (3.15) as (here presented in way valid only for 1:1 salt solution)

Σ = 4𝐹𝑐∞𝜆D sinh (𝜙D/2) = 2𝜀𝑉T𝜅 sinh (𝜙D/2) (3.17)

where 𝜆D is the Debye length and 𝜅 is the inverse of 𝜆D. The general definition of 𝜅 is

𝜅 = 𝜆−1
D =

√︂
2 𝐹2 𝐼

𝜀𝑅𝑇
(3.18)

where I is the ionic strength, which is given by 𝐼 = ½
∑
𝑖 𝑧

2
𝑖
𝑐∞,𝑖 , in which we sum over all

ions. For a symmetric salt solution this expression simplifies to

𝜅 = 𝜆−1
D =

√︂
2|𝑧 |2𝐹2𝑐∞
𝜀𝑅𝑇

. (3.19)

iiPoisson’s equation still holds beyond the Stern plane, but we assume there are no more (centers of) ions.
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For a 1:1 solution, a linearised version of the GC equation for low 𝜙D is

Σ =
√︁

2𝜀𝑅𝑇𝑐∞ 𝜙D = 2𝐹𝑐∞𝜆D𝜙D = 𝜀𝑉T𝜅𝜙D . (3.20)

Gouy-Chapman equation based on 1:1 salt solution. When we assume from the start
that we have a 1:1 salt solution, then Eq. (3.8) applies where we can again multiply each
side with 𝜕𝜙/𝜕𝑥, and integrate by parts, resulting in

1
2
𝜕

𝜕𝑥

(
𝜕𝜙

𝜕𝑥

)2
= 𝜅2 𝜕

𝜕𝑥
cosh 𝜙 . (3.21)

With the same boundary conditions that potential 𝜙 = 0 and 𝜕𝜙/𝜕𝑥 = 0 when 𝑥→∞,
the relation at the Stern plane (position ‘D’) between potential and potential gradient
becomes (

𝜕𝜙

𝜕𝑥

����
D

)2
= 2 𝜅2 (cosh 𝜙D − 1) (3.22)

in which we implement Eq. (3.12), resulting in

Σ = sgn (𝜙D)
𝜀𝑅𝑇

𝐹

√︃
2𝜅2 (cosh 𝜙D − 1) = sgn (𝜙D)

√︁
8𝑐∞𝜀𝑅𝑇 sinh 𝜙D/2 (3.23)

which for |𝑧 |=1 is equal to Eq. (3.14).

Gauss’s law. In the above derivation we made use of Gauss’s law, Eq. (3.11). This
law is an integral version of the Poisson equation, Eq. (3.1), but in Eq. (3.11) some
assumptions are made in the integration about the electric field outside the EDL on
either side (namely that they are zero). No such assumptions are involved in Eq. (3.1).

To explain this, we start with Eq. (3.1) and integrate over a planar layer from one
𝑥-position to another (from position 1 which is the Stern plane, to a position 2 which
is outside the DL in the electrolyte; thus we assume a Cartesian, i.e., planar, geometry,
with only one one coordinate, 𝑥; the system is invariant in directions that are at right
angles to x), resulting in

(𝜀𝐸)2 − (𝜀𝐸)1 =

∫ 2

1
𝜌d𝑥 . (3.24)

The right side is equal to the diffuse layer charge, ΣDL, when we identify position ‘1’
with the Stern plane and position ‘2’ with the solution outside the DL (‘∞’). (When
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two equal diffuse layers overlap, in a problem of colloidal interaction, then we have
𝐸 = 0 at a midplane located halfway between the two particles.) If outside the DL we
can assume that the field strength is zero, the first term on the left is zero, and we obtain
Eq. (3.11) when we realize that the surface charge Σ is equal to minus the diffuse layer
charge ΣDL because the EDL as a whole is electroneutral.

We can also integrate Eq. (3.1) from a position 0∗ (which is just left of the surface
charge Σ which is located in the 0-plane) and then across the Stern layer to position 1,
and then we obtain

(𝜀𝐸)1 − (𝜀𝐸)0∗ =
∫ 1

0∗
𝜌d𝑥 . (3.25)

Now on the right is the surface charge Σ, because there is no charge in the Stern layer.
On the left side we can implement that the field strength at position 0∗ is zero. Thus we
again arrive at Eq. (3.11).

Under which conditions is the field strength zero at position 0∗, i.e., just left of the 0-
plane? This is the case when for symmetry reasons the field strength inside the charged
material (e.g., a colloidal particle or polymer network) is zero (for instance because ‘on
its other end’ there is the same EDL structure). A zero field strength at position 0∗ is
also the case for a metallic phase, because in a metal the charge will reside at the surface
(such as at plane 0) and thus just inside a metal the field strength is zero.

There are also situations that the surface charge is not concentrated in plane 0, but it
is volumetrically distributed to the left of plane 0, possibly ‘mixed’ with fixed charges
in the network (e.g., polymeric charges, or the p- and n-dopants in a semi-conductor).
This can be modelled with an extra ‘layer of diffuse and fixed charge’ to the left of
𝑥 = 0. Exactly at 𝑥=0 we now have continuity in potential and chemical potential (like
before), and we have Gauss’s law applied to this surface, now without charge in this
very 0-plane, which becomes (based on an integration of Eq. (3.1) across this plane)

(𝜀𝐸)just right of x=0 − (𝜀𝐸)just left of x=0 = 0 . (3.26)

Based on this understanding we can now model various problems in this book where
we have ‘twin’ diffuse layers where one layer is inside a charged polymer network
(such as inside an ion-exchange membrane or gel), another in a semi-conductor or other
ion-conducting solid state material, or the DL is in a liquid electrolyte such as water.

We continue with the Gouy-Chapman equation, and unless otherwise noted, we consider
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a 1:1 solution. A very elegant way to write the GC equation is

𝑄

2
= sinh

𝜙D

2
(3.27)

where 𝑄 is a dimensionless charge density

𝑄 =
Σ𝜆D

𝜀𝑉T
. (3.28)

The diffuse layer potential 𝜙D is the potential at the Stern plane. The Stern plane is the
plane that separates the diffuse layer from the Stern layer. The Stern layer we discuss later.
In the standard GCS model the Stern plane is uncharged. It is solely the plane that borders
the region in which (the centers of) the ions in the DL can reside. Thus, the Stern plane can
best be considered a plane of ‘closest approach’ of (the centers of) ions to the surface. They
cannot approach the hard surface (the 0-plane) any closer. Thus, all ions are volumetrically
distributed in the DL, all the way up to the Stern plane, but without any specific adsorption
in the Stern plane or Stern layer. In a graphical representation of the GCS model, it would
be erroneous to draw even a few, let alone many, counterions as if adsorbed in the Stern
plane. In the DL the charge is volumetrically distributed (charge density has unit C/m3), but
this does not imply that charge resides in the Stern plane. Nevertheless, we can speak of
an (integrated) DL charge, where the volumetric charge over the DL is integrated from the
Stern plane out to infinity, to obtain a DL charge with unit C/m2. The Stern layer is a layer
between the Stern plane and the ‘hard’ surface (which is the 0-plane). The Stern layer is a
dielectric layer not containing any charges.

Eqs. (3.10) and (3.15) provide relationships between potential 𝜙 and gradient 𝜕𝜙/𝜕𝑥,
which at the Stern plane leads to a relation between surface charge Σ and potential 𝜙D,
which is the (generalized) GC-equation. However, this is not yet an explicit solution for the
profile 𝜙(𝑥). This can be obtained by integrating Eq. (3.10) once again, which results in

𝜙(𝑥) = 4 · tanh−1 {𝑒−𝜅𝑥 · tanh (𝜙D/4)} (3.29)

with the coordinate 𝑥 starting at zero at the Stern plane and pointing into solution. For values
of 𝜙D below unity, Eq. (3.29) can be approximated to

𝜙(𝑥) = 𝜙D · 𝑒−𝜅𝑥 (3.30)

which can also be derived when we combine Eqs. (3.12) and (3.20) (and implement 𝜙D → 𝜙)
which results in

𝜆D
𝜕𝜙

𝜕𝑥
= −𝜙 (3.31)
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which can be rewritten to ∫ 𝜙

𝜙D

1
𝜙

d𝜙 = −𝜅
∫ 𝑥

0
d𝑥 (3.32)

which after integration leads to Eq. (3.30). Even though Eq. (3.30) is not exact at higher
potentials, it illustrates well the exponential-like decay of electrical potential with increasing
distance x from the surface. The charge-voltage relationship compatible with Eq. (3.30) is
Eq. (3.20).

An alternative version of Eq. (3.29) is

exp (½𝜙 (𝑥)) + 1
exp (½𝜙 (𝑥)) − 1

· exp (½𝜙D) − 1
exp (½𝜙D) + 1

= exp (𝜅 𝑥) (3.33)

which is easy to solve in commercial spreadsheet software as we explain next. For a certain
value of 𝜙D we make a list of values for 𝜙 between 0 and 𝜙D and we use Eq. (3.33) to
calculate the corresponding value of 𝑥, and then we plot 𝜙(𝑥) vs. 𝑥. We can implement
this 𝑥-dependent potential, 𝜙(𝑥), in the Boltzmann relation, Eq. (3.5), and directly calculate
the profiles in concentration of cations and anions versus 𝑥-position, which we can again do
in spreadsheet software. This calculation will show that the concentration of counterions
goes up towards the surface, to reach a maximum value at the surface (i.e., at the Stern
plane), while the concentration of coions drops the closer one approaches the surface, to
values that at high voltage are almost zero. [Let it be reiterated that the high concentration of
counterions near the Stern plane (expressed as a volumetric concentration in mol/m3) does
not imply there are ions adsorbed in the Stern plane (which would have the unit mol/m2). In
the GCS theory, there are no ions adsorbed in the Stern plane.]

In the limit of low 𝜙D, we can combine the Boltzmann equation with Eq. (3.30) and obtain
for the profile of ion concentration

𝑐𝑖 (𝑥) = 𝑐∞,𝑖 · exp (−𝑧𝑖𝜙D · exp (−𝜅𝑥)) . (3.34)

Just as Eq. (3.30), Eq. (3.34) is not exact, but illustrates counterion and coion concentration
profiles. It is also in agreement with the fact that when the Boltzmann equation applies, for
a 1:1 salt, we have at each position in the EDL the relationship 𝑐+ 𝑐− = 𝑐2

∞.
In Fig. 3.2 we compare concentration profiles according to the exact GC-equation with

Eq. (3.34), for the same surface charge of Σ = 20 mC/m2 and for 𝑐∞ = 10 mM. For the GC
model, this surface charge recalculates to a diffuse layer potential, 𝜙D, of 67 mV, about 2.5×
the thermal voltage. However, in the linearised model, the same surface charge leads to a
potential of 𝜙D of 88 mV, about 30% more. The concentration at the Stern plane changes
dramatically even though the change in 𝜙D is only 30%: namely it changes from 135 mM to
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Fig. 3.2: Ion concentration profiles next to a planar charged surface according to the Gouy-Chapman
equation (denoted by ‘PB’), and according to a linearised solution, Eq. (3.34). (Surface charge density
Σ = 20 mC/m2. Salt concentration 𝑐∞ = 10 mM.)

305 mM, a 2.3× increase. Thus in the linearised model, even though at the surface 𝜕𝜙/𝜕𝑥
is the same as for the non-linearised GC-equation, the counterion concentration starts off at
a 2.3× larger value. For the coions, the two models give similar results in the presentation
of Fig. 3.2, but also here, the relative difference in concentration (between the two models,
for a certain position) going up to a factor of 2.3, with the prediction by the linearised
model now closer to zero than for the non-linearised model. The total excess ions adsorption
integrated over the DL is overestimated in the linearised model by about 65%. These are
significant deviations, and thus, when using any linearisation of the PB-equation, be careful
that potentials do not exceed a value of ∼30 mV to have sufficient accuracy.

—

Now that we know the profile of 𝜙(𝑥), we can calculate the excess adsorption of cations
and anions in the diffuse layer. Here, ‘excess’ means the ion adsorption beyond the situation
that the surface were uncharged and the concentration at each position in the DL would be
equal to the bulk concentration 𝑐∞. First we calculate the excess adsorption of cations and
anions combined in the DL (note, we only consider a 1:1 salt)

Γions = 𝑐∞

∫ ∞

0

∑︁
𝑖

(
𝑒−𝑧𝑖 𝜙 (𝑥 ) − 1

)
d𝑥 = 2𝑐∞

∫ ∞

0
(cosh 𝜙(𝑥) − 1) d𝑥 (3.35)
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where the summation is over anions and cations, and Γ has unit mol/m2. The solution to
Eq. (3.35) is (Bazant et al., Phys. Rev. E, 2004)

Γions = 8𝜆D𝑐∞ sinh2 (𝜙D/4) . (3.36)

Each individual ion’s excess adsorption (negative for the coion), can be calculated from the
above equations, Eqs. (3.15) and (3.36), by making use of

Γions =
∑︁
𝑖

Γ𝑖 & Σ = −𝐹
∑︁
𝑖

𝑧𝑖Γ𝑖 (3.37)

where as before the summation runs over the cations and anions. This evaluation results for
both ions in the excess adsorption

Γi = 2𝜆D𝑐∞
(
𝑒−𝑧𝑖 𝜙D/2 − 1

)
. (3.38)

Just as in Ch. 2, see Eq. (2.12), we can take the ratio of excess salt adsorption over charge,
to calculate the charge efficiency, Λ, of an electrode,

Λ =
Γions

|Σ |/𝐹 = tanh
|𝜙D |

4
(3.39)

which, like in Ch. 2 for the Donnan model, increases from zero to unity when the surface
charge, thus 𝜙D, increases. This implies that in the GCS-model (just as in the Donnan model
of Ch. 2), the surface charge (when expressed in moles/area) is always larger than the excess
number of ions in the diffuse layer.

Does an EDL absorb or desorb salt? Now that we have expressions for the excess
adsorption of counterions and coions, we can consider a related, and very interesting,
question: does formation of EDLs lead to adsorption or desorption of salt? 1

When we charge an electrode, we know that we adsorb more counterions than we
desorb coions and thus one could say an electrode adsorbs salt. However, we cannot
consider just one electrode, we also have a second electrode, from where the charge
came. So in this analysis we consider a system without transport of charge.

We analyze how a surface charges up spontaneously when it is brought in contact
with water. We consider two scenarios. In the first scenario, ions that were already
adsorbed to the material in the dry state, are now released when the material is brought
in contact with water (‘is wetted’). In the second scenario, the material is already wetted
and one of the ions in the water ‘specifically’ adsorbs to the surface.
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So for the formation of an EDL when a dry material is wetted, the first scenario is
similar to how we will describe the charging of titania in Ch. 5. In this scenario, we
start with a neutral surface, neutralized because of counterion adsorption. For instance
the material has COO– -groups on its surface and they are neutralized by Na+-ions
adsorbed to these groups.iii This is how many materials can be envisioned when dry.
When the material is wetted, the Na+-ions release from the surface, and the surface
becomes negatively charged, i.e. the EDL is formed. What happens now with the bulk
salt concentration? So these Na+-ions desorb, and a diffuse layer builds up. Do part of
the desorbed Na+-ions go there and another part ‘moves on’ to the bulk? This would
mean the bulk salt concentration increases. Or, do they go to the DL, to be joined there
by extra counterions coming from solution? Then we have desalination of the bulk
water. The answer is easily found by evaluating not these Na+-ions, but by considering
movement of the co-ions: before Na+-desorption, all water volume was available to
them as a bulk phase, and there was no diffuse layer. Now, the diffuse layer forms, and
the coions are expelled from the DL (they have a negative excess adsorption). Thus
their bulk concentration goes up. Because of charge neutrality in the bulk, this will
also be the case for the counterions. So the answer is that the first hypothesis is correct:
formation of the EDL (by the chemical mechanism that we described above) expels salt
from the EDL and the bulk salt concentration goes up.

The second scenario is that a neutral surface is brought in water and then charges
up because one type of ion adsorbs ‘specifically’ to the surface, and in this way an
EDL forms. Note that the adsorbing ion will become the coion. [In the first scenario,
just discussed, the desorbing ion became the counterion.] Because, for instance, if
the adsorbing ion is a cation, then the surface becomes positively charged, and anions
become counterions. Thus the cation becomes the coion, and in the final equilibrium
situation its concentration in the diffuse layer will be lower than in bulk. So does the
bulk water become more concentrated, like we concluded would happen in the first
scenario? To find the answer, it is best to consider the non-adsorbing ion. This is the
counterion (in this example an anion). So this counterion (anion) is adsorbed in the
diffuse part of the EDL. And thus in bulk its concentration goes down. And the same
will happen for the cation, and thus also for the salt as a whole. Thus in this second
scenario, EDL formation leads to desalination of the bulk water.

Thus we have two different outcomes based on two scenarios, whether (scenario 1)
charging of a surface is because of ion release, or (scenario 2) because of ion adsorption.
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Classical experimental data are that EDL formation, when materials such as colloids
or polyelectrolytes are brought in contact with water, that this leads to ‘salt expulsion’.
Thus, the experimental evidence is that EDL formation leads to expulsion of salt into
solution (Lyklema, 2005). These data are in agreement with the first scenario discussed
above (related to the example of Na+-desorption from COO– -groups). Thus, the
scenario supported by the data is that an adsorbed ion is released when a dry material is
contacted with water. The data do not support the second scenario where upon wetting
of a material an ion already in the water adsorbs to the surface.

The GCS-model is completed when we add to the diffuse layer, described by Eq. (3.27),
the Stern layer. The Stern layer is a charge-free layer that sustains a voltage drop, 𝜙S,
proportional to the charge at the surface, Σ, see Eq. (2.17). These two voltages can be added
together to arrive for each value of charge at the full EDL voltage drop, 𝜙0, from Eq. (2.19),
resulting in

𝜙0 = 𝜙D + 𝜙S = 2 sinh−1
(
Σ 𝜆D

2 𝜀𝑉T

)
+ Σ

𝐶S𝑉T
. (3.40)

Interestingly, if we know the value of Σ and are only interested in the diffuse layer potential,
𝜙D, we do not need to evaluate the Stern layer. Vice-versa, the Stern layer does not need
to be analysed if the aim is to calculate the charge Σ if we know the diffuse layer potential,
𝜙D. The Stern layer only becomes of relevance if the charge Σ is a function of the potential
in the 0-plane, because of ionization reactions, for instance the (de-)protonation reaction
of an acidic surface which takes place at the 0-plane. This requires solution of the full
GCS-model, Eq. (3.40). In general, the Stern layer plays an important role in capacitive
processes (electrowetting, desalination) and in Faradaic electrode processes, such as for the
kinetics of anode and cathode reactions in fuel cells.

—

Just as in Ch. 1 also for the GCS model the capacitance of the EDL is given by the
differential of charge Σ over EDL voltage 𝑉EDL, and this is now an areal capacitance with
unit F/m2. The capacitance of the Stern layer is a constant, while the capacitance of the
diffuse layer is the classical result, obtained from Eq. (3.15), that

𝐶D =
1
𝑉T

𝜕Σ

𝜕𝜙D
=
𝜀

𝜆D

√︂
1 + 1

4
𝑄2 =

𝜀

𝜆D
cosh

𝜙D

2
. (3.41)
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Fig. 3.3: The capacitance of ConyarTM carbon nanotube (CNT) yarns as predicted by the GCS model,
as well as the capacitance of CNT yarn coated with a layer of microporous activated carbon, predicted
by the Donnan model.

Taylor expansion of Eq. (3.41) around zero charge leads to

𝐶D ·
𝜆D

𝜀
= 1 + 1

8
𝑄2 + O

(
𝑄4

)
(3.42)

and thus in the limit that charge goes zero, the diffuse layer capacitance is simply𝐶D = 𝜀/𝜆D,
i.e., the permittivity of water divided by the Debye length. Just as in Ch. 2, the Stern layer
capacitance and diffuse layer capacitance can be combined to obtain an EDL capacitance,
see Eq. (2.21).

In Fig. 3.3 we give an example of the EDL capacitance according to the GCS model applied
to the charging behaviour of carbon nanotube (CNT) yarns from ConyarTM (Arnhem, The
Netherlands). CNT yarns are materials that are highly conductive, tough and flexible, and
are projected to replace metallic conductors such as copper in many applications (also in
electrochemical technology) because they are more conductive, lighter, and sustainable.
Fig. 3.3 also shows how the Donnan model of Ch. 2 describes the capacitance of a CNT yarn
coated with a layer of microporous activated carbon (Liu et al., 2015).
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Debye-Hückel equation for low potentials. The full PB-equation, Eq. (3.6), is valid
at both low and high potentials, 𝜙 (assuming ions as point charges, validity of the mean
field approximation, ...) When potentials remain low, |𝜙| < 1, the Debye-Hückel (DH)
equation can be used, which is a modification of Eq. (3.6) by making the replacement
exp(𝑥) → 1 + 𝑥, resulting directly in

𝜕2𝜙

𝜕𝑥2 = 𝜅2𝜙 (3.43)

where we implemented electroneutrality in bulk solution,
∑
𝑖 𝑧𝑖𝑐∞,𝑖 = 0 and we used

the generalized definition of 𝜅 for multi-ionic solutions, Eq. (3.18) with ionic strength
defined as 𝐼 = 1/2 ∑

𝑖 𝑧
2
𝑖
𝑐𝑖 . For a 1:1 solution, Eq. (3.43) can also be directly derived

from Eq. (3.8) by noting that for low 𝜙, sinh 𝜙 → 𝜙. For the planar diffuse layer, this
Debye-Hückel equation has as solution Eq. (3.30). And as discussed above, this profile
for potential is useful as a qualitative description. However, within the derivation of
Eq. (3.43) is included the idea that we can linearise the Boltzmann equation, Eq. (3.5), to
𝑐𝑖 = 𝑐∞,𝑖 (1 − 𝑧𝑖𝜙). If this linearisation of concentration is used, then the description of
the diffuse layer starts to deviate very much, with concentrations of coions predicted to
be negative when the potential increases to beyond the thermal voltage of ∼25 mV, and
counterion concentrations are underestimated. The adsorption of counterions is now
the same as the desorption of coions, thus summed over these two species, the diffuse
layer does not adsorb ions at all. And this would also imply there is no increase of
osmotic pressure, thus no EDL interaction. . . These erroneous predictions underpin that
the use of Eq. (3.30) for the potential profile is fine in a first approximation, but should
be combined with the Boltzmann equation, Eq. (3.5), to avoid negative concentrations,
which then results in Eq. (3.34). For the charge-voltage relationship, also for this general
case of mixtures of ions, we can use Eq. (3.20) at low enough diffuse layer voltages.

3.3 Incorporation of ion volume in the GCS model

Ion volume effects are discussed in many chapters of this book, either using a
Langmuir/lattice gas approach or based on the Carnahan-Starling equation-of-state. The
Stern layer (thickness) is also an approach to incorporate ion volume effects in an EDL
model, as it can be interpreted as a layer next to the surface that is inaccessible to ions
because ions have a size. To be more precise, in this approach it is a layer which is
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inaccessible to the centers of the (hydrated) ions, where we envision the charge to reside,
and its thickness is then equal to the radius of the (hydrated) ions. With a dielectric constant
in the Stern layer set to 𝜀r∼7 (instead of the value in bulk water of ∼78), and the thickness
of the Stern layer equal to the radius of a typical hydrated ion, say 0.3 nm, then a Stern layer
capacitance follows of 𝐶S ∼ 0.2 F/m2, a value in line with data for 𝐶S in an EDL model of
oxidic materials in water.

In this section we describe ion volume effects in the diffuse layer (DL) of the GCS EDL
model using the Langmuir isotherm, a model with a long history.iv ,v In this approach, using
the Langmuir-description for the excess volume term, the Langmuir-Boltzmann chemical
potential of an ion is

𝜇𝑖 = 𝜇ref,𝑖 + ln 𝑐𝑖 − ln (1 − 𝑣𝑐tot) + 𝑧𝑖𝜙 (3.44)

where we assume that all ions in the system have the same molecular volume, 𝑣, and where
𝑐tot is the total ion concentration (summation over all ions, not including water molecules).vi

In this approach all ions can pack to fill all space up to 100%, when 𝑐tot → 1/𝑣.
If we set 𝜇𝑖 = 𝜇𝑖,∞, and just as in §1.3, we use 𝜗 for the volume fraction occupied by all

solutes (in the context of the Langmuir model), thus 𝜗 = 𝑣𝑐tot and 𝜗∞ = 𝑣𝑐tot,∞, Eq. (3.44)
can be developed into (𝜙∞ = 0)

𝑐𝑖 = 𝑐𝑖,∞
1 − 𝜗

1 − 𝜗∞
𝑒−𝑧𝑖 𝜙 . (3.45)

If we now have a 1:1 solution we have 𝜗 = 𝑣 (𝑐+ + 𝑐−), while in bulk solution we have
𝑐𝑖,∞ = 𝑐∞ and 𝜗∞ = 2𝑣𝑐∞. We can now solve Eq. (3.45) for both ions, and arrive at

𝜗 =
𝜗∞ cosh 𝜙

1 − 𝜗∞ (1 − cosh 𝜙) =
𝜗∞ cosh 𝜙

1 + 2 𝜗∞ sinh2 (𝜙/2)
(3.46)

which we can once again combine with Eq. (3.45) and implement in the modified PB equation
to obtain

𝜕2𝜙

𝜕𝑥2 = 𝜅2 sinh 𝜙
1 + 2 𝜗∞ sinh2 (𝜙/2)

(3.47)

which results in the Langmuir-Gouy-Chapman (LGC) equation for the charge Σ as function
of diffuse layer potential, 𝜙D, given by

𝑄 =
Σ𝜆D

𝜀𝑉T
= sgn (𝜙D)

√︂
2
𝜗∞

ln
(
1 + 2 𝜗∞ sinh2 (𝜙D/2)

)
(3.48)

ivFor a full historical overview, see §3.1.2 in ref. 2
vFor a brief discussion of other possible contributions to the EDL structure, see here.
viTo include that ions have different sizes, an extension of the Carnahan-Starling equation-of-state can be used,

see for instance §4.2.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/gcs_3
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where we use the same dimensionless surface charge𝑄 that we introduced in Eq. (3.27). For
𝜗∞ → 0, Eq. (3.48) simplifies to the GC equation, Eq. (3.15). Eq. (3.48) can be rewritten to

𝜙D = sgn (𝑄) cosh−1
(
𝜗−1
∞ (𝛼 + 𝜗∞ − 1)

)
(3.49)

where 𝛼 = exp
(
𝜗∞/2 · 𝑄2) .

The Bikerman-Freise (BF) capacitance, based on Eq. (3.48), is

𝐶D =
𝜀

𝜆D

sinh 𝜙D

𝛼𝑄
=
𝜀

𝜆D
(𝛼 |𝑄 |)−1

√︃(
𝜗−1
∞ (𝛼 + 𝜗∞ − 1)

)2 − 1 (3.50)

which for 𝜗∞ → 0 simplifies to the GC capacitance, Eq. (3.41). The expansion of the BF
capacitance around zero charge is

𝐶D ·
𝜆D

𝜀
= 1 + 1

8
(1 − 3𝜗∞)𝑄2 + O

(
𝑄4

)
(3.51)

where the additional negative term −3𝜗∞ (which is not in Eq. (3.42)) shows that volume
effects reduce the capacitance compared to situation that ions have no volume. Indeed, with
ions having a volume, with increasing charge the capacitance will level off and come down
again (in the GC model it only increases without limit), see Fig. 3.4.

For high charge, Eq. (3.50) simplifies to

𝐶D =
𝜀

𝜆D𝜗∞
𝑄−1 =

𝜀𝐹

𝑣Σ
(3.52)

which shows how at high charge, and with ions having some volume, the capacitance no
longer increases as the GC capacitance predicts, but decreases with charge following a -1
power dependence. Bazant et al. show an inverse square root-dependence of capacitance on
diffuse layer potential, which as Eq. (3.55) shows (to be discussed further on; take the last
term on the right side) also leads to a -1 dependence on charge. In agreement with Bazant
et al., Eq. (3.52) shows no dependence on salt concentration. In Eq. (3.52), parameter 𝑣 is
as before the molar volume of the ions.

We next derive an approximation for the location and maximum of the capacitance curve.
First we discuss the charge𝑄 at the maximum. As Fig. 3.4 shows, if we take the intersection
of the curves for the GC capacitance, Eq. (3.41), and the high-charge expression, Eq. (3.52),
we obtain an excellent prediction for charge 𝑄 at the maximum. Assuming (correctly) that
𝜗∞ ≪ 1, we then obtain

𝑄 |maximum capacitance ∼
√︂

2
𝜗∞

(3.53)
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Fig. 3.4: The capacitance of a diffuse layer according to Gouy-Chapman, Bikerman-Freise, and the
high-charge limit (ion volume 𝑣 = 0.43 nm3, 𝑐∞ = 10 mM, other conditions apply for water at 𝑇 room).
On the y-axis, 𝐶D is scaled to 𝜀 /𝜆D |1 mM = 72 mF/m2.

which indicates that the maximum shifts to lower charge when the ion volume 𝑣 increases
and when salt concentration 𝑐∞ increases (both influence 𝜗∞ = 2𝑣𝑐∞), and this is in line
with Fig. 6 of Bazant et al. (2009) 2 Eq. (3.53) very accurately describes the charge 𝑄 at
which 𝐶D is at a maximum.

To find the value of the capacitance at the maximum, we can again take the intersection
of the two branches just discussed and implement Eq. (3.53) to obtain

𝐶D |maximum capacitance ∼ 𝑐1

√︂
𝜀𝐹2

2 𝑅𝑇
·
√︂

1
𝑣

(3.54)

showing that a 10× smaller ion volume, 𝑣, should lead to a∼3× larger capacitance maximum.
This prediction matches exactly Fig. 5b in Bazant et al. (2009)2. Furthermore, in their
Fig. 6, Bazant et al. show how the maximum in 𝐶D does not depend on salt concentration,
and Eq. (3.54) also agrees with that.

Because Eq. (3.54) is based on the intersection point of two limiting curves, see Fig. 3.4,
compared to the correct BF capacitance it predicts a too high capacitance. The deviation is
a constant factor (as far as we can tell independent of 𝑐∞ or 𝑣) for which we find a value of
𝑐1 ∼ 0.64. This correction factor can be implemented in Eq. (3.54) to provide an excellent
prediction of the maximum in the diffuse layer capacitance 𝐶D.
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In a numerical scheme, it is known that the above equations can be hard to work
with at high voltages 3 and thus the following approximation to the LGC equation is
proposed, which is very close to Eq. (3.49),

|𝜙D | ∼ 2 sinh−1 (|𝑄 |/2) + 𝜗∞/2 · 𝑄2 . (3.55)

Eq. (3.55) heuristically puts two terms together, first the GC equation valid in case ions
have no volume, and second the high-charge branch as discussed above. That this term
must be quadratic in charge is based on the following observation in calculations with
the FGC equation (also reported by Bazant et al., Fig. 5a) that beyond a certain charge
the counterions form a close-packed layer of which the thickness is proportional to the
charge, and proportional to the ion volume (the layer must be thicker the larger is the
charge, and the larger are the counterions). The gradient in voltage across this layer is
also proportional to charge (Gauss’s law), and this together leads to a dependence on
𝑄2, and on 𝑣, and an inverse dependence on 𝜀.

Based on Eq. (3.55) we can also derive for capacitance

𝐶D
−1 ∼ 𝜆D

𝜀

((
1 + 1/4𝑄2

)−1/2
+ 𝜗∞𝑄

)
(3.56)

which has the correct limits at low and high𝑄 and also has the maximum located at the
correct 𝑄-value. However, around this maximum, it underpredicts the capacitance by
around 20%. [Note that Taylor expansion of Eq. (3.56) around 𝑄 = 0 does not give the
correct behaviour.]

In the next chapter we discuss in more detail the Carnahan-Starling equation for hard
sphere mixtures, and extensions thereof for mixtures of spheres of different sizes, even
allowing for molecules that are better described as two or more connected spheres. These
more detailed models can also be used in EDL models instead of the lattice-based models
discussed above. A typical result is that when volume v in the lattice models is equated to 𝜐
in the CS-models, that in the latter models volume exclusion effects are much stronger, thus
ions are rejected much more from regions of high ion density (near charged walls).
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3.4 Incorporation of polarization in EDL models

Much scientific literature on the theory of EDLs relates to the effect of the dielectric constant
(permittivity), 𝜀r, on the EDL structure. One aspect is that because of high electric field
strength, E, near a charged plane, water molecules polarize (orient themselves) and thus 𝜀r

drops. This effect can be described by the Booth equation and shows up at field strengths of
10 MV/m and more, so this influence can often be neglected. Other effects relate to what is
called a Born energy that describes that ions are rejected from regions of lower permittivity.
That is likely relevant in models where ions have their own cloud of counterions, and in that
case when 𝜀r drops around an ion, that is energetically disadvantageous for the ‘self-energy’
of an ion, and thus one can surmise that a force develops that pushes ions away from such
low-permittivity regions. But perhaps that kind of effect does not apply so much in the
diffuse layer near a charged plane, and neither inside the pores of an overall charge neutral
material. It is also unclear how exactly this type of force can be implemented in a model
for the diffuse layer, because we also need to know why and how 𝜀r changes across space.
Thus, this analysis based on the Born energy likely is more applicable to a situation where
𝜀r has distinct values independent of the field strength or ion concentration, and that is not
the scenario for a diffuse layer near a charged plane. The use of the Booth equation to
‘generate’ gradients in dielectric constant that are subsequently used in an expression for the
Born energy may not be a self-consistent approach.

However, one approach is internally consistent, and that appraoch is often incorporated,
which is ion polarization, which refers to the decrease of the local 𝜀r of the electrolyte, due to
the presence of ions. So the decrease of 𝜀r is caused by ions that themselves then are subjected
to this lowered 𝜀r, but as we will see, only in regions of a high field strength. Ions that are
larger, or orient the water more strongly induce more polarization, thus 𝜀r will go down more
for such ions. Let us assume that 𝜀r decreases linearly with the concentration of an ion of
type i, and we then define 𝛽𝑖 = −1/𝜀w

r · 𝜕𝜀r/𝜕𝑐𝑖 . It is now the case that the contribution to
the chemical potential of that ion because of polarization is 𝜇pol,𝑖 = +𝛽𝑖𝜀w

r 𝐸
2 (unit J/mol)4.

This contribution can be added to general expressions for the chemical potential of an ion,
such as Eq. (2.28). At the same time, the dependence of 𝜀r on ion concentration must be
included on the left side of Eq. (3.1) and thus we do not end up with Eq. (3.2) but we must
solve

𝜀0
𝜕

𝜕𝑥

(
𝜀r
𝜕𝑉

𝜕𝑥

)
= −𝜌 (3.57)

where 𝜀r is for instance described by 𝜀r/𝜀w
r = 1 − ∑

𝑖 𝛽𝑖𝑐𝑖 , if all 𝛽𝑖’s are assumed to be
independent of concentration. (This linearization can only be used as long as 𝜀r does not
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drop below 1.)
For a 1:1 salt with both ions having an equal impact on 𝜀r, thus for one common value of

𝛽𝑖 , Eq. (3.57) can be developed into

𝜀0𝜀
w
r
𝜕

𝜕𝑥

(
1 − 𝛽𝑖 (𝑐+ + 𝑐−)

𝜕𝜙

𝜕𝑥

)
= − 𝐹

2

𝑅𝑇
· (𝑐+ − 𝑐−) (3.58)

where for each ion the modified Boltzmann equation is

𝑐𝑖

𝑐∞,𝑖
· exp (+𝑧𝑖𝜙) = exp

(
−𝛽𝑖𝜀w

r 𝑅𝑇/𝐹2
(
𝜕𝜙

𝜕𝑥

)2
)
. (3.59)

We can implement this result in Eq. (3.58) and obtain

𝜕

𝜕𝑥

(
1 − 2𝛽𝑖𝑐∞ · cosh (𝜙) · rhs (Eq. (3.59)) 𝜕𝜙

𝜕𝑥

)
= 𝜅2 · sinh (𝜙) · rhs (Eq. (3.59)) (3.60)

with 𝜅 defined based on the dielectric constant of water, 𝜀w
r . Solving this modified Poisson-

Boltzmann equation will lead to the prediction that ions are rejected from regions of high
field strength, and thus the field strength there, near a charged surface, will not go up as fast as
otherwise, and thus counterion concentrations do not increase as much as before. Typically,
in advanced EDL models the polarization effect is combined with volume (excess) effects
and that full EDL model numerically solved.

3.5 EDL structure in solid polymer with fixed charge
In the above theories both ions are assumed to be mobile, i.e., free to move towards and
away from the charged surface. However, the situation where one type of ion is mobile and
the other is fixed in space, both in the DL and in bulk, is also of relevance. We consider
the case when monovalent cations are mobile and in bulk have a concentration 𝑐∞, which is
then also the concentration of the negative charges that are fixed in place up to the surface.
The PB-equation is now

𝜕2𝜙

𝜕𝑥2 = 1/2 𝜅2 (
1 − 𝑒−𝜙

)
(3.61)

which can be integrated to

𝑄 = sgn (𝜙D)
√︁

exp (−𝜙D) + 𝜙D − 1 (3.62)

which is asymmetric around 𝜙D = 0, and that is different from the standard GC equation,
Eq. (3.15) which is symmetric around 𝜙D=0.
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Fig. 3.5: The charge-voltage characteristic for an EDL with only cations mobile, and anionic charge
fixed in position, with (𝜗∞ = 0.10) and without (𝜗∞ = 0) volume effects.

Often when we encounter this situation with one type of ion fixed in space, then often
there are additional effects, such as volume exclusion, for instance in theories of the EDL
structure in semiconductors. Including volume effects using a Langmuir/lattice approach
(see previous section), we obtain

𝑄 = sgn (𝜙D)
√︃
𝜙D + 𝜗−1

∞ · ln {1 + 𝜗∞ (exp (−𝜙D) − 1)} (3.63)

where 0 < 𝜗∞ < 1 is the fraction of lattice sites occupied by a cation in the bulk electrolyte.
For 𝜗∞ = 0, Eq. (3.62) is recovered. Eq. (3.63) may also play a role in describing the
EDL-structure at the edges of a solid salt such as AgCl and AgI, where it may be the case
that only one of the two ions has a concentration that deviates from the bulk composition.
Fig. 3.5 compares the predictions of Eqs. (3.62) and (3.63).

The EDL structure when there is a fixed background charge, and both anions and cations
are mobile, will be discussed in §5.3.3.

3.6 The GCS model for mixtures of salt
When the electrolyte contains mixtures of ions (and thus the double layer also contains a
mixture of ions), for instance when besides monovalent ions there are divalent anions or
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cations (or both) in the mixture, some of the above results can still be used. First of all,
when in the mixture all ions are monovalent, all of the above equations apply, with 𝑐∞
the summed concentration of all cations in bulk electrolyte, which is equal to the summed
concentration of all anions there. In this case the excess adsorption of an ion is proportional
to it contribution to 𝑐∞, and thus

Γ+
Γall cations

=
𝑐∞,+
𝑐∞

(3.64)

where “+” refers to one specific type of cation. The same expression applies to the anions.
Thus, in solving the GCS-model we can combine all monovalent cations into one group,
likewise for all monovalent anions, make the required calculations, and only at a later point
we split out the contribution of each ion to the total EDL absorption. This is a general
conclusion also when we next move to mixtures with ions with other charge signs. Thus, all
ions with the same charge can be grouped together as if they are one ion (e.g., all monovalent
cations can be grouped together and be represented by a single monovalent cation). These
simplifications are only possible in a calculation of chemical equilibrium, such as for the EDL
structure. However, in a multi-ion mixture a difference for instance in diffusion coefficients
of cations has a significant effect on the relative ion transport rates of these ions.

Now when besides monovalent ions, also divalent ions are present, the general charge-
voltage relationship, Eq. (3.13) is valid, while relationship for ion adsorption vs. voltage
exist as analytical solutions, though they can be very awkward, but no expressions at all exist
for the exact profile of potential, 𝜙(𝑥). Indeed, for ion adsorption, analytical solutions do
exist even for the most general case where both cat- and anions are present as monovalent
and divalent species (E. Spruĳt, pers. comm.), and for the simplified case when there is only
one type of divalent ion (either anion or cation) and both anions and cations are present in
monovalent form (Zhao et al., 2012). However, these expressions are rather cumbersome.

The more tractable case is when we have one monovalent ion (say anion) and one divalent
ion of the other charge sign (a divalent cation in this example), i.e., a 2:1 or 1:2 salt (Grahame,
1953; Joshi and Parsons, 1961; Mohilner, 1966). For a 2:1 salt, the excess adsorption of the
divalent cation is

Γ2+ = 2𝜆D𝑐∞
(
𝑒−𝜙D
√

1 + 2𝑒𝜙D −
√

3
)

(3.65)

while the excess adsorption of the monovalent anion is

Γ1− = 4𝜆D𝑐∞
(√

1 + 2𝑒𝜙D −
√

3
)

(3.66)

where 𝑐∞ is defined as the bulk concentration of the divalent cations.
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For the reverse case of monovalent cations and divalent anions (a 1:2 salt), the expression
for Γ2+ above can be used for divalent anions, Γ2− , when we apply the transformation
𝜙D ⇄ −𝜙D, and the same transformation makes the expression for Γ1− applicable for
monovalent cations.

3.7 Surface ionization in the GCS model
Surfaces generally do not have a fixed surface charge, described by Σ in the previous
sections, but adsorption and desorption of ions adds to, or modifies, the charge, as was
already commented on in §1.4 and in §2.2–2.5. For capacitive electrodes, this chemical
charge is an extra source of charge besides electronic and ionic charge, see §2.4 and §2.5.
Adsorption of ions can also be a precursor to an electrode reaction in a (capacitive or
Faradaic) electrode process.

In the present section we focus on ion adsorption to interfaces other than electrodes, for
instance to oxidic materials such as alumina and silica. The descriptions can also be applied
to more ‘soft’ interfaces such as polyelectrolytes (charged polymers), either in the form of a
network (gel, membrane, layer of adsorbed (bio-)polymers), or as more discrete entities such
as globular protein molecules or other charged nanoparticles. Though the theories below
refer to an ideal surface with only one type of composition, large parts of the texts are also
valid when the surface has distinct patches of different surface composition and/or geometry
(for rough or wavy surfaces, cylindrical or spherical surfaces, surfaces with protuberances,
etc.).

When a surface has patches, a very interesting problem deals with the diffuse layers
corresponding to each patch, and the question is to what extent they ‘mix’, i.e., the
question is, does each patch have ‘its own’ diffuse layer, or is there one ‘average’ diffuse
layer, the same for both patches. We know this problem exists for the micropores
in carbon electrodes (see Ch. 15), in the interior of ion-exchange membranes 5 and
for materials such as clays which on their edges have a different chemistry than on
the faces of the clay platelets. Many types of bionanoparticles (viruses) have a very
heterogeneous surface structure both in terms of charge and shape.

The extent of ‘diffuse layer mixing’ depends on how large are the patches relative
to the Debye length: for large patches relative to the Debye length, a treatment with
different diffuse layers for each patch is preferable, while for smaller patches relative to
the Debye length (low salt concentration), the two diffuse layers mix.
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One can also think of setting up a numerical theory with two separate diffuse layers
–for instance based on the Poisson-Boltzmann equation for a symmetric salt solution,
Eq. (3.7)– and at each 𝑥-position from the surface we mix the two concentrations in each
layer, and this mixing increases with distance from the surface, so the diffuse layers that
were fully distinct at the very surface, become more and more intertwined the further
we move away from the surface. In this way we solve two adjacent 1D models, instead
of having to set up a full 2D calculation.

Let us discuss now a flat surface with a completely homogeneous composition. Questions
are: do we need to include a Stern layer (or further refinements to the Stern layer concept),
and where (in which theoretical plane) do ions adsorb. On the topic of the Stern layer
–to which we return below– it turns out that we do not need to include a Stern layer at all
in many calculations with organic materials (gels, membranes, protein molecules and other
polyelectrolytes, either in a ‘brush’ or as an adsorbed layer). Or in any case, it does not seem to
be necessary. There is just ‘the’ surface to which protons/hydroxyl ions adsorb (and possibly
other ions) and we can assume this plane to be ‘directly next to’ the diffuse layer without
a Stern layer in between (which would have a voltage drop across it). For ion adsorption
in the intercalation materials discussed in Ch. 1 a Stern layer was also not necessary. On
the other hand, in carbon electrode micropores, the Stern layer as a mathematical concept is
of key importance to describe data of salt adsorption and charge.vii Also for hard surfaces
such as oxides, the Stern layer concept is considered of essential relevance, and often further
refined, as discussed below.

We next focus on models that include proton/hydroxyl ion adsorption in the 0-plane, see
Fig. 3.1, and a further extension can be the adsorption of ‘indifferent ions’ (in most contexts
this refers to all ions except for H+ and OH– ) in the Stern plane, i.e., the plane located
at the interface of Stern layer and diffuse layer, see Fig. 3.1. More refined models are the
‘triple layer model’ which considers that indifferent ions adsorb to a plane ‘inside’ the Stern
layer, and in this way an ‘inner Helmholtz plane’ (iHp) is defined where these ions adsorb,
in addition to the ‘outer Helmholtz plane’ (oHp), where the diffuse layer starts. This oHp
corresponds to the Stern plane that we described before. In the triple layer model there are
two capacitances, one between 0-plane and iHp, and one between iHp and oHp.

By now, one wonders perhaps, how do these various planes and their location matter. They

viiIn theoretical modeling of the EDLs in carbon micropores, this Stern layer is assumed to be located ‘behind’ the
chemical charge. This suggests that in carbon micropores the Stern layer may relate to the space charge region
within the carbon material itself, related to the distribution of electrons there.
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matter because in the adsorption isotherm for that specific plane there is an electrostatic term
(related to the adsorbing ion), and because the capacitances lead to an increase in potential
towards the surface, and this higher potential suppresses adsorption.viii Even more detailed
models describe the adsorption of large ions, for instance phosphate, PO 3–

4 , with part of the
ion is assumed to adsorb in one plane, and part in another plane.

In the present section, we consider the simplest situation, of adsorption of ‘potential-
determining ions’ (often H+ and OH– ) in the 0-plane, and ‘indifferent ions’ in the Stern
plane, with a single Stern capacitance in between these planes.

Two remarks are now in place relating to the ions. First of all, in some cases the ions
adsorbing in the 0-plane, the ‘potential-determining ions’, are not H+ and OH– , but are other
ions, often cations. This is the case for certain complex inorganic materials such as clays
and mica. Nevertheless, from this point onward we assume the ions adsorbing in the 0-plane
are H+ and OH– . The second point is discussed in the next box.

The relationship between H+- and OH– -ions. It is important to discuss the nature of
the H+- and OH– -ions. One might have the idea that they are (to be considered as) two
separate species. However, a repeating theme in this book is that it is generally not very
helpful to consider these ions in this way, as separate entities.

Instead, because of water self-dissociation, a reaction where two water molecu-
les react to H3O+ and OH– , these two ions are intimately connected: knowing the
concentration of the one ion, means knowing that of the other. The following example
illustrates the relatedness of these ions. The example is, how can one distinguish the
situation of an H+-ion moving from bulk and adsorbing to a surface, from the situation
that a water molecule adsorbs which consequently releases a OH– -ion which then moves
to bulk. We cannot distinguish these two situations: we can set up a theory that focuses
on the adsorption/desorption of H+, or we can do the same for the OH– -ion, and these
two analyses will give the same results (if correctly done). Reiterating this point: it
does not matter whether we consider H+-adsorption, or OH– -desorption. This relates
to the assumption underlying this book, that the water is to a large extent an ‘invisible’
solvent, omnipresent in the background. And the equivalence of H+ and OH– relates to
the assumption of fast enough water self-dissociation. For an equilibrium EDL theory
this assumption is valid, and the relation 𝐾w = [H+] [OH−] will be valid. There are
many advantages to this approach, and that is why we also use it in Chs. 10, 17, and 18.

viiiIn a more complicated scheme, charge overcompensation leads to the potential not monotonically going up or
down which complicates this analysis.
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One example is: if we have a Faradaic reaction at an electrode with for instance
carbonate ions reducing to formate ions, in the ‘H+/OH– are equivalent’-formalism that
we advocate, we can use the same model for the Faradaic reaction at all pH values, and
we do not need to consider a reaction based on H+ at low pH and another formalism
using OH– at high pH (and some combination of both at intermediate pH). Instead one
and the same model works at all pH-values, see Chs. 17 and 18. Interestingly, in such
a model electrode reactions of H+ or OH– do not have to be explicitly formulated, but
nevertheless after the calculation has completed, one can back-calculate all fluxes of all
ions at all position, also of H+ and OH– .

Important as well is that in this book we often write H+ as as shorthand for the
hydronium ion, H3O+. It is not necessary to explicitly consider that the molecule is
actually H3O+ which is formed jointly with an OH– -ion from two water molecules.
Instead, just like how the water self-dissociation reaction is written, as a reaction of
a water molecule to a OH– -ion and H+-ion, we can use the H+-ion as shorthand for
the hydronium ion. Thus there is freedom in switching between the notation/concept
of a H+- and H3O+-ion, and this is only possible because the water is modelled as a
continuum fluid around ions. In a more statistical-mechanical framework, this freedom
may not exist in this way.

So for adsorption to a surface, we can choose between focusing on H+ or on OH– .
Throughout this book, and this holds for most literature in general, the choice is to focus
on the H+-ion, and we do so for acidic and basic materials alike. For acidic materials (e.g.,
a carboxylic acid group −COO– adsorbing/desorbing a proton (protonation/deprotonation)
this is rather straightforward. For basic groups this may seem less obvious because they
are neutralized because of OH– adsorption, as for the case where a basic group such as
an amine, −NH +

2 , is neutralized because of OH– adsorption. However, as long as we can
assume that water self-dissociation is a fast enough reversible reaction, mathematically these
two approaches are completely equivalent.

With these elements addressed, what we will arrive at is a situation where we come to
one general ‘Langmuir’ isotherm valid for acidic, amphoteric, and basic surface groups, and
they are only distinguished based on a constant reference charge number, which is -1, ½, and
0, for these three cases.
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Amphoteric materials. It is very interesting to discuss the word ‘amphoteric’, which
is broadly used and has various meanings. For a discussion on the word ‘amphoteric’
in the context of ionic solutions, see p. 511 For surfaces, it means that the material can
charge both positively and negatively. At least three levels of detail can be distinguished.
On the highest level, the term amphoteric material can be applied to a material with
distinct regions (each consisting of 10s-1000s of atoms) differing in surface chemistry
and geometric structure (as for a coronavirus or a clay particle).

One level down is a material where each surface group can be different, such as
a protein molecule. The surface of a globular protein molecule generally consist of
several types of acidic and basic groups, each with their own pK-value. An acidic group
can be deprotonated (negatively charged) or neutral. A basic group can be neutral or
positively charged. So none of these groups is amphoteric, but the material as a whole
is, because the total, effective, average, surface charge can go from negative to positive
as function of pH, and this average charge follows from a summation over all the groups
at its surface.

The smallest scale at which we can define the term amphoteric, is when one and
the same surface group (atom) can go from negative to positive. This is the case for
amphoteric oxidic materials such as titania and alumina. There is one type of surface
group with one pK-value and this group can go from negative at high pH to positive at
lower pH. The fractional charge (charge per group) goes from a minimum of -½ to a
maximum of +½. (Please see here for more discussion on the amphoteric behaviour of
titania.)

In the present section when discussing an amphoteric material, we refer to this last
case, which applies to oxidic material such as alumina and titania. The ionization of
protein molecules is discussed in the next box.

We continue with describing these ionizable materials that adsorb and desorb protonic
charge, i.e., a material that is charged by (de-)protonation. As discussed, these ions adsorb at
the 0-plane, where potential is 𝜙0 (relative to the potential outside the EDL). This potential
depends on the diffuse layer potential, 𝜙D, the Stern capacitance, and the charge in the
0-plane, Σ,ix with 𝜙0 = 𝜙D + 𝜙S. As before, 𝜙D is the potential across the diffuse layer, and
𝜙S the potential across the Stern layer (i.e., both are potential differences).

Next we derive the general Langmuir ionization isotherm. The surface has a density of
ixWe do not include electronic charge for now, or ions adsorbing in the Stern plane. Instead, we consider solely

surface charge in the 0-plane and diffuse charge extending beyond the Stern plane, see Fig. 3.1.

https://www.physicsofelectrochemicalprocesses.com/supp_mat/gcs_4
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sites to which a proton can adsorb, 𝑐s,max, and the Langmuir isotherm considers that a proton
either occupies one of these sites, or not. Thus we take the same approach as in §1.3 in that
we describe an equilibrium between adsorbed species, and species in solution.x Thus the
equilibrium of a proton exchanging between solution (bulk) and surface is

𝜇aff,∞ + ln
(
𝑐∞,H+/𝑐ref

)
= 𝜇aff,ads + ln

(
𝑐0,H+/𝑐s,max

)
− ln

(
1 − 𝑣 𝑐0,H+

)
+ 𝜙0 (3.67)

where 𝑐0,H+ is the surface concentration of protons, adsorbed in the 0-plane (unit mol/m2).
A potential 𝜙∞ is omitted in Eq. (3.67) because 𝜙0 is already defined as the surface potential
relative to that outside the EDL. Note that in Eq. (3.67) we assume equilibrium between the
protons in the 0-plane and the same protons outside the EDL, in bulk. However, when the
diffuse layer is not at equilibrium with a solution outside the EDL, then Eq. (3.67) must be
written as a balance between the proton at the 0-plane and that at the D-plane. Then on
the left side ‘∞’ must be replaced by D, and on the right side 𝜙0 is replaced by the voltage
difference across the Stern layer, 𝜙S. Note the equivalence of Eq. (3.67) with Eq. (1.15) in
Ch. 1.

Next we define a fractional charge, which is the fraction of how many of the surface sites
have an adsorbed H+-ion, for which we can use 𝜗 = 𝑐0,H+/𝑐s,max from Ch. 1, and note that
𝑣 · 𝑐max = 1. This converts Eq. (3.67) into

𝜗 =
1

1 + 𝐾 · 𝑐−1
∞,H+ · 𝑒𝜙0

=
1

1 + 103−pK · 10pH−3 · 𝑒𝜙0
=

1
1 + 10pH−pK · 𝑒𝜙0

(3.68)

where like in §1.3, 𝐾 = 𝑐ref · exp
(
𝜇aff,ads − 𝜇aff,∞

)
, and where we implement

pH = 3 −10 log
(
𝑐∞,H+

)
and pK = 3 −10 log (𝐾).xi,xii

Eq. (3.68) introduces 𝐾 and pK of a certain ionization equilibrium. These are what are
called intrinsic (p)K-values, i.e., they are constants, dependent only on the chemistry of the
ion and the surface. Some studies report apparent pK-values, which are very different. These
apparent pK-values are obtained in an experiment to measure the pH at which a material is
charged for 50%.

Eq. (3.68) shows how with increasing pH the coverage of the surface with H+-ions will
decrease. The same when the surface potential 𝜙0 goes up. This makes sense, because
increasing pH (which refers to bulk, outside the EDL) means less protons in solution, thus

xWe do not derive the Langmuir isotherm as if it is based on a reaction between ‘empty sites’ reacting with a
proton to become an ‘occupied site’.

xiThroughout this book, pH without sub- or superscripts refers to bulk, not to pH at the D- or 0-plane.
xiiIn our book, concentrations and 𝐾-values are in mM (mol/m3) and the conversion here to pH and pK,

implementing a factor 3– allows for the traditional definition of pH and pK on a mol/L-basis.
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also less adsorption, while a higher surface potential would mean that positive ions, such as
H+-ions, are pushed away from the surface.xiii

Eq. (3.68) shows how a higher pK-value leads to more H+-adsorption. This corresponds to
how we understand basic materials, e.g., going from pK7 to pK9 leads to a higher charge, in
line with Eq. (3.68). However, for acidic materials, Eq. (3.68) does not seem right, because
we know that a material with ∼ pK4 (carboxylic acid-type groups) has a lower charge than
acid materials with ∼ pK2 (sulphate-like) let alone ∼ pK1 (phosphate). At a given pH, these
latter materials are charged more than, say, carboxylic acid. However, as we will see below,
there is no problem because for acidic material, ‘higher charge’ actually refers to the charge
being more negative.

Let us repeat that Eq. (3.68) refers to pH in bulk, thus outside the EDL, with 𝜙0 the
potential at the surface, defined relative to the potential in bulk.xiv The fractional coverage
𝜗 times 𝑐max equals the surface concentration of adsorbed protons, with dimension mol/m2,
and multiplying with Faraday’s number, 𝐹, we obtain a charge with unit C/m2.

Now, the surface, the material, has of itself a certain number of surface groups, each of
which has a ‘natural’ or ‘native’ charge. The surface concentration of these groups is 𝑁 . The
charge density of these groups by themselves, i.e., their native charge, is 𝐹 𝛾 𝑁 (in C/m2),
where we introduce the charge sign of the native groups, 𝛾. For an acidic material 𝛾 =−1
(each surface group ‘by itself’ has a 𝛾 = −1 charge). For a basic surface, these 𝑁 groups
are all neutral, i.e., in the native state, they have no charge, and thus 𝛾 = 0. Amphoteric
materials cover the range between these two extremes. We will in this section only consider
amphoteric materials which have a native fractional charge of 𝛾 =−1/2. For these materials
the native charge density of the surface groups is 𝐹 𝛾 𝑁 . Typical numbers for 𝑁 are for
instance 𝑁 = 3 nm−2 for titania to 𝑁 = 8 nm−2 for silica (to be divided by 𝑁av to go to the
unit of mol/m2).

Now, how to arrive at the charge density of the material? It may be clear this will be a
summation of the native charge and the charge due to proton adsorption. This is indeed the
case, and this applies to all three material types (acidic, basic, amphoteric). The interesting
step is to recognize that 𝑐max is equal to 𝑁 , i.e., the site density identified in Eq. (3.67),
to which the protons can adsorb, 𝑐max, is the same as the density of surface groups of the
ionizable material, 𝑁 .

Thus, when we add these two terms together, set 𝑐max=𝑁 , and multiply by 𝐹, we obtain

Σ = 𝐹 · (𝛾 + 𝜗) · 𝑁 . (3.69)
xiiiSee here for a discussion on the involvement of OH– -ions.
xivSee here for two remarks extending the validity and use of Eq. (3.68). These statements also apply to the

ionization equilibria given below.

https://www.physicsofelectrochemicalprocesses.com/supp_mat/gcs_1
http://www.physicsofelectrochemicalprocesses.com/supp_mat/gcs_2
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Next we can combine Eqs. (3.68) and (3.69) and obtain the general result

Σ

𝐹 · 𝑁 = 𝛾 + 1
1 + 10−(pK−pH) 𝑒𝜙0

(3.70)

which we can develop for the three types of material.
But first let us introduce the parameter 𝛼, which is the ionization degree of the surface.

First we describe it for acidic and basic materials. For these materials (for their surface
groups), 𝛼 describes to what extent the surface is charged, i.e., for 𝛼 = 0 the surface is
uncharged, neutral, and for 𝛼 = 1 it is fully charged, i.e., all 𝑁 groups carry the maximum
charge, irrespective of the sign, i.e., whether the material is charged negatively or positively.
The ionization degree 𝛼 refers to the combination of native charge and proton charge, i.e.,
it is a parameter representing the charge in the 0-plane by the two contributions combined.
Thus, the ionization degree 𝛼 represents the effective charge of a surface (as a fraction of the
maximum). For amphoteric materials such as titania and alumina, 𝛼 is defined differently.
It has a sign (i.e., can be negative and positive) and it will not reach a value of ±1. Instead,
it varies from -½ at high pH, to +½ at low pH. These values of -½ , +½ are the maximum
values of the charge per surface group in this material. (There are 𝑁 surface groups.)

Thus, for the three materials the ionization degree is obtained from Eq. (3.70) as follows:
For an acidic material (𝛾=1):

𝛼 = −
Σ

𝐹 𝑁
=

1
1 + 10pK-pH 𝑒−𝜙0

(3.71)

For a basic material (𝛾=0):

𝛼 =
Σ

𝐹 𝑁
=

1
1 + 10−(pK-pH) 𝑒+𝜙0

(3.72)

For an amphoteric material such as titania or alumina (𝛾=−½):

𝛼 =
Σ

𝐹 · 𝑁 =
1
2
− 1

1 + 10pK-pH 𝑒−𝜙0
(3.73)

These are three types of Langmuir adsorption equilibria, which can be used to describe
the ionization of a surface, as we will further outline below.

The amphoteric behaviour of a protein molecule. For an amphoteric material such as
a protein molecule, with multiple ionizable groups, both acidic and basic, the above
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general formulation, Eq. (3.70), is very useful to obtain the general equation for protein
charge, because we can sum over all amino acid groups (where some are acidic, some
basic) (in a protein molecule there are 𝑞𝑖 of each amino acid type), and obtain for the
protein charge 𝑍 (with unit ‘number’)

𝑍 =
∑︁
𝑖

{
𝑞𝑖

{
𝛾𝑖 +

1

1 + 10−(pK𝑖-pH) 𝑒𝜙0

}}
(3.74)

which often is written in the ‘acid form’ as

𝑍 = 𝑍+ −
∑︁
𝑖

{ 𝑞𝑖

1 + 10pK𝑖−pH 𝑒−𝜙0

}
(3.75)

where 𝑍+ is the maximum charge of a protein molecule, which is

𝑍+ =
∑
𝑖 {(𝛾𝑖 + 1) 𝑞𝑖}

to which acidic groups (𝛾 = −1) do not add, only the basic groups (which have 𝛾 = 0).
Thus 𝑍+ =

∑
B 𝑞𝑖 where subscript ‘B’ refers to a summation only over the basic groups

in the protein molecule.
A third representation makes use of the definition of the ionization degree, 𝛼, and

uses the parameter 𝑧𝑖 which is the charge sign of the respective amino acid, with 𝑧𝑖 =−1
for an acidic molecule, and 𝑧𝑖 =+1 for a basic molecule. Then we arrive at

𝑍 =
∑︁
𝑖

𝑧𝑖𝑞𝑖𝛼𝑖 . (3.76)

Next we show adsorption isotherms, or ‘titration curves’ in Fig. 3.6 for four materials,
with the charge Σ divided by 𝐹 · 𝑁 , plotted as function of bulk pH. For acidic and basic
materials, this ratio Σ/𝐹𝑁 equals 𝑧 𝛼, and for amphoteric materials it equals 𝛼. The four
surfaces are the acidic material silica, the amphoteric materials titania and alumina, and the
amine group.xv We use here realistic pK-values.xvi Some other pK-values of materials not

xvAmine by itself is not a stand-alone material, but can be the charged group in a polymer network or in an amino
acid. Note there are different types of amine groups, one of which is a tertiary amine, which is considered to
have a fixed charge (thus it is not ionizable).

xviThe pK-value of 7.5 for silica may look uncommon: isn’t it around pK 3? However, that latter number relates to
the erroneous 2-pK approach to describe the ionization of silica. Instead, silica is an acid, described by a single
pK-value, and the value is around pK 7.5.
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Fig. 3.6: Titration curves as function of pH. (a). Titration in the absence of electrostatic effects (𝜙0=0)
for silica (acidic material, 𝛾 = −1, pK7.5), titania (𝛾 = 1/2, pK4.4), alumina (𝛾 = 1/2, pK8.7) and the
basic amine group (𝛾 = 0, pK9), based on Eqs. (3.71)-(3.73). Titania and alumina are amphoteric.
(b). Titration curves for titania in a model including a Stern layer (𝐶S =0.2 F/m2), and a diffuse layer
according to the GC equation, for three salt concentrations (𝑁 =3 nm−2).

considered in Fig. 3.6 are that of carboxylic acid (around pK 4-5), sulphonate groups (around
pK 2) and phosphate groups (around pK 1). Note that for a basic material an increase in pK
leads to a higher charge (at the same pH value) but for acidic materials it is the opposite:
the phosphate group is a very strong acid (typically highly charged, pK ∼ 1) while silica
(∼ pK7.5) is a very weak acid.

In Fig. 3.6a we show titration curves in the absence of electrostatic effects, thus when
𝜙0 = 0. We notice how silica is negatively charged, especially for pH values above pH 6,
while amine groups are positively charged for pH 10 and lower. Titania and alumina are
amphoteric and are positively charged for pH below their pK-value, and negatively charged
for pH>pK. For these materials, their pK value is equal to their point of zero charge, PZC. In
the absence of specific adsorption of other ions except for H+/OH– , titration curves for these
materials always intersect the 𝑥-axis (i.e., go from positive to negative charge) at the same
pH-value, irrespective of which ions are in solution and irrespective of the ion concentration.
If we do observe that the pH at which the material goes from positive to negative charge
depends on salt type or concentration (this transition point can often be established based on
electrokinetic experiments), this is an indication that ions other than H+/OH– also adsorb
(for instance in the Stern plane).

Fig. 3.6a suggests that these materials go from one limiting value of charge to the other
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by varying pH by about 2 points. However, this is not the case in a calculation that includes
the diffuse layer and the Stern layer, as shown in Fig. 3.6b. Fig. 3.6b is set up for titania,
implementing the GCS model with a Stern layer (𝐶S = 0.2 F/m2) and the Gouy-Chapman
equation based on standard values for 𝑇 and for 𝜀 of water. We make a calculation for three
values of the concentration of a 1:1 solution. We now observe that throughout the entire
pH range charge gradually increases without levelling off. All curves are symmetric in the
point (pH 4.4, 𝛼=0). in Fig. 3.6b shows that the maximum value of the ionization degree,
𝛼, reached in the practical pH range, is not more than 0.15 negative or -0.05 positive, at least
a factor of three lower than the theoretical maximum that was obtained in Fig. 3.6a. Thus,
ionizable materials in many cases do not charge up to their maximum at all.xvii

Another feature of Fig. 3.6b is that we have a higher charge at higher salt concentration,
both for the positive branch at low pH, and for the negative branch at high pH. The reason
is that at higher 𝑐∞ the diffuse layer (DL) is ‘thinner’, i.e., the potential drop over the DL is
less, i.e., 𝜙D is closer to zero, and thus 𝜙0 as well. For the positive branch, where we have
a positively charged surface and a positive potential, which ‘pushes away’ the protons, the
lower potential at higher 𝑐∞ allows for a higher proton concentration at the surface and thus
a higher surface charge. For the negative branch, the surface is negative, the potential as
well, and this attracts the protons. At higher salt concentration, this electrostatic attraction is
reduced, i.e., protons are less attracted to the 0-plane. This leads to a more negative surface.
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4
Ion volume effects in electrochemical processes

Ion volume effects play an important role in electrochemical processes, both influencing
rates of transport as well as the adsorption of ions (and other species) in the electrical
double layer. They contribute significantly to the partitioning of ions between two phases,
especially when at least one of the phases is based on small pores. In this chapter we also
introduce a simple model for the ion activity coefficient in solution, incorporating a model
for Coulombic interactions between ions in solution. We combine it with the correction due
to ion volume effects, and thereby explain the typical non-monotonic trend of ‘ln𝛾’ versus
salt concentration.
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4.1 Introduction

In electrochemical systems, the sizes and shapes of ions and other solutes play an important
role, especially inside the pores of electrodes and membranes. For the rate of transport, the
dimensions of an ion matter because a larger ion diffuses more slowly due to more friction
with the fluid, and this effect is enhanced in a porous network with narrow channels where
an ion also has friction with pore walls. The volume of an ion also leads to a driving force
related to (gradients in) the excess function, which is a contribution to the chemical potential
of an ion due to its volume: solutes tend to move away from crowded regions.

The above effects relate to transport. Besides that, ion volume influences the equilibrium
structure of the diffuse part of the EDL, and, related, the distribution, or partitioning, of
ions and other solutes between phases, especially when one of the phases consists of narrow
pores into which the ions must enter. This was discussed in general in §2.8 and in the present
chapter will be further developed with specific expressions for Φexc,𝑖 presented.

The volume of an ion is not just its bare atomic volume. Instead, as often mentioned in
this book, often an ion has a strong association with several tightly bound water molecules,
its hydration shell. It is this total entity that is then called an ion (or other solute). Outside
this shell, where water freely moves, we have the ‘free’ water, i.e., the solvent or fluid. We
will generally refrain from using these adjectives ‘bound’ and ‘free’ etc. and when we write
‘ions’ we refer to hydrated ions, and ‘water’ applies to the free water around the hydrated
ions.

Whereas in previous chapters we extensively used the Langmuir/lattice gas approach, in
the present chapter the Carnahan-Starling equation of state is introduced. This equation is
very exact and highly amendable to describe various situations relating to multi-component
and ‘multi-shaped’ particles and porous media. We also provide a theory for the Coulomb
interactions between ions in solution, which is of aid in describing the activity coefficients
of ions in dilute and moderately concentrated solutions.

4.2 Effect of ion volume on the partitioning into a
porous medium

A simple way to introduce the effect of ion size is how for a spherical particle (ion) that
enters a perfectly cylindrical pore, not all positions are available. In this case, the partitioning
function, Φexc,𝑖 , is the ratio between the area of the pore cross-section that is accessible to
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the centre of the ion (with ion size 𝜎𝑖), over the total cross-sectional area, and is given by

Φexc,𝑖 =
𝜋/4

(
𝐷p − 𝜎𝑖

)2

𝜋/4𝐷2
p

= (1 − 𝜆)2 (4.1)

where 𝜆 is the ratio of ion size 𝜎𝑖 over pore size 𝐷p. In Eq. (4.1) it is assumed that the ions
are unrestricted in their motion outside the pores, in bulk solution. Eq. (4.1) is based on the
idea that an ion’s center cannot get closer to the wall of a pore than a distance equal to its
own radius, 𝜎𝑖/2, or in other words, only a center region with diameter 𝐷p − 𝜎𝑖 is available
for the center of an ion. This is based on the concept of the ion as a perfect sphere and the
pore of a perfect cylindrical shape.

This very elegant equation has only one problem. Which is that most porous materials
do not consist of (one type of) perfect cylindrical pores. But fortunately, there are other,
more appropriate, approximations of the structure of a porous network that we can make use
of. The approach we will use is to approximate the porous structure as a random assembly
of more-or-less spherical particles. They can be very close-packed, or form a very dilute
assembly. In the theory they are fixed in position, i.e., they form a rigid structure. We can
make a structure with mixtures of different fractions of spheres of different sizes, but we
will assume one type of sphere in this chapter. We base our derivation on a very accurate
equation-of-state (EOS) that was originally developed for hard sphere mixtures, and modify
it to make it apply to the case of a porous medium consisting of a network of spheres, where
all spherical particles are connected and held rigidly in space.

The starting point is the Carnahan-Starling equation of state (CS EOS), which very
accurately describes volumetric interactions in a ‘hard-sphere mixture’, i.e., for a solution
of particles that all have the same size. The osmotic pressure according to the CS EOS is
given by

Π

𝑐
=

1 + 𝜂 + 𝜂2 − 𝜂3

(1 − 𝜂)3
= 1 + 2𝜂 (2 − 𝜂)

(1 − 𝜂)3
(4.2)

where 𝜂 is the volume fraction occupied by the spherical particles. Eq. (4.2) includes both
an ideal term, which is the factor 1 on the right, and a volumetric excess term, which is the
term 2 𝜂 (2 − ... there.i The expansion of Eq. (4.2) around 𝜂 = 0 leads to

Π

𝑐
= 1 + 4𝜂 + 10𝜂2 + 18𝜂3 ... (4.3)

iHere, as throughout this book, pressures and chemical potentials can be multiplied by 𝑅𝑇 to obtain a dimensional
pressure in J/m3 and potential in J/mol. For the dimensionless potential, 𝜇, it is common to then write that the
chemical potential is so many ‘kT’s, or ‘𝑘B𝑇’s.
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which shows that the CS virial coefficients are 𝐵2 = 4, 𝐵3 = 10, 𝐵4 = 18, etc., where the
2nd and 3rd virial coefficients are exact for hard sphere mixtures, but higher order virial
coefficients are slightly off (18 must be 18.36. . . , etc.).

Based on Eq. (4.2), and the Gibbs-Duhem equation, Eq. (1.4), we can derive the excess
contribution to the chemical potential of a species

𝜇exc,i =
3 − 𝜂
(1 − 𝜂)3

− 3 (4.4)

which has the expansion around 𝜂 = 0 of

𝜇exc,i = 8𝜂 + 15𝜂2 + ... (4.5)

where the factor 8 can be interpreted as due to a single sphere of volume 𝑣 excluding 8× its
own volume for (the placement of the center of) another sphere of the same size. Note that
this 8× larger volume does not imply that (CS predicts that) there is a maximum packing
density of 1/8, or 12.5%. This limit is not there because when two spheres are so close that
their excluded volumes overlap, then their joint excluded volume is less than the sum of their
individual excluded volumes. (It may be good to reiterate that our interest in 𝜇𝑖-values for
volume or other effect is because a difference in 𝜇𝑖 of a solute between two phases leads to
a contribution to the partitioning coefficient.)

Besides its exact nature, the elegance of the CS EOS is that it can be extended to
multicomponent mixtures of spheres of different sizes. And that equation can be further
modified to consider mixtures where some of the particles are connected in pairs, triplets,
etc., and even into long strings of particles, to describe polymer molecules, or to represent
random porous media. The generalization of the CS EOS to mixtures of spheres of unequal
size. is the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state. The
complete equation is rather unwieldy, but it is an explicit expression for Π and 𝜇exc,i as
function of the volume fractions and sizes of all the species involved. When the sizes of all
particles are the same, the BMCSL EOS simplifies to the CS EOS.

Some useful limits of BMCSL are as follows. When particles of size 𝜎𝑖 are dispersed
in a solution containing other particles 𝑗 that are infinitely small (point charges), then the
CS-equations above can be used with 𝜂 based on particle 𝑖, with an additional term based
on the osmotic pressure exerted by the small particles 𝑗 , which results in an additional
contribution to the total osmotic pressure of the system of

Πsea of small particles = 𝑐 𝑗 (4.6)

where the concentration 𝑐 𝑗 of the small particles in Eq. (4.6) is based on the volume available
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to them, which is the volume not occupied by the large particles 𝑖, thus 𝑐 𝑗 = 𝑐∗
𝑗
/(1 − 𝜂),

where 𝑐∗
𝑗

is the concentration per total volume.
The small particles 𝑗 also modify the chemical potential of species 𝑖 by a term that is

equal to the volume of particle 𝑖 times the pressure exerted by all the small particles, 𝑗

𝜇additional,𝑖 = 𝑣𝑖 · Πsea of small particles (4.7)

which can be understood as an insertion pressure: it is the energy that must be invested by
the large particle to open up a space with the volume 𝑣𝑖 against the pressure exerted by the
small particles 𝑗 .

The excess contribution to the chemical potential for the small particles, j, because of the
presence of larger particles, i, is

𝜇exc, 𝑗 = − ln (1 − 𝜂) . (4.8)

A different limit is when we have N types of particles, i.e., a polidisperse system, and all
species can have non-zero sizes, but all particles, indexed as type 𝑖 in the remainder of section
are present at a very low concentration, except for one majority species that is indexed j. All
equations below until Eq. (4.18) are valid for such a polidisperse system. In this case we can
take the elegant ‘test particle limit’ or ‘tracer limit’ of the BMCSL EOS. For all particles
type i, present in low quantities, and with size 𝜎𝑖 in a mixture that predominantly consists
of spherical particles j, of size 𝜎𝑗 , with 𝛼 = 𝜎𝑖/𝜎𝑗 , the excess term for molecules i in the
tracer limit of the BMCSL equation is given by

𝜇exc,𝑖 = −
(
1 − 3𝛼2 + 2𝛼3

)
ln (1 − 𝜂) + 𝜂𝛼

{
𝛼 (3 + 2𝛼 − 3𝜂)
(1 − 𝜂)3

+
3
(
1 + 𝛼 − 𝛼2)

1 − 𝜂

}
(4.9)

where 𝜂 is the volume fraction of total space filled up with particles type 𝑗 . Eq. (4.9)
correctly simplifies to all of the earlier mentioned limits when 𝛼 is either 0, 1, or∞.ii

When now the other species 𝑗 is to some extent restricted in its movement, by being
connected to other spheres of species 𝑗 , such as when they are combined into doublets,
triplets, or into long (polymer) chains, Eq. (4.9) is modified to account for the lower exclusion
effect. This is because the entropic contribution to the excess function is reduced or altogether
switched off when these species 𝑗 cannot move as freely as before. We here extend this
approach to describe volumetric effects in a porous medium that is described as a dense
packing of connected spheres (the 𝑗-particles). To account for this connectedness, for the

iiNote that in this section we are leaving out an index i in our notation of 𝛼, even though 𝛼 is a factor that for each
solute i can be different.
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particles type i that move through the porous medium consisting of particles type j that have
fixed positions in space, we add to Eq. (4.9) a contribution given by

𝜇additional,i = −
𝜂

1 − 𝜂 𝛼
3 + ln (1 − 𝜂) (4.10)

which consists of two terms, the first one being a correction because all spheres of type 𝑗
are connected to one another, and the second term is a constant factor that now allows for
concentrations to be defined per unit pore volume. Thus, for all equations that follow in this
section, until Eq. (4.24), note that all concentrations in the porous medium are defined per
volume of the open fraction (the pores).

Combining these two terms, we can easily group all terms according to their dependency
on 𝛼, resulting in

𝜇exc,i =
3𝜂

1−𝜂 𝛼 + 3
(
ln (1 − 𝜂) + 𝜂 (2−𝜂)

(1−𝜂)2

)
𝛼2 − 2

(
ln (1 − 𝜂) + 𝜂(2𝜂2−4𝜂+1)

(1−𝜂)3

)
𝛼3 . (4.11)

We can analyze this new excess function for a particle of size 𝜎𝑖 in a porous material that
has a volume fraction 𝜂 and is made of spheres of size 𝜎𝑗 . Interestingly, the resulting curves
as function of size ratio 𝛼 can be made to almost overlap when we plot the excess functions
𝜇exc,i not versus the size ratio as such, but versus the ratio of ion size over an effective pore
size. This effective pore size, ℎp, or ‘characteristic pore dimension’ (also discussed in §2.2),
is equal to the pore volume over the area, and thus ℎp is the inverse of the specific ‘liquid
phase’ surface area, 𝑎L). For the type of porous medium just discussed, ℎp is given by

ℎp =
𝜎𝑗

6
1 − 𝜂
𝜂

. (4.12)

Thus we define a modified size ratio, 𝛼′,

𝛼′ =
𝜎𝑖

ℎp
(4.13)

and combine Eqs. (4.12) and (4.13) to arrive at

𝛼′ =
6 𝜂

1 − 𝜂 𝛼 . (4.14)

Combination of Eqs. (4.11) and (4.14) leads to

𝜇exc,i = ½ 𝛼′+
(
(1 − 𝜂)2

12𝜂2 ln (1 − 𝜂) + 2 − 𝜂
12𝜂

)
𝛼′2−

(
(1 − 𝜂)3

108𝜂3 ln (1 − 𝜂) + 2𝜂2 − 4𝜂 + 1
108𝜂2

)
𝛼′3 .

(4.15)
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Fig. 4.1: The excess contribution to the chemical potential, 𝜇exc,i, of a spherical particle of size 𝜎𝑖 ,
inside a dense porous medium with various packing degrees 𝜂, as well as comparison with 𝜇exc,i for
the ideal case of a sphere in a cylindrical pore.

For this porous medium approach, we can now plot the excess term 𝜇exc,𝑖 of Eq. (4.11) versus
𝛼′ in Fig. 4.1 as function of packing degree 𝜂. Interestingly, all curves for 𝜇exc,i vs. 𝛼′ now
start off with the same slope of 𝜕𝜇exc,i/𝜕𝛼′ = 1/2, irrespective of the chosen packing degree
of the porous medium, 𝜂, just as described by the first term in Eq. (4.15).

And we can now analyze this slope for the classical partitioning function based on the
cylindrical pore, Eq. (4.1). Also here we must recalculate, now from the ratio of ion size
over pore size, 𝜆, to 𝛼′. We must also convert the partitioning function for volume effects,
Φexc,𝑖 , from Eq. (4.1), to an excess contribution to the chemical potential, 𝜇exc,i, resulting in

𝜇exc,cyl,𝑖 = −2 ln (1 − 𝜆) (4.16)

in which we can implement that for a cylindrical pore 𝛼′ = 4𝜆. Taylor expansion around
𝛼′=0 leads to

𝜇exc,cyl,i = 1/2𝛼′ + 1/16𝛼′2 + ... (4.17)

which has the same first term, linear in 𝛼′, as for the porous medium approach, Eq. (4.15).
Thus, for small enough ions the two approaches overlap, which is a comforting result.

It is advantageous that the new approach based on a porous medium does not depend
on a virtual ‘diameter of an ideal cylindrical pore’ but uses the much more accessible and
insightful property of the specific surface area, 𝑎L, or its inverse, the characteristic pore
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dimension, ℎp.
As Fig. 4.1 shows, until around 𝛼′ ∼ 3, the new expression for 𝜇exc,i changes faster than

the prior function based on an ideal cylindrical pore, i.e., there is now a larger impact
of a size change on 𝜇exc,i. This trend only reverses at larger values of 𝛼′ when for the
cylinder approach the excess function more rapidly increases and diverges when the ion
size approaches the diameter of the cylindrical pore. This rapid increase and divergence is
not seen with the new approach. Importantly, both approaches give results that are not too
different, with very similar 𝜇exc,i up to 𝛼′ ∼ 1, and with a maximum deviation of ∼ 1 kT
around 𝛼′∼3 (2.5 vs. 3.5 kT).

The new approach has a small dependency of the function 𝛼′ − 𝜇exc,i on the packing
density of the porous medium, 𝜂, as Fig. 4.1 shows, but the effect is relatively small. For
further analysis, let us use the curve for 50% packing as an appropriate choice, for which the
resulting expression for Φexc,𝑖 becomes

Φexc,𝑖 = 𝑒
−(𝜇exc,𝑖−𝜇exc,∞,𝑖) = exp

{
−

(
1/2𝛼′ + 5/26𝛼′ 2 + 1/40𝛼′ 3

)}
(4.18)

where the first numerical value is exact, the other two are approximations. Note that the
predicted partitioning effect is still a function of the density of the porous medium, via the
value of ℎp, which is a strong function of 𝜂, see Eq. (4.12). (In Eq. (4.18) we assumed that
𝜇exc,∞,𝑖 =0.)

The expressions discussed in this section can also be compared to another empirical
method that was used to develop an expression for 𝜇exc,i for ions inside a slit-shaped pore,
results of which compared favorably with full density functional theory (DFT) calculations.
Here the standard CS EOS was used, with a dependence on 𝜂𝑖 , which is the volume fraction
of the spheres themselves in the slit. To correct for the presence of the slit-shaped pore walls
(to get a good fit to the DFT calculation results), this volume fraction 𝜂𝑖 was corrected by
adding an extra term 𝛾𝛼′ that depended on the ratio of ion size over slit size (𝛾 = 0.0725).
Thus to each factor 𝜂𝑖 in the CS expression, Eq. (4.5), this extra factor is added to account
for pore constriction, which results in

𝜇exc,𝑖 =
3 − (𝜂𝑖 + 𝛾 𝛼′)
(1 − (𝜂𝑖 + 𝛾 𝛼′))3

− 3 . (4.19)

If we take the tracer limit, so a dependence on the ion concentration itself is neglected,
i.e., we set 𝜂𝑖 =0, and do a Taylor expansion around 𝛼′=0, we obtain

𝜇exc,i = 8 𝛾 𝛼′ + O
(
𝛼′2

)
(4.20)

and thus we have around 𝛼′ = 0 a linear dependence on 𝛼′ with a prefactor for 𝜇exc,i of
8𝛾 = 0.58, which is close to the value of ½ derived for the approaches discussed earlier on.
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Eq. (4.19) can also be used to describe the interactions between the ions in the pore, i.e., a
dependence of the excess function on 𝜂𝑖 , but we use a different function for that later.

Thus, in conclusion, all of these approaches for the effect of ion volume on the excess
function in porous media, give similar results, though the original ‘sphere-in-cylinder’
approach has the weakest dependence on pore size below 𝛼′ ∼ 3 and after that the effect of
pore size increases very steeply. The more gradual dependencies predicted by the two other
approaches seem better. Note that all expressions until now (except Eq. (4.19)) assume that
the absorbing species is present only in trace quantities, and thus do not interfere with one
another. This effect we discuss further on.

—

We can use these expressions to estimate the effect of ion size on ion selectivity, for
equilibrium conditions, thus neglecting for now how different transport rates influence
selectivity. At equilibrium, ion selectivity describes the difference in ion adsorption in
a microporous material (porous electrodes, gel, membrane) between two different ions
(Gamaethiralalage et al., 2021). We can define the selectivity between ion 1 and ion 2 as

𝑆1−2 =
𝑐1

𝑐2
·
𝑐∞,2
𝑐∞,1

(4.21)

where index ∞ refers to outside the porous material, while c without an extra index refers
to inside the micropores. To find an expression for 𝑆1−2 as function of the two ion sizes, we
use the partitioning coefficient related to volume, given by

Φexc,𝑖 = exp
(
−

(
𝜇exc,𝑖 − 𝜇exc,∞,𝑖

) )
. (4.22)

If we now combine with Eqs. (2.34) and (4.21), we arrive at

𝑆1−2 = exp
(
𝜇exc,2 − 𝜇exc,1

)
(4.23)

where we assumed that for both ions outside the pore 𝜇exc,∞,𝑖 is zero, which for a sufficiently
dilute solution is a valid approximation.

We can now insert any of the above-discussed expressions for 𝜇exc,𝑖 in Eq. (4.23). The
expression we will analyze is Eq. (4.15) and thus we obtain

𝑆1−2 = exp
(
−½ (𝜎1 − 𝜎2) /ℎp

)
(4.24)

which illustrates that when ion 1 is smaller than ion 2, 𝑆1−2 is larger than unity, i.e., the
smaller ion is preferentially adsorbed. As Eq. (4.24) also shows, the effect of ion size
increases with decreasing pore size, ℎp.
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According to Eq. (4.24), a difference in size between the ions of 20%, with the smaller
ion having a size equal to ℎp, thus 𝛼′=1.0, leads to a selectivity of 𝑆1−2∼1.11, which is not
very impressive. Using Eq. (4.18) instead of Eq. (4.15) leads to the more correct result that
for these parameters, 𝑆1−2 ∼ 1.22, which is twice larger but still not very large. But when
we analyze the situation beyond the tracer limit, selectivity becomes significantly higher,
as we show next. We will now use the full BMCSL approach with two ions modelled as
spheres of different sizes, and a third type of particle that represents the porous medium and
is modelled as spheres that are all connected to one another. This is Eq. (7.2) in Spruĳt and
Biesheuvel (2014) where we use 𝑁 =∞ for this third type of particle (𝜂3=50%). We make a
calculation of ion selectivity at a 20% total volume fraction of the two ions in the pores (thus
the two ions together occupy 10% of the total volume of the porous medium) including that
the two types of ions have volumetric interactions with one another. Like in the previous
example, the larger ion is only 20% larger than the smaller one.iii Results are that we now
have a selectivity factor of 𝑆1−2 =4.44! Thus ion volume effect can be very significant in a
realistic porous medium, significantly beyond what the simple Eq. (4.24) might suggest.

4.3 Ion-ion Coulombic interactions in electrolytes
An important topic in physical chemistry is the activity coefficient of ions in a salt solution
(electrolyte). The activity coefficient is the correction to the concentration required to obtain
a good prediction of the chemical potential of an ion, 𝜇𝑖 , as well as of other thermodynamic
properties of an electrolyte solution, such as the osmotic pressure and vapour pressure. The
activity coefficient 𝛾𝑖 relates to activity 𝑎𝑖 and concentration 𝑐𝑖 by 𝑎𝑖 = 𝛾𝑖𝑐𝑖/𝑐ref , and for
the chemical potential we thus obtain

𝜇𝑖 = 𝜇ref,i + ln 𝑎𝑖 = 𝜇ref,i + ln (𝛾𝑖𝑐𝑖/𝑐ref) = 𝜇ref,i + ln (𝑐𝑖/𝑐ref) + ln 𝛾𝑖 . (4.25)

Typical results for 𝛾𝑖 are that starting at a value of 𝛾𝑖 =1 for a very dilute solution, it first
decreases, then reaches a minimum at moderate salt concentration, and then increases again,
for very high salt concentration to pass beyond the value 𝛾𝑖 = 1. The initial decrease in 𝛾𝑖
is because of Coulombic forces between ions of opposite sign, and the increase at higher
concentrations is due to an ion volume effect, for which the Carnahan-Starling equation of
state, Eq. (4.4), can be used.

When we add salt to water, in most cases the ions fully dissolve, primarily because of an
increase in the entropy of the ions in this process. The hydration of ions when they dissolve
iiiOther calculation parameters: the smaller ion has a size equal to ℎp; the two ions have an equal concentration in

bulk solution.
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Fig. 4.2: In a dilute electrolyte solution, ions are randomly distributed as depicted in panel A, but the
electrostatic energy is lowered when ions of opposite charge stay nearer to one another as illustrated in
panel B for a 1:1 salt. There is a distribution of distances between an ion and its nearest countercharge.

is another contributing factor. Another energy term is of electrostatic origin, because ions
of like sign repel and of opposite charge sign attract. For dilute solutions the attraction
of an ion with its most nearby countercharge is the most relevant, and it is the Coulombic
attraction between them which leads to a decrease of the energy of the electrolyte, and thus
to a reduction of the activity of the ions. When very dilute, these Coulombic interactions
are effectively zero, because the ions remain far apart and the likelihood of an ion starting
to orbit its counterpart is small. But if concentrations go up, ions are ‘pushed together’, in a
statistical sense, and trajectories of a certain ion more frequently get close to ions of opposite
sign. Then it will happen more frequently that these trajectories are further deflected such
that ions stay closer for a longer time, i.e., their paths become correlated. A snapshot for
a dilute solution would not show ion-ion positional correlations, but a snapshot at higher
concentrations shows correlations of cations with anions, see Fig. 4.2. The Coulombic
interactions result in a negative contribution to an ion’s chemical potential, i.e., to a value of
𝛾 less than unity.

In a calculation of the chemical potential, we can focus on the Coulombic interactions
between an ion and its most nearby countercharge, and we do not consider the trajectories of
other cations and anions. Thus we can focus on an ion and the most nearby countercharge,
and analyze the Coulombic energy of the interaction between them. In this calculation
we must consider all possible distances between the two ions, and take into account the
likelihood of each separation. First of all, being very close is increasingly unlikely because
around any point ‘space’ expands with distance squared, making two ions being further
apart more likely then being close. On the other hand, further apart is less likely because the
Coulombic energy is less, i.e., because of the higher attraction short distances are favoured
by Boltzmann’s distribution law. The minimum distance between the ions in a pair is
determined by the sum of their radii, which is then also part of the theory. There is not
a sharp maximum for the range of possible distances where the first countercharge is to
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found relative to a certain ion, but very large distances for the first countercharge, are very
unlikely. A simplification assumes a distinct maximum separation calculated from equally
distributing all ions over space, away from one another to a maximum, and then taking this
ion-ion distance as the maximum. In the dilute limit this entire calculation can be done
analytically for a 1:1 salt and leads to the result that the natural logarithm of 𝛾 is given by

ln 𝛾± = −𝛼 𝜆B
3
√︁
𝑁av𝑐∞ (4.26)

where ± refers to the mean activity coefficient which is equally attributed to the cation as
to the anion, with 𝛼 a numerical prefactor that we empirically determine to be 𝛼 = 1, and
𝜆B is the Bjerrum length, at room temperature about 𝜆B = 0.716 nm. This expression for
the dilute limit, Eq. (4.26), is independent of ion radii, but ion radii do play a role in a
full numerical calculation that for non-dilute conditions is more exact. These complete
numerical calculations are provided as continuous lines in Fig. 4.3 and accurately describe
data of the activity coefficients of several 1:1 salts up to quite high salt concentrations. For
a low average ion radius of ⟨𝑎⟩ =0.18 nm, the analytical solution, Eq. (4.26) is close to the
numerical calculation, certainly in the dilute limit. In Biesheuvel (2020) also an excellent fit
of this theory to data is provided for symmetric 2:2 and 3:3 salts, as well as for asymmetric
2:1 and 3:1 salts. In the latter cases, instead of considering only one countercharge, an ‘ion
ensemble’ with 3 and 4 ions, respectively, must be numerically evaluated.

—

For a 1:1 fully dissociated salt, the contribution to the osmotic pressure because of this
ion-ion Coulombic interaction (i.i.c.i.) is as follows. We can make use of Eq. (1.3) with the
right hand side now a summation over two ions, and we can also use the expression for free
energy density f that we discuss further on, Eq. (III-14), noting that Π=𝑐2𝜕 ( 𝑓 /𝑐) /𝜕𝑐. For
a symmetric salt this relation can be directly used with c twice the salt concentration, 𝑐∞.iv

We now obtain for the contribution to the osmotic pressure

Πi.i.c.i. = −½𝛼 𝜆B 𝑁
1/3
av 𝑐

4/3
∞ . (4.27)

At room temperature, this contribution is Πi.i.c.i∼−0.03 𝑅𝑇 𝑐4/3
∞ , with 𝑐∞ expressed in mM.

Thus at 𝑐∞=1000 mM this contribution reduces the osmotic pressure by 7.7 bar.
The same result can also be expressed as an osmotic coefficient, 𝜙, which describes the

osmotic pressure relative to the ideal situation that Πid = 2𝑅𝑇𝑐∞, thus 𝜙 = Π/Πid. For a
1:1 salt, at room temperature, 𝜙 is given by 𝜙∼1 − 0.015 3

√
𝑐∞ (Biesheuvel, 2020). Thus at

1 M, the osmotic pressure is reduced because of electrostatic interactions by ∼15%.
ivFor the ideal part, we have 𝑓 =2𝑐∞ (ln (𝑐∞/𝑐ref ) − 1) , and we then correctly end up with Π=2𝑐∞.
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—

It is possible to include the effect of this ion-ion Coulombic interaction in a flux expression
for ions where it will be combined with other driving forces acting on an ion, such as diffusion
and electromigration. If we combine ion-ion Coulomibic interaction with regular diffusion
by Fick’s law, we arrive for a 1:1 salt atv

𝐽 = −𝐷
(
1 + 𝜕 ln 𝛾

𝜕 ln 𝑐∞

)
𝜕𝑐∞
𝜕𝑥

. (4.28)

The term within brackets becomes 1 − 1/3𝛼𝜆B
3√𝑁av𝑐∞, and that term multiplied with 𝐷𝑖

can be called an apparent diffusion coefficient, 𝐷app,𝑖 . A large range of data for the diffusion
of KCl, NaCl and LiCl up to concentrations of 𝑐∞ ∼ 200 mM is excellently described by
Eq. (4.28), see Biesheuvel (2020). Due to the activity correction, at ∼200 mM, the apparent
diffusion coefficient, 𝐷app,𝑖 , is about 10% lower than its value at infinite dilution, where
𝐷app,𝑖 =𝐷𝑖 .

—

A general conclusion of a study of ion activity coefficients is also that certainly for 1:1 salts
the correction to an ion’s activity due to ion-ion Coulombic interactions is in many cases not
very large, and can be neglected. A drop in ln𝛾 by 0.3 points, as shown in Fig. 4.3, relates to
an contribution to an ion’s chemical potential that is equivalent to the effect of an electrical
field with a voltage change of 8 mV, not a very large number. Thus, electromigration, and
regular diffusion, are in most cases more important than ion-ion Coulombic interactions.
But for 2:2 and 3:3 salts, these energies are much stronger, see Biesheuvel (2020).

—

Thus, Eq. (4.26) is a first contribution to the activity correction of an ion, ln 𝛾, with
the effect of ion volume a second contribution, which develops at moderate to high salt
concentrations. We describe this volume effect with the Carnahan-Starling equation of state,
Eq. (4.4), and take for the anion and cation the same size. The volume fraction 𝜂 is calculated
from multiplying the ion’s volume 𝑣, with the total ions concentration, which is two times
the salt concentration. We present in Fig. 4.4 curves for ln 𝛾 (the summation of the two
𝜇-terms discussed in this section) as function of salt concentration and ion size (the ion

vThis derivation is based on the solute friction balances that will be extensively discussed in Ch. 7 where the extra
contribution to an ion’s chemical potential is included in the force acting on an ion which is minus the gradient
of the chemical potential.
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Fig. 4.3: Data and theory for (the natural logarithm of) the mean ion activity coefficient of four 1:1 salts
as function of the cube root of salt concentration. Lines are based on a calculation of the Coulombic
energy between an ion and its most nearby countercharge, for different values of the average ion radius,
⟨𝑎⟩, which for low 𝑐∞ and/or low average ion radius ⟨𝑎⟩ has the analytical solution given by Eq. (4.26).

size is only required in the volumetric excess contribution). For ions with a non-zero size,
Fig. 4.4 shows that with increasing salt concentration the curves first go down and then up
again, and do so much quicker when the ion size is larger.

The effects just discussed, relating to Coulombic interactions and ion volume, have
an impact on many aspects of electrochemical processes, including ion transport and
thermodynamics, such as the calculation of the minimum energy required for water
desalination. The impact of these two non-idealities on this thermodynamic energy for
desalination is discussed on p. 288.

Salting in/salting out. The solubility of a salt (ion pair) depends on the chemical
potential of the ions, and thus depends on the effects discussed above, the ion pair
energy, and volume exclusion. The more that ions of a salt A are ‘stabilized’ (reduced
chemical potential), the more they remain dissolved and do not condense into neutral
aggregates containing the two ions. If now another salt, X, is added, at low concentration
of X the solubility of A increases. This is because extra X reduces the Coulombic energy
of the ions of A, and thus the ions of A are stabilized. This is a well-known effect, called
‘salting in’: adding an additional salt X leads to a higher solubility of a salt A. However,
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Fig. 4.4: Theory for ln 𝛾± in a 1:1 salt solution as function of the cube root of salt concentration
including the analytical solution for ion-ion Coulombic interaction, Eq. (4.26), and a volumetric excess
effect described by the Carnahan-Starling equation of state.

beyond a certain concentration of X, the effect is reversed: with more X the solubility
of A goes down, and this is called ‘salting out’.

One common explanation of salting out is that so few water molecules remain to
hydrate the ions, that a significant competition develops, and clustering into neutral
salt aggregates becomes more favourable. The other route to explain this reduction in
solubility is via an effect of ion volume, because now higher concentrations of salts
(of whichever type) increase the energy of the ions, see Fig. 4.4, and clustering into
aggregates of salt A is enhanced. Thus in the same way that a reduction of the chemical
potential of an ion (i.e., reduction of ln𝛾) leads to salting in, its increase leads to salting
out.





5
The energy of an electrical double layer

In this chapter we discuss three topics in which the energy in an electrical double layer
(EDL) plays a key role.

These three topics are as follows:

• The wetting of titania. Titania is an amphoteric ionizable material and the dependence
of the contact angle of a water droplet on a titania surface depends in an intricate
manner on pH and salt concentration, and requires consideration of electrical and
chemical aspects of surface tension and energy.

• Electrowetting. For a vertically placed electrode that is partially wetted, the energy in
charging the EDL structure is balanced by the G/L interfacial energy and by gravity.
We discuss the maximum rise in a capillary and the topic of contact angle saturation.
We demonstrate how the Laplace equation follows from Young’s equation.

• Energy from the change in EDL structure around electrode wires. We discuss the
structure of the EDL formed at the interface of an electrode and a polyelectrolyte gel,
and show how cyclic stretching of the gel leads to changes in the EDL structure which
can be a source of electrical energy.
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5.1 Wetting of titania: The free energy of an EDL with
ionizable surface charge

In previous chapters we discussed the EDL structure according to the Donnan and the GCS
models, also including the possibility that surface charge responds to local pH, i.e., an
ionizable surface or material, see §2.5 and §3.7. In the present section we use the GCS
model for a single surface that does not have a fixed surface charge, but the charge responds
to local pH (i.e., at the surface). We analyze the surface energy of the EDL, and describe
how this energy impacts the contact angle when a droplet of water is in contact with such an
ionizable surface.

EDL theories for single surfaces are often used to calculate properties such as the zeta-
potential and charge of a surface as function of pH and salt concentration, as we also do in
Ch. 3. However, in this and the next sections we extend the range of applications of EDL
theory and demonstrate the use of GCS theory for several very different purposes. In the
present section we discuss the pH- and salt-dependence of the contact angle of an air bubble
in contact with a flat titania surface submersed in water (Virga et al., 2018). Titania has a
surface charge that is strongly pH-dependent, from positive at low pH to negative at high
pH, i.e., titania is an amphoteric material, and in the example calculation in this section we
show the effect of pH and salt concentration on the EDL structure and how that impacts the
contact angle, see Fig. 5.1 for an illustration.

A balance of forces acting on the G/L/S contact line determines the contact angle. In
this balance, three forces play a role, one force related to the L/G interface, one to the S/L
interface, and one to the S/G interface.

We can define the force by which each surface pulls on the contact line, and this is the
surface tension, 𝜎. The reverse is the surface pressure, 𝑃s, which is the force that pushes on
the contact line. Because in the present section all three surfaces pull on the contact line,
the 𝜎’s are positive and the 𝑃s’s are all negative.

The force balance on the contact line, in the direction along the solid surface, is

𝑃s,LG · cos 𝜃 + 𝑃s,SL = 𝑃s,SG (5.1)

where 𝜃 is the contact angle measured in the liquid phase (water).
For each of the three surfaces, the surface pressure is related to the surface energy 𝛾

according to

𝑃s = −
𝜕 (𝛾𝐴)
𝜕𝐴

(5.2)

where 𝐴 is the area of that surface, and 𝛾 is an energy density, i.e., defined per unit area.
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Fig. 5.1: The contact angle of a water droplet on titania. The charge of titania in contact with water
changes from positive at low pH, to zero at the point of zero charge (PZC), to negative at high pH. A
droplet of water placed on an otherwise dry titania surface would be the most flattened out at very low
and very high pH (low contact angle), when the energetic reward of the surface being in contact with
water is the highest.

Now, when 𝛾 is a constant when we change the area (i.e., when upon stretching the surface
there is no internal variable such as concentration or charge that changes), then 𝑃s = −𝛾,
and we can rewrite Eq. (5.1) to the classical Young’s equation,

𝛾LG · cos 𝜃 = 𝛾SG − 𝛾SL . (5.3)

In Eq. (5.3) there is the water/air surface energy which is 𝛾LG ∼ 73 mN/m. The other two
energy terms however are yet unknown, though we only need to know the difference between
the two, to be able to predict the contact angle.i For the dry titania (S/G interface) 𝛾SG is a
constant, while for the wetted surface, i.e., titania in contact with water, there is a constant
term, 𝛾unch

SL , which is the energy when the surface is uncharged, and when the surface is
charged, there is also a term due to the free energy of EDL formation on this surface.

This term due to the EDL is negative and reduces the surface energy of the S/L interface
(the titania in contact with water), and the more so the higher is the charge of the titania,
thus at very high and very low pH. Reducing 𝛾SL because of EDL formation will make the
contact angle 𝜃 smaller, i.e., more of the titania surface will be wetted, see Eq. (5.3).

iOr vice-versa, data on the contact angle will only provide information on the difference between these two
𝛾-terms.
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For titania in contact with water (the S/L interface), the EDL surface energy can be written
as the sum of a chemical and an electrical contribution, where the chemical contribution
is negative (this actually drives the spontaneous formation of the EDL) while the electrical
energy is always positive. The sum is negative because EDL formation is spontaneous in
this case.

Instead of a distinction between chemical and electrical work, it is easier to write the EDL
energy as a sum of a contribution from the diffuse layer, 𝐹D, and from the surface, 𝐹S (Chan
and Mitchell, 1976). These two 𝐹-contributions are both added to the surface energy of the
S/L interface in the absence of charge, which is 𝛾unch

SL , and in this way these two terms end
up in Young’s equation.

For a single surface, within the GC model for a 1:1 salt, the contribution of the diffuse
layer isii

𝐹D = −16𝑐∞𝑅𝑇𝜆D sinh2 (1/4𝜙D) (5.4)

where 𝜙D is the electrical potential at the start of the diffuse layer (at the Stern plane), i.e.,
at the titania surface.iii

For an ionizable material with only acidic or basic groups, the surface contribution to the
free energy is

𝐹S = 𝑅𝑇 𝑁 ln (1 − 𝛼) (5.5)

where 𝑁 is the concentration of surface groups (in mol/m2), and where the ionization degree,
𝛼, is based on a standard Langmuir model (both for acidic and basic groups, 𝛼 in Eq. (5.5)
is defined as a number between 0 and 1), with the surface charge given by Σ = ± 𝐹 𝛼 𝑁 .

However, materials such as titania and alumina are amphoteric materials, and the charging
degree of each surface group is between -½ and +½. For such a material, the isotherm
describing the charge as function of surface potential is

𝛼 =
1
2
− 1

1 + 10pK−pH · 𝑒−𝜙D
(5.6)

where pH is that in bulk solution (sufficiently far away from the surface) and for an amphoteric
material pK is the pH at which the material is uncharged, which is the point of zero charge,
PZC. For titania, pK=PZC=4.4.

For a material that obeys Eq. (5.6), the expression for 𝐹S is

𝐹S = 1/2 𝑅𝑇 𝑁 ln ((1 + 2𝛼) (1 − 2𝛼)) (5.7)
iiIn this and the next section, pressures and energies are presented with unit N/m or N/m2; in many other parts of

the book the term 𝑅𝑇 is omitted, see p. 507.
iiiWe neglect the Stern layer in this section, and use 𝜙D instead of 𝜙0 in Eq. (5.6).
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Fig. 5.2: The contact angle of the air-water-titania contact line, as function of pH for two values of salt
concentration. The GCS model including surface ionization very well reproduces the experimental
data. (𝑁 =3 nm−2, pK=4.4, 𝛾SG − 𝛾unch

SL =56 mN/m).

which like 𝐹D from Eq. (5.4) is negative. Thus, EDL formation will decrease 𝛾SL and thus
reduce 𝜃 and thus increase the wetted area on the titania.

For each salt concentration and pH, we can solve Eq. (5.6) together with the Gouy-
Chapman equation for an isolated surface, Eq. (3.15), to obtain 𝛼 and 𝜙D. These values
enter the expressions for 𝐹D and 𝐹S and these are combined with the S/L surface energy for
the uncharged surface, 𝛾unch

SL and jointly used as 𝛾SL in Eq. (5.3).

Results of this theory are presented in Fig. 5.2 as function of pH and 𝑐∞ and they show a
very good agreement with data. The model predicts symmetry of the contact angle 𝜃 around
the PZC (at pH = pK = 4.4), and the data corroborate this prediction. The much broader
plateau in contact angle at low salinity (1 mM) compared to the situation at high salinity
(100 mM), as experimentally found, is also very well reproduced in the theory.iv

ivA very different approach to Young’s equation is based on minimization of the total energy in the system, which
is a summation of the surface energies of the three areas, times the respective area. This energy is minimized
with the constraints that the volume of bubble or droplet is constant, with the shape thereof a (truncated)
sphere, and that the solid surface is either wet or dry. This entire minimization (also possible including gravity,
resulting in the shape no longer being spherical), leads exactly to Young’s equation, without having to explicitly
consider forces. This analysis also shows that the L/G interface ideally forms a hemisphere, with 𝜃 ideally at
90o, because at this point the L/G area is at a minimum. Thus, the L/G interface always pulls to bring 𝜃 closer
to 90o. If the solid material is a partially wetted electrode (see next section), this minimization must be done
for a fixed total charge. Then we do not end up with Young’s law based on surface energies, 𝛾.
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5.2 Electrowetting: The EDL surface pressure on an
electrode

The previous section discussed EDL formation on titania, and showed that a more negative
surface energy of the S/L interface leads to a lower contact angle (more wetting of the
surface).

So for titania the surface energy steadily decreases when the titania is increasingly charged,
and this leads to more wetting. But this provides us with a puzzle when we consider the
problem of electrowetting, a very relevant and important technology where a conducting
material (a piece of metal, or metal coating) is increasingly wetted when it is charged. Up
to this point, this is all the same as for the example with titania: the higher the charge, the
more wetting. However, externally charging an electrode leads to an increase in the surface
energy because electrical energy must be invested to charge the EDL. So how can it be that
for electrowetting we have the same outcome as for titania, that the wetted area expands
when we charge the material, even though for electrowetting the surface energy increases,
and for titania it decreases?

5.2.1 The surface pressure in electrowetting according to the GC
model

To analyze this problem, let us consider the surface energy of such an electrode, which
increases when we increase the charge. We know that the energy increases because we need
to invest electrical energy to push charge in the electrode and build the EDL. Just as for
the titania example in the previous section, the EDL energy has contributions of 𝐹D and
𝐹S. The diffuse contribution, 𝐹D, is the same as before, Eq. (5.4), which is negative, but
the surface term is now different. For an electrode which is externally charged, the surface
contribution is

𝐹S = 𝑉T 𝜙D Σ. (5.8)

The summation of these two energy terms given by Eqs. (5.4) and (5.8), is 𝐹EDL, and this
total energy is always positive. The energy 𝐹EDL can also be obtained from the energy of
charging the electrode,

𝐹EDL = 𝐹D + 𝐹S =

∫ Σ

0
𝜙DdΣ (5.9)

which indeed results in the summation of 𝐹D and 𝐹S by Eqs. (5.4) and (5.8). That integration
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also leads to a novel representation of Eq. (5.4), which is

𝐹D = −2𝑉T

(√︁
Σ2 + 8𝜀𝑅𝑇𝑐∞ −

√︁
8𝜀𝑅𝑇𝑐∞

)
(5.10)

which mathematically is the same as Eq. (5.4).
Thus, in this case the energy of Eqs. (5.4) and (5.8) combined is positive and thus EDL

formation increases the surface energy of the S/L interface, and the more so at higher surface
charge. Then, how can it be that charging such an electrode leads to electrowetting, i.e.,
the spreading of liquid over an electrode, when it increases the surface energy, whereas for
titania we had more wetting when the energy of the S/L interface decreased?

The reason is that for electrowetting we cannot use Young’s law, Eq. (5.3), but must return
to the force balance, Eq. (5.1). For the L/G interface, and for the dry part of the electrode,
we can still use as before 𝑃s = −𝛾. For the S/L interface, there is again a contribution from
the uncharged surface, 𝛾unch

SL , and in addition we again have a contribution from the EDL.
But for this contribution it is no longer the case that surface energy and surface pressure
are simply given by 𝑃s = −𝛾. Instead of being of opposite sign, they are even of the same
sign! All of this is because of a difference in the differentiation of the EDL-contribution to
the energy of the S/L interface by Eq. (5.2). For electrowetting, the EDL contribution to
the surface energy, 𝛾EDL, is not constant when we expand the surface. Instead, in such an
experiment one inserts a certain amount of charge in the total electrode, Σtot (per unit total,
dry+wet, area), but the charge can only be stored in the wetted part of the surface.v Thus it
is now the case that when the S/L interface expands, the charge density in the wetted area
decreases, and the surface energy, 𝛾, decreases as well. Thus for electrowetting, for a given
amount of injected charge, this surface energy depends on how much the surface is stretched,
and is not independent of that, which was the key assumption on which Eq. (5.3) is based.

In this case we must use a modification of Eq. (5.3) where we replace the term 𝛾SL by the
constant term 𝛾unch

SL (the contribution to the surface energy of S/L interface due to its contact
with water, which is independent of the charging process), and add to that a term −𝑃EDL

s,SL .
Thus we obtain for the electrowetting problem

𝛾LG · cos 𝜃 = 𝛾SG − 𝛾unch
SL + 𝑃

EDL
s,SL . (5.11)

What is the surface pressure of the S/L interface due to the formation of the EDL, 𝑃EDL
s,SL ?

The surface pressure can be derived from the total EDL free energy density (𝐹EDL
SL = 𝐹D+𝐹S)

by using Eq. (5.2), which can be modified to

𝑃s = Σ2 𝜕 (𝐹/Σ)
𝜕Σ

= Σ
𝜕𝐹

𝜕Σ
− 𝐹 (5.12)

vIn the dry part of the electrode, the S/G interface, a very tiny charge already leads to a large voltage, and thus
hardly any charge will be stored here.
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whereΣ is the surface charge density. Implementing the two contributions to 𝐹EDL
SL according

to Eqs. (5.4) and (5.8), and making the derivation in Eq. (5.12) leads to

𝑃EDL
s,SL = 8𝑐∞𝑅𝑇𝜆D (cosh (1/2𝜙D) − 1) = 16𝑐∞𝑅𝑇𝜆D sinh2 (1/4𝜙D) (5.13)

which, after inserting the GC-equation, Eq. (3.15), we can write as function of charge as

𝑃EDL
s,SL = 2𝑉T

(√︁
Σ2 + 8𝜀𝑅𝑇𝑐∞ −

√︁
8𝜀𝑅𝑇𝑐∞

)
. (5.14)

With this addition, the relevant force balance for electrowetting, Eq. (5.11), will predict that
𝜃 goes down when we increase the electrode charge, as expected.

For a sufficiently low surface charge (or low diffuse layer potential), Eq. (5.14) simplifies
to

𝑃EDL
s,SL =

𝜆D

2𝜀
Σ2 + O

(
Σ4

)
(5.15)

which has a dependency on salt concentration by a power -½, and a quadratic dependency
on charge.

For a high surface charge (or high diffuse layer potential), instead Eq. (5.14) simplifies to
the ‘counterions only’ limit

𝑃EDL
s,SL = 2𝑉TΣ − 8𝑐∞𝑅𝑇𝜆D (5.16)

which is accurate when the the first term on the right side is at least twice as large as the
second term, and thus the criterion to apply Eq. (5.16) is Σ > 8𝑐∞𝐹𝜆D.

5.2.2 Electrowetting and capillary rise

Using electrowetting we can quickly change the shape of a bubble or droplet on an electrode,
which is described by the theory of the previous section. In addition, electrowetting is often
used to induce fluid motion, for instance against gravity inside a vertical capillary. The
question in a study of capillary rise is, how much does a fluid move against gravity inside an
electrode-coated capillary that we charge up?

We can solve this problem of capillary rise by considering the two energy contributions
involved, which are gravity and electrical energy. The energy in the L/G surface, which is
the L/G area × surface energy 𝛾LG, is actually very low for a thin capillary (around 1% of
the other energies in the example we discuss below).vi

viThis is very different in the problem we discuss further on that is about a single vertical plate in contact with
water.



Electrowetting: The EDL surface pressure on an electrode 115

0

1

2

3

4

5

0 20 40 60 80 100

height h (mm)

En
er

gy
 (


J)

electrical
energy

m
ax

im
u

m
 h

ei
gh

t

eq

Fig. 5.3: The energies involved in electrowetting, which are electrical energy and gravity, as function
of capillary rise (height h). Electrical energy as function of total charge, Σ∗. The maximum fluid
rise is ℎmax = 100 mm, and Σ∗ is based on ℎ∗ = ℎmax (𝜌L = 1 g/mL, g = 9.81 m/s2, 𝑎 = 147 𝜇m,
𝛾LG = 73 mN/m, 𝑐∞ = 10 mM).

The electric energy of charging is given by 𝐹D + 𝐹S of Eqs. (5.8) and (5.10), times the
total wetted area, which is height ℎ times 2𝜋𝑎, where 𝑎 is the capillary radius.vii The
gravitational energy of the fluid that is lifted against gravity is 1/2𝜌Lgℎ2 times 𝜋𝑎2 which
is the cross-sectional area.viii This total energy, electrical plus gravitational, is minimized
by varying ℎ for each value of a total charge, Σ∗. This Σ∗ is a charge density (in C/m2) for
a certain reference area (2𝜋 𝑎 ℎ∗). Thus we make use of Σ · ℎ = Σ∗ · ℎ∗.ix For this given
total charge, when the wetted area expands, the charge per unit wetted area decreases, and
this reduces the electrical energy. Thus, as function of height ℎ, the gravitational energy
increases quadratically, while the electrical energy decreases, see Fig. 5.3. The summation
of these two terms has a minimum at ℎeq, which is the height up to which the capillary will
be filled with liquid.

The equilibrium height, ℎeq, can also be found from a force balance acting on the L/G

viiHeight ℎ is defined relative to a starting height ℎ0 when the capillary is uncharged.
viiiWe use the gravitational constant g as a positive number in this section.
ixWe neglect a technical complication that also for zero charge part of the electrode-coated capillary is below the

fluid level, i.e., already wetted. Charge will also go to this region, but the charging of the EDL here will not
lead to fluid rise.
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interface. The first term relates to gravity and is minus the derivative of the gravitational
energy with height, which gives a downward force equal to 𝜌Lgℎ × 𝜋𝑎2 by which the liquid
column pulls the L/G interface downward. This gravitational force is balanced by the EDL
surface pressure given by Eq. (5.13) times the circumference, thus 𝑃EDL

s,SL × 2𝜋𝑎.x This
balance of forces leads to the equilibrium height in the capillary given by

ℎeq =
2 𝑃EDL

s,SL

𝑎𝜌Lg
(5.17)

in which we can insert the various expression for the EDL surface pressure, 𝑃EDL
s,SL , given by

Eqs. (5.13)-(5.16). The general solution is

ℎeq = 4𝑉T (𝜌Lg𝑎)−1
(√︁

Σ2 + 8𝜀𝑅𝑇𝑐∞ −
√︁

8𝜀𝑅𝑇𝑐∞
)

(5.18)

which shows that the capillary rise increases with charge and increases when the diameter
of the capillary becomes smaller. Eq. (5.18) exactly matches the minimum, or equilibrium,
depicted in Fig. 5.3, which was based on an energy analysis. For low charge, we can do a
Taylor expansion of Eq. (5.18) around Σ = 0, resulting in

ℎeq = 𝜆D · (𝜌Lg𝑎)−1 · 𝜀−1 · Σ2 + O
(
Σ4

)
(5.19)

which shows that in this limit height depends quadratically on charge Σ, and depends with a
-½ power on salt concentration.

In the high-charge limit, we can insert Eq. (5.16) in Eq. (5.17), and obtain for the capillary
rise

ℎeq − ℎref = (𝑎𝜌Lg)−1 · 4𝑉T · Σ (5.20)

which predicts that the height depends linearly on surface charge, without any dependence
on any EDL property.xi This is quite remarkable. If correct, then one expects also the same
equation for height versus charge when instead of evaluating a GC model for the diffuse layer,
we use a more complicated EDL model, or a model only dependent on a constant dielectric,
or Stern, capacitance. In that case capillary rise is independent of the Stern capacitance but
only depends on the charge injected into the electrode, as described by Eq. (5.20).xii

xNon-electrostatic contributions to the surface energy are not part of this balance because ℎ is defined relative to
the height of the column when the capillary wall is uncharged.

xiOnly the constant term ℎref (which is small compared to the right side at high charge) has a ½ power dependency
on salt concentration.

xiiOf course, the EDL voltage that is required to store a certain charge, depends on properties of the EDL and on
the properties of the dielectric coating.
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5.2.3 Derivation of the Laplace equation from Young’s equation

Can we continue charging the inner surface of the capillary, and thereby have the fluid move
up more and more in the capillary? Interestingly, no, we cannot. There is a natural limit,
and that follows from the next analysis.

This analysis is based on a combination of the modified Young’s equation for the contact
angle in case of electrowetting, Eq. (5.11), with the balance of forces given by Eq. (5.17),
which results inxiii

ℎeq =
2

𝑎𝜌Lg
· 𝛾LG · cos 𝜃 (5.21)

which shows the dependence of height on the capillary radius a, and on contact angle, 𝜃,
with height increasing when a goes down or 𝜃 goes down. Now, Eq. (5.21) shows that there
is a maximum in height arrived at when 𝜃 is zero, and for this height we obtain

ℎeq,max =
2

𝑎𝜌Lg
· 𝛾LG . (5.22)

The maximum height for the calculation settings of Fig. 5.3 was ℎmax = 100 mm, for a
capillary radius of 𝑎∼150 𝜇m. This is already a fairly thin capillary and this analysis shows
that more than 100 mm capillary rise is not possible for an electrode-coated capillary of this
inner diameter filled with water.xiv

We can also derive another result from this analysis. We first note that for thin enough
capillaries, the shape of the L/G interface is spherical, i.e., the radius of curvature 𝑅 is a
constant, independent of radial position. In that case we can relate 𝑅 to the contact angle
𝜃 and to the capillary radius 𝑎, according to 𝑎 = 𝑅 cos 𝜃, which we can implement in
Eq. (5.21), resulting in

𝜌Lgℎeq = 𝛾LG
2
𝑅
. (5.23)

Now, the left side of this equation is also equal to the increase in pressure when we go
vertically down the capillary, starting at a position in the liquid near the L/G interface down
to the height of the bath in which the capillary is positioned. This latter pressure equals the
external gas phase pressure.xv Thus, the left side of Eq. (5.23) is the gas pressure minus the
pressure in the liquid just below the L/G interface (i.e., the latter is lower than the gas phase
xiiiWe assume 𝛾SG − 𝛾

unch
SL = 0 (this term only leads to a constant change in height).

xivOf course microporous materials such as membranes, gels, or electrodes, can have much smaller pores (down to
the nm-range), and thus the wetting of such materials occurs throughout the sample against gravity to a much
larger height. Thus water transport against gravity will make use of this microporous phase, not through larger
pores if they exist. These will be dry.

xvAll of this is correct irrespective of details of the S/L interaction on the capillary wall (such as EDL charging),
and of the L/G interface.
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pressure). For this pressure difference across the curved G/L interface, Δ𝑃, we therefore
arrive at

Δ𝑃 = 𝛾LG
2
𝑅

(5.24)

and this is the Laplace equation for a thin capillary! Thus, we derived the Laplace equation
(for a thin capillary) based on two inputs: 1. A force balance of the G/L/S contact line on
the capillary wall; and 2. An overall force balance relating gravity with the surface pressure
of the wetted capillary wall. Thus, we derived the Laplace equation –relating curvature and
pressure difference across the L/G interface– by combining two previously discussed force
balances.

Derivation of Laplace equation. Let us again derive the Laplace equation based on a vertical
capillary, but starting with an energy analysis. We bring a vertical capillary in contact with a
volume of water. The capillary just touches the upper surface of the water, and this position we
assign as height ℎ=0. The water will rise in the capillary until an equilibrium height h is reached.
The energy has a gravity contribution, ½𝜌Lgℎ2 × 𝜋𝑎2, and a contribution from the energy of the
wetted surface minus that of the dry surface, (𝛾SL − 𝛾SG) × 2𝜋𝑎 ℎ. Adding up and calculating
at which h this total energy is at a minimum, leads to 𝜌Lgℎ 𝑎 + 2 (𝛾SL − 𝛾SG) = 0. This last
equation is a ‘column-based’ force balance, and does not include the G/L interface. It is not a
force balance on the G/L/S contact line such as Eq. (5.1) which does include the G/L interface.
We can leave out the G/L interface in this balance because the capillary is thin and thus this area
small, and thus the energy related to the G/L interface is small too. We implement Eq. (5.3) and
the geometrical relationship for a (hemi-)sphere, 𝑎 = 𝑅 cos 𝜃, leading to 𝜌Lgℎ = 2𝛾LG/𝑅. The
column height h times 𝜌Lg equals the pressure in the gasphase minus that just below the curved
G/L meniscus, Δ𝑃, and thus we again arrive at the Laplace equation.

A very different derivation of the Laplace equation is based on creating a bubble in a liquid.
If we have a bubble and increase the radius R by dR, we must push against the surface energy.
The energy required to enlarge the bubble, to push in the extra volume, is Δ𝑃 · 4𝜋𝑅2 d𝑅, and
the energy increase of the surface is 𝛾GL · 8𝜋𝑅 d𝑅. [The increase in area when the radius of a
bubble increases by dR is 4𝜋 (𝑅 + d𝑅)2 − 4𝜋𝑅2 which for small dR becomes 8𝜋 𝑅 d𝑅.] Each of
these terms is a force, pushing outward and inward on the bubble surface, and the equilibrium
condition is when these forces add up to zero. Doing so, we again arrive at the Laplace equation,
Eq. (5.24), now derived on the basis of forming a bubble in a liquid. Thus, with 𝛾SL a positive
number, the pressure Δ𝑃, measured as that in the gas phase minus in the liquid, is positive for a
gas bubble or in any other situation where the G/L surface ‘bends towards the gas phase’, ‘tries
to enclose it’. Then Δ𝑃 is higher than in the liquid around it, the more so the smaller the bubble,
and the more so the higher the surface energy of the G/L interface.

The same result also follows if we minimize the energy of a bubble that is compressible, placed
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inside a bath of liquid, water for instance. We start with a small bubble at high pressure which we
let expand to end at a size where the pressure inside (which is larger than in the bath) is such that
we reach mechanical equilibrium. So the expansion (increase of volume V) leads to a decrease
of pressure energy. [If we would compress it against an inside pressure higher than outside, then
the energy would go up, so expanding a volume that has higher pressure than outside, means
the energy in the object goes down.] Thus counted from the initial volume, the pressure energy
is 𝐸p = −

∫
Δ𝑃 d𝑉 with pressure Δ𝑃 that inside minus outside (outside must be a large system

at constant pressure). The surface energy is 𝐸s =
∫
𝛾GLd𝐴, with A area, and this creation of

(more) surface means an energy increase. So what must be minimized is 𝐸p + 𝐸s. Making use
of d𝑉 = 4𝜋𝑅2d𝑅 and d𝐴 = 8𝜋𝑅d𝑅 we indeed end up with the Laplace equation Δ𝑃 = 2𝛾GL/𝑅,
and thus the pressure inside the bubble is higher than outside. The same result should be arrived
at for a water droplet in air, but then the derivation of an expanding droplet is less intuitive.

Charging beyond the maximum. One final question is, what happens in a charged capillary
when we charge the surface beyond the maximum value? [In the example of Fig. 5.3, this
maximum was at a charge density of Σ=Σ∗∼1.43 C/m2 (EDL voltage 283 mV) when we reach
a height of ℎeq,max=100 mm.]

What then happens is that the surface continues to be wetted, but only with a very thin layer
forming, just enough for an EDL to form. This layer therefore can be as thin as just a few nm.
More and more of the capillary will be coated with a nanoscopic thin layer of fluid, and charge
is stored in this EDL. The system ‘pays’ in electric energy that must be invested in forming this
EDL, as well as in forming the new L/G interface, while S/G interface is replaced by S/L interface.
There can also be a ‘stabilizing’ effect of a repulsive Van der Waals force (repulsive between the
dissimilar materials air and metal, interacting across the water film).

For the assumptions made above, charge and potential follow from a force balance for the
expansion of the surface. In this balance capillary radius 𝑎 and height ℎ do not enter. This force
balance is 𝑃EDL

s,SL = 𝛾LG, with 𝑃EDL
s,SL calculated for instance by Eq. (5.14). Interestingly, we know

the answer must be the charge and potential that we have when we reach the maximum capillary
height, ℎ∗. And indeed in our previous calculation we again find a value for the EDL voltage of
283 mV as a threshold value beyond which the nanoscopic layer will form. Or in other words,
this nanoscopic film starts to form when (the electrostatic contribution to) the surface pressure is
about to exceed the air-water surface energy of 𝛾SL=73 mN/m.

Interestingly, if we run the electrowetting experiment by making steps in voltage, and we now
arrive at the EDL threshold voltage identified above (the value required for the nanoscopic layer
to start being formed, when the capillary has reached the maximum height, where 𝜃 becomes
zero), then a further increase in EDL voltage will immediately lead to the rapid formation of the
nanoscopic layer until some system limit is reached (e.g., the nanoscopic layer reaches the top of
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the capillary). This may look like an electric breakdown or Faradaic loss current, because now
suddenly a small increase in voltage leads to a large current spike. But it is the current that goes
into charging the nanoscopic surface layer that is rapidly growing beyond the L/G meniscus.

Contact angle saturation. An outstanding problem in the field of electrowetting is contact
angle saturation, which is the phenomenon that a droplet deposited on an (often polymer-coated)
electrode surface will not expand further when a contact angle of around 25o is reached (i.e., the
contact angle will not go down further). It is as if a further expansion of the G/L interface just
doesn’t pay off anymore, and to accommodate the extra charge, formation of a thin layer on the
electrode outside the droplet is preferred. It would be interesting to find out if the electrode voltage
–which is measured against a (pseudo-reference) electrode inserted in the droplet– at the point
that the lowest contact angle is reached, is the same voltage as measured for the same liquid and
same electrode in the geometry of a vertical capillary for the condition that the maximum height
ℎ∗ is reached. If these voltages coincide, a nanoscopic film can also be expected to form for a
droplet on a horizontal electrode when charge continues to be injected after this threshold voltage
is reached. In combination with a repulsive Van der Waals force acting across the nanoscopic
layer –which stabilizes the layer, i.e., lowers the energy of formation– this may then explain why
the macroscopic G/L interface does not further expand, and that may explain the phenomenon of
contact angle saturation.

5.2.4 Surface tension effects near a charged vertical wall

The following calculation is of interest to check the theory of electrowetting put forward.
Namely, we consider a single vertical electrode placed in a salt solution (electrolyte), without
any other surface nearby. At zero charge we assume we have a zero contact angle. The shape
of the L/G interface can be solved from the Young-Laplace equation for a two dimensional
planar geometry: 𝑧 = 𝜆2 · 𝑧′′/(1 + 𝑧′)3/2 where the capillary length is 𝜆 =

√︁
𝛾LG/𝜌Lg and

where 𝑧′ and 𝑧′′ are the first and second derivative of the 𝑧-coordinate of the L/G interface
with respect to the 𝑥-coordinate (𝑧 vertical, 𝑥 horizontal). For a single surface, the analytical
solution is 𝑋 = cosh−1 (2/𝑍) − cosh−1 (2/𝐻) +

√
4 − 𝐻2 −

√
4 − 𝑍2, where 𝑋 , 𝑍 and 𝐻 are

dimensionless coordinates, each of which can be multiplied by 𝜆 to obtain the dimensional
coordinates, 𝑥, 𝑧 and ℎ. Height ℎ is the height of the meniscus at the solid surface (at the
electrode, where 𝑧=0), and for a vertical electrode is given by

ℎ = 𝜆 ·
√︁

2 (1 − sin 𝜃) . (5.25)
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Thus the maximum height, reached when 𝜃=0, is ℎ=
√

2𝜆. Water (in contact with air) has a
capillary length of 𝜆=2.7 mm, and thus the maximum height of the meniscus is ∼3.9 mm.
[If the vertical wall is at an angle 𝛼, the above remains valid, with 𝛼 added to 𝜃 in Eq. (5.25).
When the wall is tilted towards the liquid, the height of the meniscus goes up.]

We make a calculation of the energies involved in charging an electrode that is placed
vertically in a salt solution, with the meniscus at a height of 3 mm. A height of ℎ = 3 mm
implies a contact angle of 23.3o, a surface pressure of the wetted electrode of 𝑃s=67.1 N/m,
a surface potential of 𝜙D =10.83, a surface charge of Σ=1.317 C/m2, and a corresponding
electrical energy of 0.30 J/m2 per unit wetted electrode area. By multiplying with the height
of 3 mm, we obtain the electrical energy per unit length in the direction along the contact
line of 898.2 𝜇J/m. The gravity energy can also be calculated numerically (in lifting up the
fluid from the level of the bulk liquid) and is 45.2 𝜇J/m, while the surface energy in the
extra created L/G interface is 65.6 𝜇J/m. (This number is the product of 𝛾LG and the extra
created line length of 0.899 mm; this is the extra ‘length’ of L/G surface as measured in the
direction to the electrode.)

In this example of the shape of the L/G surface near a single vertical wall, we find that
gravity and surface energy are about equal in magnitude, while the energy of charging the
electrode is about 9× larger than the other two energy terms together. Interestingly, the ratio
of these numbers is very different here compared to the case of capillary rise, where surface
energy was not more than 1% of 1 𝜇J, thus negligible compared to the other two energies,
see Fig. 5.3, while electrical energy was larger than gravity by a factor of 6–8 (while in the
new example the ratio is ∼20).

Now, for the example of the single vertical wall, there seems to be an error in all energy
numbers. Because how can it be that the electrical energy of 898 𝜇J/m is not the same as
the gravitational plus surface energy? Aren’t we investing electrical energy with the aim to
raise the liquid against gravity, and expand the surface? But the latter two terms are much
lower together, almost a factor of 9. Where is the factor 9 error?

The answer is, there is no error. Instead, we invest electrical energy and that is stored in
three ways: 1. charging the surface; 2. lifting up the fluid against gravity; and 3. creating
the extra L/G surface. The electrical energy that is stored in the electrode (EDL), is the
number of 898 𝜇J/m above.

The electrical energy we invest must be equal to the summation of these three energies,
which is 1009 𝜇J/m. Let us see if we can calculate that number via an independent route.
In a first method, for each height (from zero to the 3 mm) we determine the contact angle
via Eq. (5.25), thus the surface pressure via Eq. (5.11), and integrate, i.e., we push against
the surface pressure along the path to push the contact line up to its final position. Thus we
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obtain for the invested energy

𝐸 inv =

∫ ℎ

0
𝑃s dℎ = 𝛾LG

∫ ℎ

0
cos 𝜃 dℎ = 𝛾LG · 𝜆−2 ·

∫ ℎ

0

√︁
𝜆2 ℎ2 − 1/4 ℎ4 dℎ (5.26)

which results in a number of 𝐸 inv=110.8 𝜇J/m, but this is not the number of 1009 𝜇J/m that
we are after! Actually it equals the sum of the gravitational and L/G surface contributions.
Thus, integration of the surface pressure over height, only gives us the energy in the L/G
interface, plus the gravitational energy. In hindsight it makes sense that this last calculation
gave an energy that was too low, because when we push charge in an electrode, we are
not pushing against the contact line, but we push against the potential of the EDL already
formed. Thus we have to make a calculation where we charge an electrode and calculate
the energy that is invested by integrating from one charging state to another. In a standard
calculation, the electrode has a fixed surface area and thus we integrate from one charge
density to another, see Eq. (5.9). However, in the present case, while we charge the wetted
part of the electrode expands, and this increase in area must be part of the integration process,
because we integrate over charge (C), not charge density (C/m2). This becomes

𝐸 inv = 𝑉T

∫ 𝑆

0
𝜙Dd𝑆 = 𝑉T

∫ 𝑆

0
𝜙D (ℎdΣ + Σdℎ) (5.27)

where 𝑆 is a charge with unit C/m, and Σ as before the charge density, Σ = 𝑆/ℎ. For both
terms in the integration, we must know how Σ and 𝜙D change with height, which we obtain
in a calculation where we combine Eqs. (3.15), (5.11), (5.13), and (5.25). In a numerical
calculation, this entire procedure leads to an energy that is invested of ... 1009 𝜇J/m, exactly
the same as the number for total energy arrived at earlier!

It is interesting that this last integration results in the total energy that is invested in the
process, although this calculation seems to be about electrostatics only (EDL formation),
and nowhere are the gravity and L/G surface energy involved. So how can this calculation
also provide us the gravity energy and the energy of the L/G interface? The answer is that
‘information’ of these two energies is included in the dependency of charge on meniscus
height, i.e., on the ‘shape’ of the Σ(ℎ)-function. This relationship is part of the integration
to obtain 𝐸 inv. For another surface tension or surface shape, this function is different, and
thus the outcome of the integration would be different. Thus, the electric work as calculated
by Eq. (5.27) was in effect also pushing against the contact line.

In conclusion, we have consistency between all equations that we used in this problem of
single electrode electrowetting, and consistency with the same theory applied earlier on for
the electrowetting of a capillary.
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5.2.5 Influence of Stern layer on contact angle and electrowetting

The above two sections considered several elements of an EDL model, such as the diffuse
part of the EDL, described by the Gouy-Chapman equation, the ionization of titania, an
amphoteric material, and the related chemical energy of surface (de-)protonation. The next
extension of these models would be to include a Stern layer (dielectric layer). As explained
before, the Stern layer is a layer of constant capacitance, that can be considered to be located
between the diffuse layer and the underlying 0-plane or electrode. This 0-plane is where
in the case of titania we assume the surface groups (titania charged groups) to reside. The
Stern layer changes the effective pH at the 0-plane, thereby reducing 𝛼 (pushing it closer
to zero), and it adds a term to the surface energy. Also in the case of electrowetting the
Stern layer plays a role in EDL surface energy, surface pressure and the resulting capillary
rise. Actually, the Lippmann equation of capillary rise assumes only a constant (Stern,
Helmholtz) capacitance, and a diffuse layer is not considered. Despite their relevance, we
must nevertheless postpone discussion of these Stern layer effects to a later time.

Electrocapillary curves. A problem related to the topics in this section, is the phenomenon
of electrocapillarity, where the fluid inside a capillary is a liquid metal, mercury, which can be
externally electrified. The mercury column at its lower end is in contact with electrolyte. The
EDL structure at this electrolyte/mercury interface can now be studied.

Compared to the electrowetting case discussed above, in this device electronic charge is not
injected into the conductive wall of the capillary, but it is injected into the fluid itself, which
is a quite different experiment. This electronic charge will move to the mercury/electrolyte
interface. The required gas phase pressure applied to the top of the column to keep it in place
is a measure of the surface tension of the mercury/electrolyte interface, and data of this surface
tension versus voltage are plotted as electrocapillary curves, which have a maximum at a certain
voltage (when the interface is uncharged), and they drop off, roughly symmetrically, at lower
and higher voltages. [The asymmetry is because when mercury is positively charged it attracts
anions as counterions, but when negatively charged cations are the counterions, and these ions
may have different properties such as hydrated ion size and shape.] From these curves (which
depend moderately on salt concentration) by analysing the slope (first derivative) we obtain the
charge for each voltage, and taking a second derivative results in the capacitance of the EDL as
function of charge.

Detailed discussion of this methodology in this book must wait for a later moment.
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5.3 The harvesting of electric energy from EDL changes
due to the motion of electrical wires

5.3.1 Introduction

We have previously discussed the Donnan model which describes the distribution of ions
between free solution and a medium with fixed charges that are volumetrically distributed,
such as a Donnan model for an electrode micropore, or for the interface between solution
and a charged (ion exchange) membrane, see Ch. 2. We also discussed the Gouy-Chapman
model for the ion distribution in free electrolyte next to a planar electrode, see Ch. 3.

Next we extend and combine these two models, to describe the EDL structure when an
electrode is coated with a charged medium (such as a gel or charged membrane) permeable
for ions, see Fig. 5.4, as described in Virga et al. (2017).

The study of the EDL at the interface between an electrode and a charged gel or membrane
is of importance in various application, for example for membrane electrodes, and for proton-
conducting fuel cell membranes. The example we will discuss shows that this EDL structure
can be used to harvest energy from motion. The electrode we consider in this section is
capacitive, and there are no reactions at the electrode. The coupling of EDL structure with
electrode reactions is discussed in Ch. 14.

The charged polymer (for instance a polyelectrolyte gel) contains fixed charges, of a
positive or negative sign, and there are free counterions as well as coions inside this network.
Such (polyelectrolyte) gels are able to absorb a significant amount of water into its network
structure (up to ∼ 2000 times the polymer weight). A gel is characterized by a molar
concentration of fixed charges, 𝑋 , similar to the approach in Chs. 2 and 12.

When a gel is coated on an electrode, then both the electrode charge and the gel fixed
charge density are responsible for the distribution of ions in the EDL, hence for the profile
of the potential, 𝜙, see Fig 5.4. As depicted here, it is possible that the potential, 𝜙 (relative
to that in bulk solution outside the gel), flips sign at some position near the electrode. For a
positively charged gel, we can then have an excess of cations at the electrode, while in the
gel bulk phase we mainly have free anions.

5.3.2 Theory

In this section, we explain the EDL theory of an electrode coated with a charged gel permeable
to water and ions. In a later section we show how this EDL theory can be included in a
model for an electrochemical cell, to describe harvesting of energy from motion.
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Fig. 5.4: Electrode coated with a positively charged gel layer permeable to electrolyte. The electrode
charge and the fixed charges of the gel determine the distribution of free ions in the gel and in the EDL
near the electrode, and thus the potential profile, 𝜙, as it changes from the value at the electrode to a
value in the gel bulk phase. In this case it is possible that while the gel bulk has an excess of anions,
right near the surface there is an excess of cations.
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We start with a derivation describing the equilibrium EDL profile for the potential and
ion concentrations near an electrode covered with a charged gel. Since the EDL is thin we
can use the one-dimensional planar form of the Poisson equation, Eq. (3.1) (whatever is the
shape of the electrode), and write for the charge density 𝜌

𝜌 = 𝐹
(
𝑐∞

(
𝑒−𝜙 − 𝑒𝜙

)
+ 𝜔𝑋

)
(5.28)

where 𝜔 is the sign of the fixed charges in the gel (𝜔 = +1 for a positively charged gel
and 𝜔 =−1 for negative charge). Eq. (5.28) is obtained when the gel is in contact with an
electrolyte containing a monovalent salt, with the bulk salt concentration outside the gel
given by 𝑐∞. Furthermore, Eq. (5.28) assumes that the entire gel phase is available for ions
and the gel structure does not exclude volume to the ions. Thus, volume effects of ions and
of the polymer network are neglected.

Combining Eqs. (3.1) and (5.28), we obtain a modified Poisson-Boltzmann equationxvi

𝜕2𝜙

𝜕𝑥2 = 𝜅2 (sinh 𝜙 − 𝐴) (5.29)

where 𝐴 = 𝜔𝑋/(2𝑐∞) is a dimensionless gel charge density. Multiplying each side of
Eq. (5.29) by 𝜕𝜙

𝜕𝑥
, we obtain

1
2
𝜕

𝜕𝑥

(
𝜕𝜙

𝜕𝑥

)2
= 𝜅2

((
𝜕 cosh 𝜙
𝜕𝑥

)
− 𝐴𝜕𝜙

𝜕𝑥

)
(5.30)

which, making use of boundary conditions 𝜕𝜙

𝜕𝑥
= 0 and 𝜙 = 𝜙D for 𝑥 → +∞, and 𝜙 = 𝜙0 for

𝑥 = 0, can be integrated to the modified Gouy-Chapman equation

Σ2 = 4𝜀𝑅𝑇𝑐∞ (cosh (𝜙0) − cosh (𝜙D) − 𝐴 (𝜙0 − 𝜙D)) (5.31)

where 𝜙D = sinh 𝐴 is the Donnan potential deep within the gel layer (very right in Fig. 5.4),
which is defined relative to bulk electrolyte outside the gel. To derive Eq. (5.31), we also
made use of Gauss’ law at the electrode surface

Σ = −𝜀 𝜕𝑉
𝜕𝑥

����
0

(5.32)

where Σ is the electrode charge in C/m2. For 𝑋 = 0, Eq. (5.31) simplifies to the classical
Gouy-Chapman equation for a charged surface in contact with an electrolyte, see Eq. (3.15).
Fig. 5.5 shows the effect of the dimensionless gel charge, 𝐴, and electrode charge, 𝐵, on the
EDL voltage, 𝜙0, where 𝐴=0 represents the Gouy-Chapman solution.
xviSimilar to Eq. (2.11) in Shockley (1949)1.
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√
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√
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√
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5.3.3 Electrochemical harvesting of energy from motion

One possible application of an EDL at the interface between a metal and a charged polymer
phase such as a polyelectrolyte gel, is the generation of motion of thin flexible electrodes,
while in the present example we consider the reverse case: the harvesting of energy from
motion, by coiled electrodes embedded in a gel.

If electrode coils embedded in a polyelectrolyte gel are stretched, this will lead to a change
in the charge density of the gel, 𝑋 , right next to the electrode surface.xvii This change in
𝑋 changes the EDL structure, and thus the electrode potential. Two such electrodes placed
in an electrochemical cell (with oppositely charged gel materials used for each electrode)
generate electrical current and energy from repeated stretching and relaxation of the entire
assembly, see Fig. 5.6.

We evaluate the system of two gel-coated coiled electrodes, one with a gel with positive
fixed charge and one with negative fixed charge, which as a whole are dipped in a salt
solution of given concentration 𝑐∞. We analyze how energy is produced from stretching
and relaxation of the coils. An external load, 𝑅EXT, is placed in the electrical circuit, see
Fig. 5.6b, such as a battery or other device, to harvest the electrical energy that is generated.
Furthermore, a capacitive element (‘external capacitor’, or EC) is placed in the circuit.

xviiFor details on this statement, see Virga et al. (2017).
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Fig. 5.6: a) Schematic picture of an electrochemical cell consisting of two coiled electrodes coated
with a positively and negatively charged polyelectrolyte gel. b) Electrical circuit diagram of the same
system, including an ionic resistance, 𝑅INT, a load to harvest energy, 𝑅EXT, and an external capacitor,
𝑉EC.

A dynamic model of this electrochemical cell includes a description of how the gel charge
𝑋 changes in time, and thus via Eq. (5.31) how the EDL structure changes. This relation is
supplemented by Kirchhoff’s voltage law

𝑉cell +𝑉EC + 2𝑉T |𝜙0 | +𝑉 INT = 0 (5.33)

where we assume perfect symmetry of the two electrodes (with only the gel charge of each
electrode of opposite sign), while 𝑉cell, 𝑉EC and 𝑉 INT are the cell voltage (which is the
voltage across the load; the load is represented in Fig. 5.6 by 𝑅EXT), the voltage across the
external capacitor, and a voltage drop because of a resistance for ion transport across the two
gel layers. Furthermore, we relate the charge in one of the electrodesto current according to

𝜕Σ

𝜕𝑡
= ±𝐼 (5.34)

where 𝐼 is the current density in A/m2. Combining the above equations, and assuming
Ohmic behaviour for the external load and for the ionic transport in the gel, we can calculate
the electrical power as function of time according to

𝑃d = 𝑉cell · 𝐼 . (5.35)

Details of this calculation and results can be found in Virga et al. (2017).
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6
The interaction forces between colloidal particles

The study of the interaction between colloidal particles is of importance in many
environmental and industrial processes, and their understanding requires physical theories
of repulsion and attraction between the particles. An important part is the electrostatic
force due to the structure of the EDL on each particle and the theory includes a description
of surface charge and ionization. Combined with the Van der Waals force that also acts
between particles, these two forces together describe the forces and pressures between
colloidal surfaces and particles. This balance of forces determines the conditions of stability
of a colloidal solution.



132 The interaction forces between colloidal particles

6.1 Introduction

The interaction forces between charged surfaces and particles is of key relevance for many
environmental and industrial systems and processes. These interactions can be between
particles on the one hand, and flat or porous materials on the other, as in studies of particle
deposition on surfaces, and in studies of particle capture in porous media. In this case the
two materials/particles that are interacting across water will be different in their surface
structure or chemistry (and thus have a different charge while in contact with the same bulk
solution). This topic is called hetero-interaction and refers to interaction between dissimilar
materials or surfaces.

On the other hand, homo-interaction refers to the interaction between materials or surfaces
that have the same structure and chemistry (i.e., are similar), and therefore also have the same
charge density on their surfaces. When they have different shapes and sizes, the interaction
is still classified as homo-interaction. Though hetero-interaction may be more relevant in
practice, homo-interaction is a more common topic of scientific study, and already presents
many challenges.

Indeed, when particles that are the same are brought in contact, the situation can already
be breathtakingly complex, with an an attraction changing at some separation to repulsion,
again attraction, and again repulsion. This situation is illustrated in Fig. 6.2b for a surface
charge density of Σ = 15 mC/m2 (not shown is the region of weak attraction for distances
beyond 10 nm). This example illustrates the complexity of the problem of the interaction of
electrostatics, surface ionization, and Van der Waals forces, even when the two surfaces are
the same.

It is interesting to notice how these curves for the interaction force versus distance depend
on pH and salt concentration, 𝑐∞. As we will explain, it is possible that at a certain pH
or 𝑐∞ two particles are repulsive (the particles are dispersed), but at a different pH or salt
concentration, an attraction develops between them (the particles will now ‘coagulate’), but
the attraction disappears again when the original pH/salt concentration is reinstituted. This
behaviour indicates that an attractive ‘minimum’ can be reversed upon changing solution
conditions, i.e., in this case coagulation is reversible. This theoretical prediction is also
observed experimentally (‘ repeptization’).

An interesting problem is to what extent dynamic effects must be incorporated in this
theory. Particles that approach a surface, or approach one another, do so with a certain
(initial) velocity, and the redistribution of ions in the gap between the particles may not be
fast enough for equilibrium to remain established during the entire period of encounter, and
likewise the surface charge may not adjust fast enough for there to be equilibrium at each
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separation. Thus, during particle collusion the surface charge may remain constant even
when according to chemical equilibrium the charge would change.i

This advanced topic of the dynamics of particle interaction will not be discussed here,
and we will limit the explanation to the forces between particles, with chemical equilibrium
always established. We first explain the interaction of equally charged surfaces, where we
first consider surfaces with a fixed, or constant, charge (CC condition), and then analyze
the interaction between ionizable surfaces, i.e., surfaces of which the charge changes when
particles come closer (charge regulation, CR). After that we address hetero-interaction, i.e.,
the interaction between different materials, both for CC and CR boundary conditions.

To calculate the electrostatic contribution to the attractive or repulsive forces between
colloidal particles, we must solve the Poisson-Boltzmann (PB) equation in the entire space
between and around the two charged surfaces. But thanks to the Derjaguin approximation,
mathematically we only have to solve a 1D planar geometry to describe the full problem of
the interaction between real 3D particles. However, even for a 1:1 salt solution there are no
good analytical solutions to the PB equation that work at all separations and charge densities,
let alone for asymmetric salts or when ion volume effects are included.

In this chapter we first discuss three approximations to the (1D planar) PB equation:
the Gregory approach valid at low potentials, the more general Ettelaie-Buscall approach,
and the Donnan approach for surfaces that are very near. In Fig. 6.3 we also show results
obtained from numerical solution of the full PB-equation. To analyze colloidal stability, we
combine the electrostatic contribution to the interaction force, with the Van der Waals force
(attractive for homo-interaction), to describe the total colloidal interaction force. We first
discuss the force between flat surfaces (called disjoining pressure), and then move to curved
surfaces (particles) and include the Van der Waals force. For flat surfaces we also discuss
hetero-interaction.

It was F.G. Donnan who before 1911 was the first to bring up the idea that the stability
of colloids is likely due to a repulsive electrostatic pressure because of an increase in ion
concentration in the gap between two particles, and that work must be done to bring particles
into close contact against this electrical force (reported in R. Ellis, 1912). The complete

iIn AFM studies of the homo-interaction of two charged materials, an intriguing phenomenon is the ‘snap-off’
force: two surfaces that are repulsive all the way until they are pushed into contact, when they are subsequently
pulled apart, they are found to adhere. One explanation is that during approach, the particle charge remains
non-zero, leading to repulsion, but during contact, the charge decreases to zero or close to zero in the region of
contact (a consequence of the establishment of chemical equilibrium and EDL overlap for ionizable surfaces,
see §6.3). When the two particles are now pulled apart, the electrostatic repulsion drops away, and only the
attractive Van der Waals force remains, so the particles now stick together, hence the required snap-off force to
pull them apart (discussed in Biesheuvel, 2002).
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theory of colloidal interaction is therefore best called DVDW theory, referring to Donnan
and Van der Waals.

The disjoining pressure, 𝑃, has the unit of Pa (=N/m2) and is the pressure that must be
applied to keep two flat surfaces at a certain distance. Thus when the surfaces are attractive,
and we actually must pull on them, 𝑃 is negative. Contributions to 𝑃 arise from electrostatics
(Donnan, ion entropy), 𝑃e, and from the Van der Waals force, 𝑃vdw. Integration of the curve
of pressure, 𝑃, against separation of the surfaces, 𝐷, results in an interaction energy, 𝑉 (unit
J/m2), according to

𝑉 =

∫ ∞

𝐷

𝑃d𝐷 . (6.1)

For curved surfaces, for instance spherical particles with a radius 𝑎, this energy of flat
surfaces, 𝑉 , is proportional to the disjoining force, 𝐹, between these curved surfaces (unit
N) with the proportionality factor dependent on 𝑎. This is the Derjaguin approximation,
which is valid when the Debye length is small compared to the curvature of the particles, a
condition that is almost always applicable.

We can integrate 𝐹 once again over separation 𝐷 to obtain the energy between the curved
objects (particles), 𝐸 (unit J), according to

𝐸 =

∫ ∞

𝐷

𝐹d𝐷 (6.2)

And finally, this energy can be integrated one more time over 𝐷 (involving an exponential
dependence on energy 𝐸) to obtain the stability ratio 𝑊 , a property that can be correlated
with experiments on the coagulation of a dispersion of small particles. (Other words for
coagulation are: flocculation, agglomeration, aggregation, phase separation.) When such
a dispersion does not coagulate, i.e., it is ‘stable,’ the attractive forces are apparently not
strong enough to overcome the repulsive forces, or there is an attraction at close distances
but there is a repulsive barrier that is large enough.ii

iiA dispersion is in between a solution and a suspension in terms of particle size. A solution consists of solvent
and smaller molecules, and macromolecules of perhaps a few kDa. The term suspension refers to a mixture of
a fluid and suspended larger particles, with sizes at least 100 nm. In a gravity field these particles will sediment
over time. A dispersion is in between these two classes, and particles in a dispersion have sizes from a few nm
to perhaps 1 𝜇m. They do not sediment due to gravity but remain dispersed.
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6.2 Colloidal interaction of particles with a fixed surface
charge

Before describing the theory for colloidal interaction in more detail, let us first define certain
words for distance. Two surfaces can be pushed together, to any separation 𝐷. This 𝐷
is the distance between (i.e., is the separation of) two flat surfaces. Below we will also
use the half-separation, ℎ, i.e., 𝐷 = 2ℎ, which is of use for the symmetric problem of
homo-interaction.

The above are definitions for two flat surfaces pushed together. When we go to curved
surfaces (either two spherical particles, or the geometry of ‘crossed cylinders’, or of sphere-
surface interaction), then 𝐷 and ℎ will refer to the (half-)distance at the point where the
surfaces are the closest.

There are now three important points to make:
• The first is to realize that 𝐷 and ℎ represent the separation between the surfaces, i.e., a

distance, and they are not the positional coordinate 𝑥 within the gap region between the
surfaces. Thus, with particles separated by a distance 𝐷, the coordinate 𝑥 has values
between 0 and 𝐷.

• Secondly, all distances relate to the dimensions of the electrolyte region. This means that
they relate to the thickness of the region where (the centers of) the ions can be located.
This is the region of the (two overlapping) diffuse layers. Thus, distances such as 𝐷 and
ℎ relate to the separation of the Stern planes (the distance between the two Stern planes).

• Finally, it is important to realize that these Stern planes may be located a few Å away
from the hard 0-plane (Reerink, 1952). Let us call this extra distance 𝛿. Thus 𝛿 is the
distance between the ‘hard surface’ (the 0-plane) and the plane that serves as the start of
the ionic region (which is the Stern plane), i.e., 𝛿 can be envisioned as the thickness of
the Stern layer. Consideration of this point is of importance when we discuss the Van der
Waals force. This is because this force (attractive in case of homo-interaction) is due to
differences between the permittivity of the material of the surfaces/particles, and that of
the water (or other electrolyte) in between. Thus this Van der Waals force ‘emanates’ from
the 0-plane, i.e., it depends on how far the two materials are separated from one another
(with water in between). This separation is slightly larger than how far the Stern planes
are apart. Thus, when at some point the Stern planes are a distance 𝐷 apart, the 0-planes
are a distance 𝐷 + 2𝛿 apart. Thus, the parameter 𝛿 will be found in equations involving
the Van der Waals force.

From this point onward we write ‘distance between surfaces’, and use similar terminology,
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and this refers to a distance between the two Stern planes, i.e., it is the thickness of the
electrolyte (ion containing) region. When we introduce the Van der Waals force, we will
specifically refer to the ‘distance between the hard surfaces’, which are a distance 2𝛿 further
apart than the thickness of the electrolyte region, i.e., this distance is 2𝛿 larger than the
distance between the Stern planes.

For interaction beteen two equal surfaces, both flat and placed in parallel, the electrostatic
contribution to the disjoining pressure, 𝑃e, can best be evaluated at the midplane, ‘m’, in the
gap between the two surfaces, and then we obtain

𝑃e = 2 𝑅𝑇 𝑐∞ (cosh (|𝑧 |𝜙m) − 1) . (6.3)

which assumes the PB-framework based on ideal point charges for a symmetric salt (1:1,
2:2, etc.) with |𝑧 | the magnitude of the charge of the ions (|𝑧 | = {1,2,etc.}). Note that in
this chapter we include the term ‘𝑅𝑇’ for pressures and other energy units. The pressure
in Eq. (6.3) is the osmotic pressure due to the ions at the midplane in the gap, 𝑅𝑇

∑
𝑖 𝑐m,𝑖

minus that far away, 2 𝑐∞, and we used the Boltzmann equation to relate 𝑐m,𝑖 to 𝑐∞ and 𝜙m.
Instead of evaluating Eq. (6.3) at the midplane, it can also be evaluated at any other position
in the gap, but then we must add the attractive Maxwell pressure as well, −1/2𝜀𝐸2. This term
does not have to be considered at the midplane for equally charged surfaces because there it
is zero. For hetero-interaction, this extra term must always be evaluated besides the osmotic
pressure of Eq. (6.3). The background to these equations is further discussed in Ch. 8.

To arrive at a simple analytical expression for 𝑃e, we use the result derived by Gregory
(1973) to take the low-potential limit of the Poisson-Boltzmann equation and integrate across
the gap between two equally charged planar surfaces, which results in

𝑄 =
Σ 𝜆D

𝜀𝑉T
= 𝜙m sinh (𝜅ℎ) (6.4)

and
𝜙D = 𝜙m cosh (𝜅ℎ) . (6.5)

These two equations can be used for a 1:1 salt as well as for any asymmetric salt or salt
mixture, as long as 𝜅 is calculated by Eq. (3.18). Note that 𝑄 is a function of the Debye
length, 𝜆D = 𝜅−1, and thus it depends on ion concentrations and valencies. The same
definition of Q was used in §3.3.

We assume now a symmetric salt solution (1:1, 2:2, etc.), and combine Eq. (6.3) with
Eq. (6.4) to arrive at (Biesheuvel, 2001)

𝑃e = 2 𝑅𝑇 𝑐∞
(
cosh

(
|𝑧 |𝑄

sinh (𝜅 ℎ)

)
− 1

)
. (6.6)
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A useful simplification can be made for ℎ≫𝜆D and then we obtain

𝑃e =
2
𝜀
Σ2 exp (−𝜅 𝐷) (6.7)

which indicates that 𝑐∞ and 𝑧 only have an impact on the pressure via the inverse Debye
length, 𝜅. Thus with higher 𝑐∞ or higher 𝑧, the Debye length decreases and thus the repulsion
goes down. This is a general result for the ‘constant charge’ (CC) approach, also for surfaces
that are close. Later on we explain that for ionizable surfaces, at short distances the situation
reverses and repulsion can go up with salt concentration.

Based on Eqs. (6.1) and (6.7) we derive an expression for the interaction energy𝑉 between
flat surfaces (in J/m2)

𝑉e =

∫ ∞

𝐷

𝑃e d𝐷 =
2
𝜀 𝜅

Σ2 exp (−𝜅𝐷) . (6.8)

Having integrated 𝑃e over 𝐷 to arrive at the interaction energy 𝑉 in J/m2, we can now
implement the Derjaguin approximation which is to multiply 𝑉 by a factor 2𝜋 to obtain the
‘force/radius’ (F/R) as often reported in force studies using the atomic force microscope
(AFM) and the surface force apparatus (SFA). Or, to find the force, 𝐹e, that acts between
two equal spherical particles, each of radius 𝑎, we multiply 𝑉 by 𝜋𝑎 (unit of force is N),

𝐹e =
2𝜋𝑎
𝜀 𝜅

Σ2 exp (−𝜅 𝐷) (6.9)

which can be integrated to the energy 𝐸 between particles (unit J), see Eq. (6.2)

𝐸e =

∫ ∞

𝐷

𝐹e d𝐷 =
2𝜋𝑎
𝜀 𝜅2 Σ2 exp (−𝜅 𝐷) . (6.10)

In Eq. (6.10), the prefactor in 𝐸e depends on 1/|𝑧 |2 (within 𝜅), but an even more significant
dependence on 𝑧 goes via the exponential term.

We can now combine the above equations for electrostatic repulsion, with the attractive
Van der Waals interaction. This attraction depends on the Hamaker constant, 𝐴, which
for instance for two titania layers interacting across water is 𝐴 ∼ 6 · 10−20 J. We can also
express this energy in ‘units of kT’, by dividing by 𝑘𝑇 =4.12 · 10−21 J, resulting in this case
in 𝐴 = 14.6 ‘kT’. [This is strictly speaking a non-dimensional number, and ‘kT’ should be
omitted.]

For close surfaces (shortest distance between the surfaces much lower than the particle
size), the Van der Waals attraction between flat surfaces is given by

𝑃vdw = − 𝐴

6𝜋 (𝐷 + 2𝛿)3
. (6.11)
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We can integrate 𝑃vdw from Eq. (6.11) over 𝐷, and multiply by 𝜋𝑎 to obtain the force
between two particles of radius 𝑎

𝐹vdw = − 𝐴 𝑎

12 (𝐷 + 2𝛿)2
(6.12)

which we can integrate again, to obtain the interaction energy

𝐸vdw = − 𝐴 𝑎

12 (𝐷 + 2𝛿) . (6.13)

—

We first analyze results for the force between curved surfaces, focusing on the total
interaction force, 𝐹 = 𝐹e + 𝐹vdw. Because often results are reported of experiments with
AFM and SFA methods, we present results for the factor F/R. This implies that the force
contributions, 𝐹𝑗 , in the equations above, are multiplied by a factor 2 and divided by 𝑎.

Using Eqs. (6.9) and (6.12), the total interaction force becomes

𝐹/𝑅 =
4𝜋
𝜀 𝜅

Σ2 exp (−𝜅 𝐷) − 𝐴

6 (𝐷 + 2𝛿)2
. (6.14)

In Fig. 6.1 we analyze the behavior of Eq. (6.14) for various surface charge densities Σ

and salt concentrations 𝑐∞ for a 1:1 salt. For zero surface charge the particles (surfaces)
attract, and the more so the closer they get, until a limiting value that is reached when
the Stern planes touch. With increasing surface charge, a repulsion develops, which for
𝑐∞ = 10 mM starts at distances of 5–10 nm, and note how a twice larger surface charge
means a four times larger electrostatic repulsion. At some point a maximum is reached in
the total interaction curve, and the force decreases again when we push the particles closer.
For the conditions in Fig. 6.1 at contact an attraction remains, but for a surface charge larger
than Σc1 =

√︁
𝐴 𝜀 𝜅/48𝜋 𝛿2, which at 𝑐∞=10 mM is Σc1=22.4 mC/m2, this is different. Even

though for Σ>Σc the repulsion goes down just before the surfaces touch, the repulsion stays
positive until contact. At an even higher charge, the curve not even comes down again. This
happens beyond a charge of Σc2 = Σc1/

√
𝜅 𝛿, which in this case is at 71.2 mC/m2.

Though all of this analysis is interesting, at near-contact the Gregory equation, Eq. (6.14),
can be very much off, because in reality the electrostatic force is very different (as found by a
full Poisson-Boltzmann calculation). The deviation already starts at a distance several times
the Debye length. Though at a low charge (say 10 mC/m2) the correctly calculated 𝑃e follows
Eq. (6.14) until 𝐷/𝜆D ∼ 2, nevertheless for lower distances the correct 𝑃e is significantly
higher than predicted by the Gregory equation. For instance, Eq. (1.1) underestimates the
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Fig. 6.1: Interaction curves using the analytical DVDW theory, Eq. (6.14), using the Gregory-function
that is valid in the limit of ℎ≫ 𝜆D (𝛿 = 0.3 nm, 𝐴 = 14.6 kT, 1:1 salt solution). a) As function of
surface charge (𝑐∞=10 mM). b) As function of salt concentration (Σ=20 mC/m2).

electrostatic pressure 𝑃e by a factor of 5 at 𝑐∞=100 mM and𝜎=10 mC/m2. But intriguingly,
at higher charge (already at 20 mC/m2) the correct 𝑃e is no longer larger than predicted by
Eq. (6.14), but now is much lower! For instance there is a factor ∼ 25 overestimate by
Eq. (6.9) compared to the correct pressure at 𝑐∞ = 10 mM, Σ = 0.1 C/m2, and 𝐷 = 5 nm
separation. In conclusion, the Gregory equation based on this simple analytical solution can
be very much off, and must ideally only be used when other calculations have ascertained it
is an accurate simplification of the full PB-based solution.

A much better estimate of 𝑃e is provided by the solution of the PB-equation by Ettelaie
and Buscall (1995). As long as the charge is not too high (e.g., for a charge less than
20 mC/m2), it is highly accurate, especially for very close surfaces. [Still, ideally we solve
the full PB-equation across the gap, either numerically or using the exact solution that is
based on the use of elliptic functions, see for instance Biesheuvel, 2004; Eqs. (20) and (21).]
The Ettelaie-Buscall (EB) solution is obtained from the PB equation in planar coordinates
for a 1:1 salt solution, Eq. (3.8), by linearizing the term sinh 𝜙 around its midplane value
(thus around 𝜙m), leading to

sinh 𝜙(𝑥) → sinh 𝜙m + (𝜙(𝑥) − 𝜙m) · cosh(𝜙m) (6.15)

which can be inserted in the PB-equation, which can then be integrated to obtain for the
surface charge, Σ

Σ =
√︁

2𝑐∞𝑅𝑇𝜀 ·
√︁

cosh 𝜙m · tanh 𝜙m · sinh
(
𝜅 ℎ

√︁
cosh 𝜙m

)
. (6.16)
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This result can be simultaneously solved with Eq. (6.3) for the disjoining pressure

𝑃e = 2𝑐∞ (cosh 𝜙m − 1)

to solve 𝑃e vs. h for a given value of Σ and subsequently calculate F/R versus separation, D.iii

A correct prediction of the EB solution is that for a fixed surface charge, that the pressure
𝑃e does not have a finite limiting value, as wrongly predicted by Eq. (6.6), but the pressure
diverges when the Stern layers are about to come into contact (𝐷 → 0). This is due to
the fact that in the increasingly narrow gap the concentration of counterions must go to
infinity to neutralize the fixed surface charge. (This is different when surfaces are ionizable,
i.e., reduce their surface charge upon compression, as we discuss in the next section.) This
divergence does not show up in the energy F/R that we will analyze next.

Fig. 6.2 shows results of the full EB-expression for the electrostatic contribution to F/R,
in combination with the same Van der Waals attractive force as used in Fig. 6.1. Now the
required charge for F/R to stay above zero in the entire range 0 < 𝐷 (nm) < 10 is slightly
lower than before. But there is an especially large effect on the charge Σc2, which is the
charge beyond which there is no longer a maximum in the interaction curve, but now upon
decreasing 𝐷 until contact, repulsion monotonically increases. This critical charge was 71
mC/m2 in Fig. 6.1 using the Gregory expression, and now –based on the EB equation– drops
to a value around 25 mC/m2 in Fig. 6.2. So for a value beyond this relatively moderate
charge of 25 mC/m2, this new analysis predicts that the interaction not only is repulsive until
contact, but the interaction force monotonically increases all the way until particles are in
contact.

An interesting phenomenon is hysteresis in coagulation/repeptization: as Fig. 6.2 points
out, we can coagulate a dispersion when the repulsion barrier is low enough (perhaps
around 5 mC/m2) and particles then end up in the deep attractive minimum that we see
in Fig. 6.2 located below 1 nm separation. But if we now increase surface charge, in this
case to 17 mC/m2 or larger, the entire attraction curve becomes repulsive (𝐹/𝑅 > 0 at all
iiiIn spreadsheet software a useful method is to make a list of values of 𝜙m, and for each entry calculate 𝑃e

as well as h, and after that plot 𝑃e vs. h. In this method, Eq. (6.16) must be inverted to an explicit
equation for h. If we make a list of such calculations with index i from 1 to N, where distance h (or,
D) increases with index number, then we can now numerically calculate F/R by the iterative ‘summation’
procedure 𝐹/𝑅𝑖 − 𝐹/𝑅𝑖+1 = 𝜋 (𝑃𝑖 + 𝑃𝑖+1 ) · (𝐷𝑖+1 − 𝐷𝑖 ) with 𝐹/𝑅 |𝑁 set to zero. We must make sure in this
list the steps between the D-values are small enough (they don’t have to be equi-distant) and that 𝐷𝑁 is large
enough, such that P at that separation is much smaller than P’s at closer separations. This procedure can be
used both for the electrostatic part of the force and for the Van der Waals contribution. However, for the latter
contribution, analytical solutions are available for its contribution to 𝐹/𝑅 as function of D, so the Van der Waals
contribution can also be added subsequently without being included in the integration based on the summation
method.
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Fig. 6.2: Interaction curves using the Ettelaie-Buscall DVDW theory, Eq. (6.16), for several values of
the fixed charge (𝑐∞=10 mM). (For other parameters see Fig. 6.1.)

separations up to 10 nm), and the coagulated particles will disperse again and we obtain a
stable dispersion. Thus changing the charge to higher than approx. 17 mC/m2 (for instance
by a pH change) will disperse particles that were coagulated. So interestingly, there is
hysteresis: when we start out with a stable dispersion and now decrease the charge, then this
dispersion stays stable down to a charge of ∼5 mC/m2 and only below this charge coagulates.
On increasing the charge again, we must go beyond 17 mC/m2 to stabilize the dispersion.
So between the numbers of 5 and 17 mC/m2 (these numbers are examples, for the specific
calculation made here), the dispersion can be stable or flocculated, dependent on the history
of the sample.

6.3 Theory of colloidal interaction for ionizable materials

We next continue with surfaces that are charge regulating (CR), and thus we no longer
assume that the surfaces keep their charge at a constant value while particles approach (that
was abbreviated as ‘CC’ for ‘constant charge’). Charge regulation is a theoretical description
of surface chemistry that takes account of the ionization equilibrium at the surface, and thus
when these surfaces are pushed together the surface charge changes. The theory predicts
that for homo-interaction (the surfaces are the same), when the two materials are pushed
into contact, the surface charge goes down, all the way to zero. This all makes sense because
when surfaces are in contact, there is no room left for counterions to compensate the surface
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charge; thus the surface charge should go to zero. And this is exactly what CR theory
predicts.iv

Until this point, assuming a fixed surface charge density, we did not have to consider
the Stern layer (capacitance). This is because with a fixed surface charge, the gradient
𝜕𝜙/𝜕𝑥 |D follows directly from the charge density, irrespective of the Stern capacitance.

However, because from this point onward we are including surface ionization, the
Stern layer will play a role. But to simplify the discussion from this point forward, we
assume an infinitely high Stern capacitance, thus 𝜙0 = 𝜙D, and thus the potential at the
0-plane, 𝜙0, is the same as 𝜙D, which is the potential where the diffuse layer starts.

As an example of a charge-regulating material, we choose for an amphoteric material,
which is a material that can charge both positively and negatively. Examples are alumina and
titania, see §3.7, but also many biological materials and protein molecules are amphoteric.
For alumina and titania, pK (e.g., pK=4.4 for titania) is equal to the pH at which the material
is uncharged (and this pH is called the point of zero charge, PZC, or equivalently, the iso-
electric point, IEP, see p. 507). When pH is higher than PZC, the material is negatively
charged, and for a lower pH it is positively charged.v

For this problem of the overlap of two EDLs and an amphoteric charge-regulating surface,
there are no analytical solutions that work. We thus show numerical results using the full
1D Poisson-Boltzmann equation, for a 1:1 solution given by Eq. (3.8), evaluated at a range
of separations D and subsequently numerically integrated to obtain 𝐹/𝑅 vs. D, in the same
way as discussed for the EB calculation. Thus, we put aside the EB-approach because it
does not give very accurate results at high charge, especially when the surfaces are far apart.

But even without solving the equations, we can already predict what happens when two
equal charge-regulating materials interact across a thin gap. Let us assume we are at a pH
above the iso-electric point of titania, thus titania is negatively charged at this pH>pK. We
thus have cations as counterions in the gap between the surfaces at a larger concentration than
outside the gap. Thus pH in the gap is lower because we have more H+-ions here than outside
(the relative increase in H+ concentration equals the relative increase in cation concentration,
similar to Eq. (2.16) in Ch. 2). When the gap is further narrowed, pH in the gap goes down

ivInstead, for hetero-interaction the charge can both go up and down with separation, but at contact the two
materials will have an exactly opposite charge (together they must be charge-neutral because at that point there
are no longer ions in the gap between the surfaces to compensate for any charge mismatch).

vThough this discussion relates to pH right at the surface, let us stress that pH in equations is the pH in bulk
solution, outside the overlapping diffuse layers, and is not a pH at the 0- or D-plane.
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more, until at contact pH is such that the material has discharged completely, i.e., pH in the
gap becomes equal to pK of the material. Thus we know the ‘final’ pH in the gap (i.e., when
there is almost or full contact), and thus we can calculate the potential in the gap 𝜙 when
there is contact, and this tells us the electrostatic pressure at contact. This pressure is the
maximum value, i.e., with separation 𝐷 going down, 𝑃e monotonically increases from zero
when 𝐷 =∞, to a maximum value at contact. This increase in pressure occurs even though
the surface charge continues to decrease the closer the surfaces come together, down to zero
charge at contact, when the repulsive pressure is the highest. Concentration and potential
profiles across the gap become more and more ‘flat’ the smaller the gap, because the charge
density goes down, and because the gap gets more narrow. [By ‘flat’ we mean that the
difference between the potential (concentration) at the surface and in the center of the gap,
becomes very small.]

Important to note, even though at contact the surfaces have discharged completely, 𝑃e

will not go to zero, not at all! Instead, for equal materials, 𝑃e monotonically increases
when we bring the surfaces closer together, not only for a fixed surface charge but also
for surfaces that are ionizable. Thus, while the two surfaces are pushed together, and the
surfaces discharge, 𝑃e monotonically increases, with a maximum at contact for CR (for CC
𝑃e increases indefinitely, i.e., ‘it is unbounded’).

When the surfaces are far apart, we can calculate charge Σ and surface potential 𝜙0 based
on Eqs. (3.69) and (3.70). When far apart, the charge is at its maximum value, while potential
𝜙0 is at a minimum value. When we now push the two materials together, the charge goes
down, all the way to zero at contact, while 𝜙0 reaches a maximum value. At that point
the potential across the (by now very narrow) gap is almost constant (gradients in potential
become negligible).vi This potential at contact is obtained by setting 𝛼 = 0 in Eq. (3.73),
which results in

𝜙c = ln 10 · (pK − pH) . (6.17)

As this equation shows, the potential in the gap when 𝐷→ 0 is negative for pH > pK, and
positive for pH < pK. We will refer to this potential as 𝜙c, where index ‘c’ refers to being
in contact. Note that this high potential is only reached at the point where the two materials
are pushed together and there is no room left for ions in the gap between the surfaces. For
an area on a particle that is still at a slight distance from other surfaces, the surface potential
is lower in magnitude than 𝜙c.

At (points of) contact, the electrostatic contribution to the disjoining pressure, 𝑃e,c, follows

viMinimum and maximum refer here to the magnitude of these variables, neglecting their sign.
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from inserting Eq. (6.17) in Eq. (6.3), which results in

𝑃e,c = 𝑐∞
(
10pK−pH + 10pH−pK − 2

)
. (6.18)

Eq. (6.18) shows a very relevant phenomenon, that now with charge regulation (CR) included,
at contact 𝑃e,c increases with salt concentration 𝑐∞ (the two are exactly proportional). This
is the exact opposite of what was predicted for the fixed charge case, where repulsion was
always lower when 𝑐∞ was increased (for the same surface charge), see Fig. 6.1b. The very
high repulsive pressure between amphoteric materials that occurs at contact in case of a high
𝑐∞, provides a method to keep very concentrated colloidal suspensions in a fluid-like state,
with the pressure between particles at contact functioning as a very short-range repulsive
force (Yu et al., 2002).

Even though now the repulsion is higher at contact when 𝑐∞ is higher, the pressure also
decreases faster when the distance goes up, and thus there is a cross-over point, i.e., beyond
a certain separation, the repulsion is larger for a lower 𝑐∞. Thus with CR, the influence of
𝑐∞ is not as straightforward as how it was for the CC situation.

We show in Fig. 6.3 as function of pH curves for the interaction between two equal titania
surfaces, for which surface ionization is described by Eq. (3.73). As might be expected,
the further pH is away from the iso-electric point (point of zero charge, when pH=pK), the
higher is the repulsion. For a pH only 1 point away from pK, the theory predicts only a
shallow repulsive barrier, which is likely not enough to inhibit aggregation. However, for a
two- and three-point difference between pH and pK, there is repulsion at all distances, and
we can expect a dispersion of titania particles to be stable.

Stability ratio𝑊 . In this section we analyzed force curves in the ‘F/R’ property.
To describe the interaction force 𝐹 between equally sized particles with radius 𝑎, we
multiply F/R with 𝑎 and divide by 2. We can then (numerically) integrate 𝐹 to obtain
the interaction energy 𝐸 in J, see Eq. (6.2) and a footnote on p. 140. Often this number
is divided by kT to obtain the energy expressed in so many kT. The energy 𝐸 can
again be integrated to obtain the stability ratio 𝑊 which describes the stability of a
dispersion. For 𝑊 very large, e.g., 𝑊 > 104, a dispersion is expected to be stable, and
not to coagulate. But when𝑊 is low, e.g. 𝑊 =100 or less, or even lower than unity, the
dispersion (‘sol’) will flocculate/coagulate.

The stability ratio𝑊 is given by

𝑊 = 2𝑎
∫ ∞

0

exp (𝐸/𝑘𝑇)
(2𝑎 + 𝐷)2

d𝐷 (6.19)
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Fig. 6.3: Interaction curves including charge regulation based on the ionization of titania surfaces,
making use of the full PB equation (solid lines) and the Donnan approximation (dashed lines), for
several values of |pK−pH|. (𝑐∞=10 mM, number of surface sites 𝑁 =3 nm−2, no Stern capacitance.
For other parameters see Fig. 6.1.)
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and when the interaction energy 𝐸 is non-zero only when 𝐷 ≪ 𝑎, this simplifies to

𝑊 = 1 + 1
2𝑎

∫ ∞

0
(exp (𝐸/𝑘𝑇) − 1) d𝐷 . (6.20)

Into Eq. (6.20) we can insert Eq. (6.14) after multiplying by 𝑎 and dividing by 2, or
use any other numerical solution for 𝐹 versus separation 𝐷 based on Eq. (6.1), another
numerical evaluation to obtain E using Eq. (6.2), and a final numerical evaluation to
calculate W, see for a general description a footnote on p. 140, we can evaluate the
stability ratio of a dispersion as function of parameters such as pH, Hamaker constant
𝐴, surface charge density Σ, and salt concentration 𝑐∞. Also the valencies of the ions
involved, 𝑧𝑖 , play a significant role, via their effect on 𝑃𝑒 as described by Eq. (6.3).

6.4 Theory of colloidal interaction for surfaces that are
very near - the Donnan limit

For very close surfaces, the Donnan approach is highly suitable. In case we also have charge
regulation, the equations that must be solved jointly are (here we also include the Stern
capacitance, we assume a 1:1 salt solution):

𝑃e = 2𝑅𝑇𝑐∞ (cosh (𝜙D) − 1) (6.21)

𝜙0 = 𝜙D + 𝜙S (6.22)

𝐶S 𝜙S𝑉T = Σ (6.23)

Σ = 𝑐∞𝐹 sinh 𝜙D · 𝐷 (6.24)

and if we consider an amphoteric material such as alumina or titania, we have in addition
Eq. (3.73).

These equations can be solved jointly in a numerical calculation, and then the Van der
Waals pressure can be added to obtain the total interaction pressure. We tried in many ways
to come to insightful analytical solutions but were not successful. But numerically solving
these equations is not difficult.

Note that the above equations only describe the electrostatic pressure, between flat
interfaces. This is useful for the interaction pressure between two entities or layers that
form a thin film in between. This can for instance be the interlayer structure in clay particles.
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Here a Donnan model including the clay chemistry can predict the disjoining pressure, and
this is relevant to understand clay swelling (and collapse) (Koopal et al., 2020). It can also
describe the interaction at the flattened interface between two deformable charged droplets
or vesicles that only have a thin film in between.

For more rigid objects the above equations cannot simply be used to generate information
on the force 𝐹, because the Donnan equations for the pressure 𝑃e are only valid at short
distances, 𝐷, and thus cannot be used for a calculation of integrated properties such as 𝐹e,
for which we must integrate from infinity to a certain distance 𝐷. This is because for larger
distances, the Donnan equations are very inaccurate and deviate strongly from the correct
results. Then we better solve the full PB equation, and integrate numerically from ∞ down
to a certain small 𝐷.

However, we can also integrate the Donnan pressure, 𝑃e, from 𝐷 = 0 outward. But this
is of course only possible if we would know the electrostatic contribution to the interaction
energy 𝑉e at contact, 𝑉e,c. Though that property might not seem so readily available, it
actually is, see Eqs. (27) and (A.6) in Biesheuvel (2004). With 𝑉e,c available, we can then
integrate from 𝐷 = 0 outward, making use of 𝑃e from the Donnan model, according to
𝑉e = 𝑉e,c −

∫ 𝐷
0 𝑃ed𝐷 to which then the Van der Waals contribution must be added. And

we must multiply by 𝜋 to arrive at ‘F/R’. Then we have a Donnan-based model for the
interaction force 𝐹e between curved entities for short 𝐷. Note that this still does not allow
us to integrate once again to an interaction energy 𝐸 . Results of this Donnan calculation are
given in Fig. 6.3 as dashed lines. We must conclude that beyond a separation of 1 nm at the
intermediate value of charge, the Donnan prediction starts to fail. For the high charge case,
the Donnan approach already fails beyond ∼ 0.5 nm. Thus, the Donnan approach can be
used to calculate the interaction pressure at contact, and in combination with the calculation
of𝑉c, it can be used to obtain a curve of F/R vs. D, which is accurate for very short distances,
but the Donnan approach cannot be used to calculate interaction forces at larger separations.

6.5 Donnan theory for hetero-interaction
In practical situations we often encounter problems that depend on the interaction between
dissimilar materials, thus between particles or surfaces that have a different surface chemistry,
for instance in the capture of charged nanoparticles by (charged) porous media.

If after reading the previous sections the reader came to the conclusion that interaction
of equal surfaces is complicated (and fascinating), then the reader will also appreciate the
complexities that arise in the study of the interaction between different surfaces, i.e., hetero-
interaction. In this broad class of problems one encounters many special and unexpected
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features. For instance, when two materials have an equal sign of the surface charge they
are always repulsive, but when they have an equal sign of the surface potential, they repel
when further apart but closer together they attract one another. Or, when at least one surface
is charge regulating (with the charge dependent on local pH), we can have a sequence of
repulsion, attraction, and again repulsion when particles approach one another. And this is
only the electrostatic part of the interaction, not yet involving the Van der Waals force. This
Van der Waals force can also be attractive and repulsive, and can change sign dependent on
the separation. All of these elements together results in what can be a very intricate problem.

In this section we neglect the Van der Waals force, and focus on the electrostatic part of
the interaction between particles and materials. We demonstrate that even when we only
consider electrostatics, in many problems we readily go from attractive to repulsive and vice-
versa. This is different from homo-interaction: in that case the electrostatic contribution to
the forces and energies is always repulsive, with or without charge regulation.

The complete problem of hetero-interaction is best addressed by numerically solving the
PB-equation in the gap between the (charge regulating) surfaces, with appropriate boundary
conditions. The electrostatic component to the disjoining pressure, 𝑃e, follows from
evaluating at some point in the gap the sum of the repulsive osmotic part, 𝑅𝑇

(
𝑐T − 𝑐T,∞

)
(for

a z:z-salt), and the attractive Maxwell contribution, −1/2 𝜀 𝐸2. The result of this calculation
will be the same irrespective of where in the gap (at which position x) these pressures are
evaluated. This numerical calculation is done at many values of separation 𝐷 and calculated
values of 𝑃e are numerically integrated to obtain the force and energy between curved
surfaces, see Eqs. (6.1) and (6.2).

As an example, we consider the interaction of two amphoteric materials, alumina and
titania, of which the charge is described by Eq. (3.73) ( 𝑗 = {a, t}),

Σ 𝑗 = 𝐹 𝑁 𝑗

(
1
2
− 1

1 + 10pK 𝑗−pH 𝑒−𝜙

)
where pH refers to bulk solution. For these materials we have a pK of resp. pKa = 8.7 and
pKt = 4.4. For a pH in between these two pK-values, we can expect an attraction between
these oppositely charged interfaces. This is indeed correct for distances that are a few times
the Debye length and further apart, but what happens when the surfaces come closer?

In the following calculation we only evaluate the pressure at contact. If this is positive
(repulsive) we know that the electrostatic pressure went from attractive to repulsive (because
at large distances it is attractive). In the calculation we include that the two surfaces together
are charge neutral because there is no space left for ions to contribute to the charge balance,
thus

Σt + Σa = 0 . (6.25)
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This calculation can be done for any pH-value, to calculate the charge of each surface, Σ 𝑗 ,
and the common value of potential in the vanishingly thin gap, 𝜙. The charge that follows
from this calculation does not depend on salt concentration, and –intriguingly enough–
neither depends on external, bulk, pH as we discuss further on. Having now calculated
the surface charge (opposite for the two surfaces), we can calculate the Maxwell attraction
according to

𝑃e,Maxwell = −
1
2
𝜀𝐸2 = − 1

2 𝜀
Σ2 . (6.26)

Thus this attractive term directly follows from Eqs. (3.73) and (6.25) and is independent of
salt concentration and bulk pH. The osmotic pressure, 𝑃e, can also be directly calculated
from Eq. (6.21) because it is a function of 𝜙 and of 𝑐∞. Thus the osmotic pressure, which is
zero or repulsive, will not be very prominent when 𝑐∞ is low, but will have a larger effect at
a higher 𝑐∞. Thus we can have the situation that for low 𝑐∞ the total electrostatic interaction
(osmotic plus Maxwell) at contact is attractive, but becomes repulsive at contact for a higher
𝑐∞. This prediction is illustrated in Fig. 6.4.

But the situation can be even more interesting. The contact condition, Eq. (6.25), is
independent of external pH. The system will always ‘find the pH’ in the gap that is needed to
make sure the two surfaces have an opposite charge. In this case this is pHgap∼8.1. And to
achieve that value of pH a certain potential in the gap is required, only a function of external
pH, namely 𝜙 = ln(10) ·

(
pHgap − pHext

)
.

Interestingly, this result shows that also when we are at a pH below the iso-electric point
of titania (pH < pKt), or likewise, pH is above the pK of alumina, we can also push the
surfaces in full contact with the two materials becoming oppositely charged. Thus one of
the materials then reverses its sign of charge upon being pushed towards the other material.
And for all values of pH and 𝑐∞ at contact the Maxwell attractive term is the same, in this
case equal to an attractive force of 41.8 MPa.

At pHext ∼8.1 the osmotic repulsive force is always zero whatever the salt concentration
(because in the gap we always have 𝜙=0 in this case), but away from this pH-value we can
make the surfaces less attractive, even repulsive, by adding salt. Fig. 6.4 shows calculation
results of the electrostatic pressure at contact for hetero-interaction of alumina and titania.
What will be immediately observed is the very high values of pressure, in the 100s of MPa-
range! Clearly at a pH between the pK-values of the two materials, when they are overall
attractive, this attraction is extremely strong, while if we go sufficiently above pK of alumina,
or below pK of titania, especially if we add a sufficient amount of salt, the two materials
become highly repulsive. Under these latter conditions they can be mixed without any risk
of agglomeration.
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Furthermore, note how in Fig. 6.4 the entire curve is symmetric around pHgap, which
is close to the pK of alumina. Alumina in this calculation is the material with the higher
density of surface groups, 𝑁 . On this side of the curve, thus for instance at pH 9, pH 10
and even pH 11 (when 𝑐∞ = 10 mM), both materials are negatively charged when they are
far apart, but when pushed together into contact, they are very strongly attractive! This is
because the alumina material will reverse its charge when titania and alumina are pushed
together, to become positive.

The full interaction curve, for instance at pH 11 and 𝑐∞ =10 mM will go from repulsive
when the surfaces are far apart to very attractive at contact. Increasing salt concentration to
100 mM, or increasing pH to 12, will disperse the particles again.

But we can also have the reverse situation. For instance at pH 5 and 𝑐∞=100 mM. In this
case the two materials will be attractive when far apart, while at contact the total pressure is
repulsive! The dashed line in Fig. 6.4 describes the minimum salt concentration to make the
interaction at contact repulsive. This curve predicts that between 4.4< pH< 6 the surfaces
–which are attractive at large distances– become repulsive at contact, even for moderate 𝑐∞.
Between pH 8.7 and pH 11, even pH 12, the surfaces are repulsive far apart, but can be
turned to attractive at contact when the salt concentration is low enough.

In the last sections, the Stern layer was neglected in the electrostatic description, but in
a full description should be included. This layer creates a difference between the surface
potential 𝜙0, and the diffuse layer potential 𝜙D. It is possible to include the Stern capacitance
correctly in analytical expressions for the energy between flat surfaces, V (thus for F/R),
for which examples are given in Biesheuvel (2004). But it is easier to include them in the
numerical 1D Poisson-Boltzmann calculation that creates an output of the function 𝑃e vs.
D, and this function is subsequently integrated to V (F/R) and other energies. In conclusion,
the problem of hetero-interaction has many intriguing aspects, even when only considering
the electrostatic pressure 𝑃𝑒 at various conditions. It will be interesting to study the full
interaction curve (𝐹/𝑅 vs. D), certainly in combination with the Van der Waals force, and
understand its dependence on pH, 𝑐∞, etc.
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Fig. 6.4: Contact pressure for hetero-interaction between alumina (a) and titania (t) as function of
pH and salt concentration, 𝑐∞. For pKt < pH < pKa, the two materials are always attractive at large
separations, but as can be seen, for high enough 𝑐∞ at contact the interaction can be made repulsive.
The dashed line gives the minimum salt concentration 𝑐∗ (for a 1:1 salt solution) to make the interaction
at contact repulsive (pKt=4.4, 𝑁 t=3 nm−2, pKa=8.7, 𝑁a=5 nm−2).
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Transport of mass and heat, in combination with chemical reactions, is at the basis of
the physics of electrochemical processes. Mass and heat are transported in bulk electrolyte
phases, in the region near selective or reactive interfaces such as membranes and electrodes,
and through porous (charged) materials such as porous electrodes, filters and membranes.

In this part we discuss several aspects of the transport of mass and heat, and chemical
reactions. We start in Ch. 7 with the transport of solutes in bulk electrolyte and in porous
media. Solutes are transported by various driving forces including electrical effects and
concentration gradients, and their fluxes depend on friction with other phases (other ions,
solvent, membranes), leading to the concept of the hydrodynamic factors 𝐾c,𝑖 and 𝐾d,𝑖 that
we will analyze in detail. We summarize and develop several approaches to the description
of diffusion and dispersion in the region near reactive or selective interfaces.

In Ch. 8 we continue with the description of the forces acting on the fluid (the solvent)
which is different from, but complementary to, the theory for the transport of solutes, see an
earlier discussion on p. 11. We present the porous medium two-fluid Navier-Stokes equation
and show how in several limits it simplifies to classical expressions found in literature. We use
this theory to explain the always elusive topic of osmosis, after which we extend the theory to
describe electro-osmosis, and briefly describe several cross-effects in electrokinetics, such
as the streaming potential. We elaborate how the same theory also describes the various
pressures of relevance in a description of colloidal interaction.

We continue in Ch. 9 with the heat balance, in the context of current flow through
membranes and into electrodes. In this chapter we also describe the current-voltage
relationship for bulk electrolyte and membranes.

Finally, in Ch. 10 we combine mass transport with reactions, a topic of the highest
importance in the physics of electrochemical processes, because (certainly in water) there
are always many ion types that while being transported participate in ongoing reactions
with other ions. These reactions can be of the acid-base type that involve hydronium ions or
hydroxide ions, but ions can also react to ion pairs (as mentioned in § 4.3). In this chapter the
example of CO2-adsorption in amine solutions is further developed, while the relevance of
this theory for bio-electrochemical systems will be further demonstrated in Chs. 17 and 18.





7
Solute Transport

In this chapter we discuss several aspects of transport of solutes (ions, molecules, etc.)
through a solvent such as water in electrochemical processes. In the first sections we discuss
diffusion to a surface (which can for instance be an electrode or membrane) modified by
dispersion, related to the concept of the diffusion boundary layer, both for steady state and for
transient situations. We discuss the conductivity of electrolyte solutions and of electrolyte-
filled porous media, and explain the difference between transference and transport numbers.
We present generalized salt balances for a binary salt, and give examples for the flux of
asymmetric salts across a channel and boundary layer. In the final section we discuss how
the Nernst-Planck equation and extensions thereof follow from a force balance for solutes,
a force balance which includes all possible driving forces acting on a solute as well as all
possible frictions of a solute with other phases such as the water and other types of solutes.
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7.1 Diffusion and dispersion towards a surface

In electrochemical processes it is very important to describe the transport of solutes from a
bulk solution to a surface, and vice-versa. The surface can be selective, which means that
one solute or ion can enter it more readily than another ion, while it can also be reactive
to some ions, or it can adsorb some of the solutes. This selective transport, reaction and
adsorption can be to a ‘hard’ surface, such as a solid piece of metal, or the solutes transfer
into another phase, which for instance is a porous electrode or a membrane. In all cases, the
bulk solution from which the solutes come, is stirred with a certain intensity. The theory
we derive isnot limited to the situation of ions arriving at a surface from solution, but works
just as well when the ions flow away from a surface into solution.

The classical approach is the film layer model (diffusion boundary layer model, DBL)
which uses the concept of a virtual stagnant layer of a certain thickness through which all
matter must diffuse. Diffusion inside this layer is not influenced by stirring of the bulk
solution. Stirring only influences the thickness of this layer. In this approach a sharp
distinction is made between the film layer and the bulk solution. We will discuss this
approach and compare it with other approaches that do not make this sharp distinction but
that describe the entire solution phase in a unified way with gradually varying properties.

The theory of transport through a boundary layer is a challenging topic in chemical
process engineering, and in electrochemical systems this is even more so because the theory
must include the effects of the charge of the ions, and thus electromigration effects. Also
convection to the surface is encountered in pressure-driven membrane processes. In this
chapter we provide several approaches of how to theoretically describe solute transport
towards a surface by combined diffusion and dispersion. In the first section we focus on
equations for diffusion and dispersion from a bulk solution towards a certain surface with
no other surfaces nearby, but in a later section we also consider dispersion inside a channel.

Solute concentrations can increase towards the surface, which happens for instance when
fluid flows towards and through the surface, while the solutes are partially retained there. This
is the typical situation for reverse osmosis and nanofiltration. In this case concentrations
go up towards the surface and this phenomenon is called concentration polarization (see
Ch. 11). When solutes are pulled out of solution, then concentrations will go down towards
the surface, and then it is possible that we arrive at a limiting flux (current), as can be the
case in electrodialysis (Ch. 12).



Diffusion and dispersion towards a surface 159

7.1.1 The film layer, or diffusion boundary layer

The standard approach to describe diffusion from a bulk solution to an interface is the film
layer model, which is the concept of a layer through which all matter must be transported
before arriving at the surface. The film layer is also called Nernst diffusion layer, stagnant
diffusion layer (SDL), diffusion boundary layer (DBL),i or concentration polarization (CP)
layer (Nernst, 1904; Mackay and Meares, 1959).

The DBL concept in its most general form only introduces the concept that there is a thin
layer along the surface across which all matter must be flow before arriving at the surface.
The direction of this solute transport is at right angles to the surface. At any position in this
layer, a differential mass balance is

𝑝
𝜕𝑐𝑖

𝜕𝑡
= − 𝜕

𝜕𝑥
𝐽𝑖 (7.1)

where 𝑝 is porosity, which is unity (𝑝=1) when there is no other phase or structure occupying
part of the region in front of the surface, but porosity can also be less than unity, for instance
when a mesh structure partially fills up this space. Flux 𝐽𝑖 is a flux of ion type 𝑖 by diffusion,
migration and convection, in the 𝑥-direction, which is the direction towards the surface. To
describe this flux of ions (and of any other solute), we can use the extended Nernst-Planck
(NP) equation

𝐽𝑖 = 𝑐𝑖𝑣F − 𝜀𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(7.2)

in which the first term is convection, which describes that solutes are transported because
they are dragged with the fluid (for instance water) towards or away from the surface. The
fluid has a velocity 𝑣F. Next is diffusion, sometimes called molecular diffusion, describing
solute flow because of a concentration gradient, and the final term is due to migration, also
called electromigration, which describes that ions also flow as function of a gradient in
electric potential. Migration is absent for solutes that are uncharged, for which 𝑧𝑖 =0, while
it increases when the valency (charge) of an ion is larger (either positive or negative). The
diffusion coefficient, 𝐷𝑖 , is a molecular diffusion coefficient and is that for an unrestricted
electrolyte phase, and when there is a mesh structure, or or other porous material with a
porosity 𝑝, a factor 𝜀= 𝑝/𝝉 is included, where 𝝉 is the tortuosity factor (equal to tortuosity
𝜏 squared). When ions (solutes) flow through a nanoporous medium, and have friction with
the structure, an additional terms 𝐾f,𝑖 arises in Eq. (7.2) as well, which will be discussed in
§ 7.8.

iThis term, diffusion layer, is not to be confused with the diffuse layer, an element of an EDL model. The diffusion
layer has a thickness of many microns, while the diffuse layer only extends a few nms.
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In this most general framework, Eq. (7.1) can be solved dynamically for a layer of a certain
thickness. However, from this point onward, we will solve Eq. (7.1) assuming steady-state,
even when the processes around the film layer are not. The processes around the film layer
can be dynamic (i.e., concentrations change in time), for instance when the surface is a
porous capacitive electrode. Irrespective of whether the larger-scale processes are dynamic,
the steady-state assumption for the film layer is a very good approach. Steady-state in the
film is assumed for the remainder of this section.

For the CP-layer in front of a membrane in reverse osmosis and nanofiltration (Ch. 11),
we must combine diffusion, migration, and convection, which we will discuss at the end of
§7.3. In this case convection, which is due to fluid flow through the membrane, leads to a
gradual increase of the concentration of solutes through the DBL towards the membrane. In
these pressure-driven membrane processes this higher solute concentration has two adverse
effects: it leads to a higher osmotic pressure at the solution/membrane interface, thus less
flow of fluid through the membrane when the hydrostatic pressure is the same, and it leads
to an increased leakage of solutes through the membrane.

But in the remainder of this section we leave out convection, thus we set 𝑣F = 0 in
Eq. (7.2). We also set 𝜀 = 1 until §7.8, but a factor 𝜀 can always be included as an extra
term in front of 𝐷𝑖 . Then diffusion and electromigration remain as possible driving forces.
The combination of diffusion and electromigration is important in examples such as water
desalination by electrodialysis (Ch. 12) and ion transport to a reactive electrode (Ch. 14),
and we will discuss this problem in §7.3. But first we discuss in this section the situation
that we only have neutral solutes. Thus we set 𝑧𝑖 = 0 in Eq. (7.2) and then arrive at Fick’s
law

𝐽𝑖 = −𝐷𝑖
𝜕𝑐𝑖

𝜕𝑥
(7.3)

which we can integrate across the DBL (from the side of the bulk with concentration 𝑐∞, to
the surface where concentration is 𝑐∗), for steady state (thus flux 𝐽𝑖 is constant), which leads
to the most classical film layer model for the flux of a species i

𝐽𝑖 = 𝑘L
(
𝑐∞,𝑖 − 𝑐∗𝑖

)
(7.4)

where 𝑘L = 𝐷𝑖/𝛿, where 𝛿 is the thickness of the film layer. If there are multiple neutral
solutes, this equation can be solved for each of them, because their diffusional processes do
not interfere when Fick’s law, Eq. 7.3, is valid. Eq. 7.3 shows that for a constant flux 𝐽𝑖 the
concentration gradient is a constant, thus the concentration changes linearly from the value
𝑐∞ on one side of the film, to 𝑐∗ on the other side.
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7.1.2 Dispersion as an additional ‘diffusion-like’ term

The film model just discussed is very relevant, but a potentially much better approach is to
add dispersion, and do so in such a way that we no longer have to make a sharp distinction
between a film layer and the bulk solution. Two fundamentally different approaches are
discussed, in the present and next sections.

The first approach is to add dispersion to the diffusion in 𝑥-direction. In this case,
dispersion describes additional local mixing of solutes. Mathematically it behaves the same
as molecular diffusion, and thus we now have a dispersion coefficient which we can add
to the molecular diffusion coefficient. Thus the combination of diffusion and dispersion
becomes

𝐽𝑖 = −
(
𝐷𝑖 + 𝐷disp

) 𝜕𝑐𝑖
𝜕𝑥

. (7.5)

Note that throughout this book, the parameter D always refers to molecular diffusion, and
a dispersion coefficient always has index ‘disp’ included. Unlike the molecular diffusion
coefficient, the dispersion coefficient in Eq. (7.5) is not constant, but its value is zero at the
surface, and very high away from the surface, in bulk solution. This is because dispersion
is due to local ‘circulations’, also called ‘eddies’. Far from the surface these eddies are large
(there are larger and more vigorous circulations of fluid), while they dampen out the closer
we approach the surface, and just before the surface they are gone, i.e., there is no dispersion
right at the surface.

We can postulate a function for 𝐷disp that starts at zero at the surface and then rapidly
increases moving away from the surface. We propose 𝐷disp = 𝐷𝑖 · (exp (𝑥/𝛿) − 1), where
𝛿 is an exponential length describing how fast the eddies grow, and where 𝑥 is a coordinate
axis pointing from the surface into solution (d𝑥 = −d𝑥). Thus, moving a distance 𝛿 away
from the surface, 𝐷𝑖 +𝐷disp increases by a factor 𝑒. We implement this function in Eq. (7.5)
and rewrite in integral form, resulting in

−𝐽𝑖 ·
∫ ∞

0
exp (−𝑥/𝛿) d𝑥 = −𝐷𝑖

∫ 𝑐∞

𝑐∗
d𝑐 (7.6)

which we integrate to

−𝐽𝑖 · (−𝛿) · [exp (−𝑥/𝛿)]∞0 = −𝐷𝑖 · (𝑐∞ − 𝑐∗) (7.7)

which then becomes
−𝐽𝑖 · (−𝛿) · (0 − 1) = −𝐷𝑖 · (𝑐∞ − 𝑐∗) (7.8)

which has four times a minus-sign, which all cancel out, and then Eq. (7.8) can be rewritten
to ... Eq. (7.4), with again 𝑘L = 𝐷𝑖/𝛿! Thus we obtain the same result as for the basic film
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model of §7.1.1, but now we have a different interpretation of 𝛿. It is no longer the distance
from the surface where an ad-hoc transition from a stagnant film to a well-stirred bulk is
postulated, but now it is a measure of the rate by which dispersion grows when we move
away from the surface.

In the new approach, the concentration of solutes no longer changes linearly across the
film as in §7.1.1, but now it changes exponentially with 𝑥, a result we obtain from integrating
Eq. (7.6) from a position 𝑥 to∞, which results in

−𝐽𝑖 · (−𝛿) · (0 − exp (−𝑥/𝛿)) = −𝐷𝑖 (𝑐∞ − 𝑐 (𝑥)) (7.9)

which we can rewrite to
𝑐 (𝑥) = 𝑐∞ − 𝐽𝑖/𝑘L · exp (−𝑥/𝛿) (7.10)

which shows that starting at the surface, where 𝑥=0, the concentration 𝑐(𝑥) changes rapidly
with 𝑥, but the further we go away from the surface the more the rate of change of 𝑐 vs. 𝑥
decreases.

7.1.3 Dispersion as a convective term parallel to the surface

A very different approach is as follows. In this approach, in the 𝑥-direction towards the
surface we have the driving forces as before, which are molecular diffusion and convection,
and for ions also electromigration, but we no longer add dispersion in this 𝑥-direction.
Instead, we include dispersion as an effect that works ‘from the side’, with fresh fluid and
solutes coming from a bulk phase entering the profile sideways at each position 𝑥. Thus, at
each position in the DBL, solution is ‘refreshed’ with new solution coming from the bulk
ever so often. The difference with the prior approach is that in the approach of §7.1.2 stirring
led to a faster equilibration of solutes with nearby solutes, and thus gradients in 𝑥-direction
were increasingly flattened out, but in the new approach the fluid composition at a position
𝑥 is refreshed every so much time with fresh solution from outside the transport layer. This
may be an approach more representative of how eddies near a surface behave, which indeed
leads to fluid sweeping along the surface, the more the further away we are from the surface.

The refreshment of fluid-plus-solutes at each position in the DBL is described by a
refreshment time 𝜏. Faster stirring will decrease 𝜏. We first describe an approach where
𝜏 is constant, independent of distance to the surface. Later we discuss the more realistic
situation that 𝜏 depends on position 𝑥, starting at infinity at the surface (which means no
refreshment at all), and going down when we move away from the surface, so more and
more refreshment. In this new approach, at any position in a channel (near a surface, in a
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DBL), the mass balance for a neutral solute now becomes

𝑝
𝜕𝑐𝑖

𝜕𝑡
= 𝐷𝑖

𝜕2𝑐𝑖

𝜕𝑥2 +
𝑐∞ − 𝑐𝑖
𝜏

(7.11)

where the last term represents the refreshment of fluid: fresh bulk solution with concentration
𝑐∞ is inserted at position 𝑥 in the DBL with a frequency that is the inverse of the refreshment
time 𝜏, and it replaces the fluid that was there.ii The refreshment time 𝜏 will go down the
more vigorously we stir the solution. Eq. (7.11) is valid for neutral solutes, but as we will
discuss in §7.2, it also applies to many situations with binary salt solutions, even for the case
that the two ions have different diffusion coefficients and valencies (an asymmetric salt).

We consider the steady state, thus set 𝜕𝑐𝑖/𝜕𝑡=0, and solve this equation with the boundary
conditions that at 𝑥=0 we have the surface concentration 𝑐𝑖 =𝑐∗, where index * refers to the
surface, and far from the surface we have 𝑐𝑖 =𝑐∞ and 𝜕𝑐𝑖/𝜕𝑥=0. The solution is

𝑐(𝑥) = 𝑐∗ + (𝑐∞ − 𝑐∗)
(
1 − exp

(
−𝑥/
√
𝜏𝐷

))
. (7.12)

Now with the flux of solutes, 𝐽𝑖 , at the surface given by 𝐽𝑖 = −𝐷𝑖 · 𝜕𝑐𝑖/𝜕𝑥 |∗, we obtain

𝐽𝑖 =
√︁
𝐷𝑖/𝜏 · (𝑐∞ − 𝑐∗) . (7.13)

This is a very interesting and remarkable result. Just as in the previous two models, flux 𝐽𝑖
is proportional to the difference between 𝑐∞ and 𝑐∗, and we have a constant prefactor, which
we can again represent by 𝑘L, and thus for this refreshment model we have 𝑘L =

√︁
𝐷𝑖/𝜏.

But interestingly, in this approach, the transport coefficient 𝑘L is no longer linear in 𝐷𝑖 (as
it was in the film model of §7.1.1), but 𝑘L now only depend on 𝐷𝑖 to the power ½. Though
we can define a length scale 𝛿 =

√
𝐷𝑖 𝜏, and then, as in the previous models, 𝑘L = 𝐷𝑖/𝛿.

We can combine Eqs. (7.12) and (7.13) to arrive at the profile 𝑐(𝑥), given by

𝑐(𝑥) = 𝑐∞ − 𝐽𝑖 ·
√︂

𝜏

𝐷𝑖
· exp

(
− 𝑥
√
𝐷𝑖𝜏

)
(7.14)

which we can also write in terms of 𝑘L and 𝛿, and then we exactly obtain Eq. (7.10). Thus
the two approaches, of the present and previous sections, give the exact same result for molar
flux and concentration profiles, if we group underlying constants in the same factors 𝑘L and
𝛿.

iiIn 2D (𝑥, 𝑧) models for flow through channels, see Chs. 11 and 12, with z a coordinate along the surface, this
refreshment term can be replaced by −𝑣𝑧𝜕𝑐/𝜕𝑧 describing convection in z-direction. So this refreshment
concept, by which we modify a 1D transport model, has similarities to modelling convection along surfaces in
a 2D transport model.
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7.1.4 Dispersion as a convective term parallel to the surface -
varying refreshment rate

In the previous section, the refreshment time 𝜏 was a constant factor. However, in a more
advanced theory it is made a function of position 𝑥: infinite at the surface (no refreshment
at that position), and going down to zero or a low value far away from the surface. This
relates to the typical profile of the fluid velocity along a surface, 𝑣 ∥ : this velocity is zero
right at the surface (zero wall slip), first linearly increasing the further we move away from
the surface, and then gradually levelling off far away. For the calculation outcome it is not
very relevant how 𝑣 ∥ exactly changes far away because there concentration profiles have
become flat anyway, and thus it is a good approach to assume that this parallel fluid velocity,
𝑣 ∥ , continues to linearly increase with x, starting at 𝑣 ∥ = 0 at the surface, without levelling
off at some point. For steady-state we can now rewrite Eq. (7.11) to

𝑦′′ − 𝜉 𝑦 = 0 (7.15)

where 𝑦 = 𝑐 − 𝑐∞, 𝑦′′ = 𝜕2𝑦/𝜕𝜉2, and the factor 𝜉 is given by 𝜉 = 𝑥/ 3
√︁
𝐷/𝛾. The factor 𝛾 in

this expression will be explained below; again 𝐷 is the molecular diffusion coefficient. This
differential equation is the Airy function. It can be solved with the boundary condition that
far from the surface 𝑦′ = 0, and we then obtain the result that flux 𝐽𝑖 at the surface is once
again given by Eq. (7.4), but now with the transfer coefficient 𝑘L defined as

𝑘L = 𝛼 · 𝐷2/3 · 𝛾1/3 (7.16)

where 𝛼 is a constant, equal to 𝛼 =−Ai′ (0)/Ai(0). This factor includes 𝜋 and the Γ (2/3)-
function. Evaluating this function, we find a number 𝛼=0.729011.... The key result is that
once again the flux of solutes into the surface, 𝐽𝑖 , is proportional to the difference between
bulk concentration, 𝑐∞, and surface concentration, 𝑐∗. Now the prefactor depends on the
molecular diffusion coefficient to the power 2/3. The factor 𝛾 represents the gradient in
injection frequency of fresh solution. A numerical example explains this best: if fluid flows
along the surface with such a rate that at 100 𝜇m above the surface the solution is replaced
10 times every second, then 𝛾 = 0.1 (𝜇m · s)−1. At 10 𝜇m above the surface, refreshment
is then every second, and at 1 𝜇m only once every 10 s, etc. With a typical value of
𝐷 = 1 · 10−9 m2/s, we then have a value of 𝑘L = 34 𝜇m/s, which in the standard film model,
with the same diffusion coefficient, would correspond to a diffusion layer thickness of ∼ 30
𝜇m, a typical number. If stirring intensity is proportional to the factor 𝛾, then according to
this equation, if stirring is increased by a factor of say 10, mass transport is only enhanced
by the cube root thereof, in this case a factor of ∼ 2 more. Thus, even though stirring is
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important, and a certain change in Δ𝛾 important to make when 𝛾 is low, i.e., a small amount
of extra stirring then helps a lot, at some point the incremental effect of stirring is small and
the energy costs thereof will surpass the advantage of more stirring. In addition, at some
point of increasing stirring intensity, another mass transport limitation in the process will
become rate-limiting.

A very accurate approximation to the Airy equation (with the given boundary conditions)
for the profile 𝑐 (𝑥) is

𝑐 (𝑥) − 𝑐∞
𝑐∗ − 𝑐∞

= 1 − tanh (𝛼 𝜉) (7.17)

where 𝛼 and 𝜉 are the same as above.
In conclusion, in this section we presented four models to describe steady-state diffusion

and dispersion near a reactive or selective surface for neutral solutes. For the relationship
between flux and concentration, these models all end up with the same result that flux is
proportional to the concentration difference between bulk and surface. However, for the
proportionality factor different expressions are obtained, with a dependence on diffusion
coefficient that can be to the power 1/2, 2/3, or 1.iii

7.2 Ionic current and transport and transference
numbers

In §7.1, we discussed transport of neutral solutes between bulk solution and a surface, and
obtained several relations for the flux of a solute, and for the concentration difference between
bulk and surface. These equations can also be applied when there are many different neutral
solutes, because they do not influence each other. There can even be charged solutes (ions)
but all the while the diffusion equations for the neutral solutes are unchanged. But the
diffusion of ions must be described in a different manner. In the present and next sections
we discuss how to extend the theory to an electrolyte solution, thus when there are ions. In
this case there are always at least two types of ions, cations and anions.

Further on we will explain that many of the results of §7.1 also apply to binary electrolytes.
But first we give general expressions for the ionic current density, and for transference
numbers 𝑡𝑖 , and transport numbers, 𝑇𝑖 . We start with the Nernst-Planck (NP) equation,

iiiInterestingly, the theories presented here for mass transport and diffusion equally apply to the important problem
of heat transport to a surface by conduction and the effect of mixing/stirring. The diffusion coefficient is then
replaced by the thermal conductivity, concentration by temperature, and molar flux by a heat flux.
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Eq. (7.2), extended with convection, which describes the molar flux of an ion 𝑖 by

𝐽𝑖 = 𝑐𝑖𝑣F − 𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
where 𝐷𝑖 is the diffusion coefficient of the ion in the electrolyte phase, and where the
potential 𝜙 relates to a voltage 𝑉 by 𝜙 = 𝑉/𝑉T. In §7.8 we explain how this extended
NP-equation derives from a balance of forces acting on ions in solution.

A summation over all ions of their flux 𝐽𝑖 times their valency 𝑧𝑖 results for current density
(unit A/m2) in

𝐼 = 𝐹
∑︁
𝑖

𝑧𝑖𝐽𝑖 = 𝐹𝑣F
∑︁
𝑖

𝑧𝑖𝑐𝑖 − 𝐹𝜀
∑︁
𝑖

{
𝐷𝑖𝑧𝑖

𝜕𝑐𝑖

𝜕𝑥

}
− 𝜀𝜎∞

𝜕𝑉

𝜕𝑥
(7.18)

where we introduce the ionic conductivity of a solution (unit S/m, where S=A/V and
A=C/m2)

𝜎∞ =

(
𝐹2/𝑅𝑇

) ∑︁
𝑖

𝑧2
𝑖 𝐷𝑖𝑐𝑖 (7.19)

also called the electrical conductivity of a solution, 𝜅. In bulk electrolyte we have local
electroneutrality,

∑
𝑖 𝑧𝑖𝑐𝑖 = 0, and thus the convective term in Eq. (7.18) can be omitted, but

that is not the case in a charged porous medium. We discuss ion conduction in a porous
medium in the next box.

Conductivity in porous media, such as membranes. The conductivity of a porous
medium where pores are filled with electrolyte, such as a flow channel that contains a
mesh of material, 𝜎m, is lower than the conductivity of bulk solution by a factor 𝜀, thus
𝜎m = 𝜀𝜎∞, see p. 159. The factor 𝜀 is porosity, 𝑝, divided by the tortuosity factor, 𝝉,
i.e., 𝜀= 𝑝/𝝉. For flow inside a nanoporous medium such as an ion-exchange membrane,
ions also have friction with the structure, the matrix. In that case, the conductivity,
𝜎m is lower again, now by an additional factor 𝐾f,𝑖 that we discuss at p. 197. Thus
𝜎∗m=𝐾f,𝑖𝜎m =𝐾f,𝑖𝜀𝜎∞.

An important topic is the electrolyte conductivity inside charged membranes, of
special importance for electrodialysis (ED), see Ch. 12. Also here Eq. (7.19) can be
directly applied, as conclusively proven by J.C. Díaz and J. Kamcev 1. We illustrate this
fact by an extensive data set of Díaz and Kamcev for an AEM with |𝑋 |=3.1 M and a CEM
with |𝑋 | = 2.5 M for membranes with several thicknesses, tested with NaCl solutions
with salt concentration from 1 mM to 1 M, see Fig. 7.1A for results obtained with an
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AEM membrane. From the slope of a trendline running through the origin, we can derive
a conductivity of 𝜎∗m∼16 mS/cm for salt concentrations 1–100 mM and 𝜎∗m∼17 mS/m
for 𝑐∞=1 M. Thus conductivity is independent of salt concentration, except for a slight
increase around 1 M NaCl, see Fig. 7.1B. The constant conductance is in agreement with
Eq. (7.19) given that at low enough 𝑐∞ the concentration of counterions in the membrane
is almost equal to |𝑋 | and the concentration of coions is very low. The increase of 𝜎∗m at
1 M NaCl is due to the increase in co- and counterion concentrations in the membrane.
To describe these data, we extend Eq. (2.11) in Ch. 2 to account for a non-unity
partition coefficient, Φ𝑖 (which we use to describe non-electrostatic contributions to the
chemical potential of an ion), resulting in 𝑐2

T,m = 𝑋2 + (2Φ𝑖𝑐∞)2, which relates the total
ion concentration in the membrane, 𝑐T,m, to salt concentration and membrane charge.
The counterion concentration in the membrane is then ½

(
𝑐T,m + |𝑋 |

)
and the coion

concentration ½
(
𝑐T,m − |𝑋 |

)
. These concentrations are then used in Eq. (7.19) which

results in the theoretical lines in Fig. 7.1B (Φ𝑖 = 0.6). To fit to the data we introduce
a membrane reduction factor, mrf, which describes by how much the rate of diffusion
of ions is reduced in the membrane compared to solution, thus mrf=𝜎∞/𝜎∗m=1/𝐾f,𝑖𝜀.
For the AEM considered in Fig. 7.1B, we then have mrf ∼ 15 while for the CEM we
derive mrf∼9.5. Note that measurement of 𝜎∗m based on conductivity (current-voltage
relationship) is only correct when convection and diffusion can be neglected, see 1st and
2nd term on the right in Eq. (7.18). For a charged membrane, convection is typically
non-zero while diffusion is only zero if we can assume the same 𝐷𝑖 for all ions.

Interestingly, a similar analysis by Díaz and Kamcev of data for a commercial CEM
membrane (Neosepta CMX) with |𝑋 | ∼5.7 M, leads to a value of 𝜎∗m∼5 mS/cm while
other literature reports 7-10 mS/cm.These numbers lead to a reduction factor between
mrf=30−60, in line with estimates for the mrf of Neosepta CMX membranes in Tedesco
et al. (2018).2

We summarize these data of mrf vs. |𝑋 | with the empirical function mrf =

exp (𝛼1 |𝑋 |𝛼2 ) where |𝑋 | has the unit M, with 𝛼1 = 1.32 and 𝛼2 = 0.6. (For 𝑋 = 0
M, mrf=1, i.e., no reduction in ion mobility. In this analysis, we use mrf=

√
30 · 60∼42

for the Neosepta membrane.) Data points and the fit line are presented in Fig. 7.2.

A similar relationship between conductivity and membrane charge density is given
by Fan et al. (2022)3 where effectively mrf is expressed as an exponential function of
the ionic valency squared, and with membrane charge density to the power 2/3, i.e.,
the empirical function above is modified to mrf∝ exp

(
𝐴 · |𝑋 |3/2

)
. The prefactor 𝐴 is
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Fig. 7.1: Resistance to ionic transport in an anion and cation exchange membrane (AEM and CEM).
A) Resistance as function of membrane thickness for an AEM. B) Ionic conductivity as function of
external salt concentration. Data from Díaz and Kamcev (2021), and lines based on Eq. (7.19) and
Donnan model, as explained in the nearby box.

inversely proportional to the dielectric constant in the membrane 𝜀r squared, and the
equation in Fan et al. matches that by us if 𝜀r =32 is used. Note that mrf as calculated
by Fan et al. is extremely sensitive to the assumed value of 𝜀r in the membrane.

In Fan et al. (2022)3 also an expression is provided for the influence of membrane
porosity, or water fraction, p, on the diffusion coefficient in the membrane, which is
mrf = (2/𝑝 − 1)2. This expression implies that when 𝑝 = 0.48, mrf = 10, and when
𝑝 =0.18, mrf=100, which are realistic predictions. However, it is not known whether
this formula relates to an influence on diffusion itself (relating to porosity and tortuosity),
or also to ion-membrane friction (resulting in 𝐾f,𝑖 < 1). In §7.8 we discuss approaches
to include ion-membrane friction in a transport model.

We can now define the transference number of an ion, 𝑡𝑖 , as

𝑡𝑖 =
𝑧2
𝑖
𝐷𝑖𝑐𝑖∑

𝑖 𝑧
2
𝑖
𝐷𝑖𝑐𝑖

. (7.20)

The transference numbers, 𝑡𝑖 , are positive for all ions, and add up to unity, i.e.,
∑
𝑖 𝑡𝑖 =1. For

a binary 𝑧+ : 𝑧− salt solution (only one cation, one anion), the transference number of each
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Fig. 7.2: Data for ionic conductivity of an ion-exchange membrane (IEM) recalculated to a membrane
reduction factor, mrf, which is the ratio of ion diffusion coefficient in an IEM relative to that in free
solution, plotted as function of membrane charge density, |𝑋 |. An empirical fit for mrf starts at mrf=1
at 𝑋 =0, and increases to above mrf=40 for the Neosepta CMX membrane (|𝑋 | ∼5.7 M).

of the ions is
𝑡𝑖 =

|𝑧𝑖 |𝐷𝑖
𝑧+𝐷+ + |𝑧− |𝐷−

(7.21)

and we have 𝑡+ + 𝑡− =1.
In the absence of concentration gradients we only have electromigration as a driving force

for ion transport, and then implementing the above equations in Eq. (7.2) results for the ionic
flux in

𝐽𝑖 = 𝑐𝑖𝑣F −
𝑡𝑖 𝐼

𝑧𝑖𝐹
. (7.22)

This is a very elegant equation, but it must be noted that it has a very small range of
application: it is only valid in the complete absence of any concentration gradient, so in the
boundary region near a selective surface it cannot be used.

Transference numbers in membranes. In this chapter we discuss transport in bulk
electrolyte, where we have charge neutrality based on the ions. However, in a charged
membrane, we also have the fixed charge groups, with concentration |𝑋 |. In a description
of transference numbers, these groups are mathematically treated as if they are ions,
with a diffusion coefficient of zero. Thus, also in a membrane we can use Eq. (7.20)
to calculate transference numbers of all (mobile) ions. Transference numbers will then
strongly depend on the concentrations of counterions and of coions, leading to values
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of 𝑡𝑖 close to zero or unity, even though the diffusion coefficients (mobilities) of the
ions are similar. These numbers for 𝑡𝑖 in the membrane via their dependence on ion
concentration in the membrane, will then depend on the concentrations of ions outside
the membrane (because of Donnan equilibrium). But transference numbers have no
direct relation to the rates of transport of ions, as we will discuss next.

—

Besides the transference number, 𝑡𝑖 , there is the transport number, 𝑇𝑖 , and this is a very
different parameter. The transference number, 𝑡𝑖 , was defined by Eq. (7.20) and can be
calculated when we know all ion valencies and diffusion coefficients. It describes the
contribution of ions to the current only if the composition of the solution phase is uniform
(all concentration gradients are zero). Instead, the transport number describes the actual or
‘real’ contribution of ion transport to the current, thus also when there are concentration
gradients, which always is the case near a selective surface, such as near an electrode or
membrane. Thus, the transport number 𝑇𝑖 is the local contribution of a certain ion flux to the
local current, whether or not there are ion concentration gradients. The differences between
𝑡𝑖 and 𝑇𝑖 can be large, with the transference number, 𝑡𝑖 , in a binary salt solution always at the
same value, see Eq. (7.21), but the transport number, 𝑇𝑖 , changing in time and with position.
Only with vigorous stirring, and away from selective interfaces, do the two parameters have
the same value. But in general they have different values.

Transport numbers can be used to describe a process where bulk electrolyte is in contact
with a selective interface, with current running through this interface. This interface can be
an electrode, absorbent material, or membrane. As just mentioned, the transport numbers,
𝑇𝑖 , describe the contribution of each ion to the current density, and they are often position-
dependent, and for a dynamic process also time-dependent. Only in a one-dimensional
steady-state transport problem, without convection along the surface, i.e., without dispersion
modelled as a ‘sideways’ refreshment, are they constant, i.e., independent of position. In
other situations they vary with position. If the selective layer (for instance a membrane)
operates in steady-state, with ion fluxes assumed to cross the membrane in one particular
direction x, then inside the membrane the transport number of a certain ion will be the same
at each x-position, i.e., 𝑇𝑖 will be invariant with x.iv Note that this is only true for inert ions.
When we have reactive ions, transport numbers of individual ions will change with position,
also for a membrane layer in steady state, see Ch. 10.
ivIn a full membrane module, with also a coordinate z directed along the membrane, i.e., through the flow channel

from entrance to exit, transport numbers will depend on z.
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So how to calculate transport numbers right next to a selective interface, such as a
membrane? They are not material properties, or properties of the ionic solution, like the
transference number is. They are not membrane properties in the same way that an ion
mobility or a membrane charge density is. Instead, they follow from a combination of a
transport model for the membrane, with a transport model for the flow channel, and they
(i.e., their values) emerge in a calculation that considers the complete membrane-electrolyte
system. In some cases we can assume the membrane (or other selective layer) to have
a certain transport number for a certain ion, for instance we can assume that a certain
membrane is perfectly selective and only allows access to a certain type of ion, so for this
ion 𝑇𝑖 =1 and for all other ions 𝑇𝑖 =0. For a reactive electrode where only a certain species
is consumed, for that species the transport number is unity, while it is zero for all other
species.v

The transport number is defined (at any position) as the fraction of the current density
carried by a certain ion, i.e., it is the local ion flux times 𝑧𝑖 over the local current density

𝑇𝑖 = 𝑧𝑖𝐽𝑖/𝐽ch (7.23)

without any requirements such as uniformity of concentration profiles. Also, because
𝐽ch =

∑
𝑖 𝑧𝑖𝐽𝑖 , it is the case that

∑
𝑖 𝑇𝑖 = 1, just like for transference numbers. However, what

is different is that transport numbers can also be <0 or >1, while transference numbers are
always between 0 and 1. For instance, in a process called ‘osmotic power generation’, or
reverse electrodialysis (RED), both ions have fluxes in the same direction, thus for the coion
the transport number is <0, while it is >1 for the counterion.

For solutions with all ions monovalent (a 1:1 salt, but more than one type of cation and
anion possible), we can use the concept of the current efficiency, 𝜆, which is the ratio of
ions flux into a surface, 𝐽 ions, over the current density, 𝐽ch. This current efficiency, 𝜆, can be
used to characterize ion adsorption in porous electrodes, see §15.3, and also describes ion
selectivity in membrane transport, see §12.3. Current efficiency is defined as

𝜆 =
𝐽 ions

𝐽ch
=
𝐽+ + 𝐽−
𝐽ch

(7.24)

and for a 1:1 salt can be related to transport numbers according to

𝜆 = 𝑇+ − 𝑇− (7.25)

where 𝑇+ is calculated as a summation over the 𝑇𝑖’s of all cations, and the same for 𝑇− and all
anions. Thus when all anions together contribute 50% to the current density, and likewise

vThis is then the case at the very surface, not necessarily at distances 𝑥 > 0, unless there is steady-state, no
dispersion, etc.
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all cations contribute 50%, then 𝑇+=𝑇− =½ and then 𝜆=0, i.e., there is transport of current,
with all cations going in one direction and all anions in the opposite direction, but there is
no ‘net’ transport of ions as a whole.

As mentioned, when both the anions and cations go in the same direction (as is the case
for the aforementioned RED-process), then the transport number will be < 0 for the coion
and >1 for the counterion, and consequently 𝜆>1. As a metric to define efficiency, numbers
beyond unity are not very intuitive, and that is why in RED and similar processes, instead
a different efficiency is used, which is the salt transport efficiency, 𝜗. This efficiency is
defined as 𝜗 = 1/𝜆 and is a measure of how effectively the salt concentration difference is
used to generate electrical current. For a well-designed RED process this ratio is close to
unity. However, when membranes are used with large pores (a pore diameter of several nm’s
or more), or membranes that are too thin (for instance a thickness less than 1 𝜇m), then the
ions flux (leakage of ions, 𝐽++𝐽−) is high relative to the generated current, and thus 𝜗 will
be low. On p. 338 we discuss in more detail the low value of 𝜗 when very thin membranes
are used, and the effect thereof on osmotic power production.

7.3 General balances for binary electrolytes

In multicomponent ionic mixtures (electrolytes), in general we must solve mass balances for
all ions individually. When there are fast reactions between them, it is possible to combine
balances of individual ions to one balance per ‘group’ of ions, as explained in Ch. 10. But in
the absence of such reactions, generally each ion must be considered by a separate balance
equation. And this balance then includes diffusion as driving force, electrical potentials, and
convection and dispersion. But in this section we explain how for a binary salt, which is a salt
with one type of cation and one type of anion, with arbitrary values of diffusion coefficients
and valencies, we can derive a general, combined, balance for the salt as a whole, which
does not include a dependence on potential gradients. This derivation is for a solution phase
without additional charges from a porous medium, and thus includes the electroneutrality
condition which is that at each position the concentration of cations times their valency
plus that of the anion times their valency, is zero; see p. 203 for more information on the
electroneutrality condition.

To evaluate transport of a binary salt, we start with the NP equation for an ion, Eq. (7.2),
in combination with a mass balance, Eq. (7.1), to which we also add a dispersion effect
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modelled by a refreshment term.vi Reactions in solution are not considered – for that, see
Ch. 10. The convection term can be in the x-direction towards a surface or in a direction along
a surface, 𝑧, and to describe both situations simultaneously we use the general formulation
of ∇ · (𝑐vF) here. Thus, the ion mass balance becomes

𝑝
𝜕𝑐𝑖

𝜕𝑡
= −∇ · (𝑐𝑖vF) +

𝜕

𝜕𝑥

(
𝐷𝑖

𝜕𝑐𝑖

𝜕𝑥

)
+ 𝜕

𝜕𝑥

(
𝐷𝑖𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
+
𝑐∞,𝑖 − 𝑐𝑖

𝜏
. (7.26)

Now we analyze Eq. (7.26) for a binary salt. We multiply each term in Eq. (7.26) by 𝑧+ for
the cation, and by |𝑧− | for the anion, and define 𝑐 as the ‘monovalent equivalent’ (m.e.) salt
concentration, which is given by 𝑐 = 𝑧+𝑐+ = |𝑧− |𝑐− . We now arrive both for the cation and
for the anion at

𝑝
𝜕𝑐

𝜕𝑡
= −∇ · (𝑐vF) +

𝜕

𝜕𝑥

(
𝐷𝑖

𝜕𝑐

𝜕𝑥

)
+ 𝜕

𝜕𝑥

(
𝐷𝑖𝑧𝑖𝑐

𝜕𝜙

𝜕𝑥

)
+ 𝑐∞ − 𝑐

𝜏
(7.27)

where c without index i is the m.e. salt concentration defined above. We evaluate Eq. (7.27)
for both ions and equate the two results. We then arrive at the charge balance

0 =
𝜕

𝜕𝑥

(
(𝐷+ − 𝐷−)

𝜕𝑐

𝜕𝑥

)
+ 𝜕

𝜕𝑥

(
(𝑧+𝐷+ + |𝑧− |𝐷−) 𝑐

𝜕𝜙

𝜕𝑥

)
. (7.28)

Combining Eq. (7.27) (evaluated for one of the ions) with Eq. (7.28), we arrive at the salt
mass balance

𝑝
𝜕𝑐

𝜕𝑡
= −∇ · (𝑐vF) +

𝜕

𝜕𝑥

(
𝐷hm

𝜕𝑐

𝜕𝑥

)
+ 𝑐 − 𝑐∞

𝜏
(7.29)

which is a quite amazing result: for any binary salt also when it is asymmetric (such as a 2:1
salt, for instance CaCl2), we can derive a salt balance that includes convection, diffusion,
and refreshment, but not electromigration. The ‘harmonic mean’ diffusion coefficient in
Eq. (7.29), 𝐷hm, is given by

𝐷hm =
(𝑧+ + |𝑧− |) 𝐷+𝐷−
𝑧+𝐷+ + |𝑧− |𝐷−

(7.30)

which for a binary symmetric salt (a 1:1 or 2:2 salt) simplifies to

2
𝐷hm

=
1
𝐷+
+ 1
𝐷−

. (7.31)

When 𝐷+=𝐷− =𝐷, also for an asymmetric salt, it follows from Eq. (7.30) that 𝐷hm=𝐷.
viWe do not include here dispersion modelled as parallel to molecular diffusion, as discussed in §7.1.2, though the

results arrived at in the present section also hold then.
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Thus Eq. (7.29) shows how also for any asymmetric binary salt, with the two ions having
different diffusion coefficients and different valencies, we have transport of salt as if it is a
single neutral molecule. This is only the case for a binary salt solution, i.e., with only one
cation and one anion, in a phase without any other (fixed) charge. This equation can be used
for electrolyte flow in a channel that is empty or filled with an uncharged mesh structure, or
for flow through any other type of uncharged porous medium.vii

Including dispersion in the general balance for binary salts. When Eq. (7.30) is solved
in multiple dimensions with flow, then the refreshment term (𝑐 − 𝑐∞) /𝜏 is not typically
used because there is no additional sideways flow that can be the origin of it (convection
is already included in the ∇·(𝑐vF) -term). But instead, Eq. (7.30) can be extended with
‘dispersion parallel to diffusion’ as described in §7.1.2. Then we use a coefficient𝐷⋄

𝑖
that

combines molecular diffusion and dispersion, and this 𝐷⋄
𝑖

is used in the concentration
gradient-terms in Eqs. (7.27) and (7.28) instead of just 𝐷𝑖 . The electromigration-part
only depends on molecular diffusion and thus 𝐷𝑖 is used there. Re-analysing Eqs. (7.27)
and (7.28) we then find that Eq. (7.30) is replaced by (Newman, 1983)

𝐷⋄hm =
𝑧+𝐷+𝐷⋄− + |𝑧− |𝐷−𝐷⋄+

𝑧+𝐷+ + |𝑧− |𝐷−
(7.32)

where the 𝐷⋄
𝑖
’s include both molecular diffusion and dispersion. The dispersion

coefficient is independent of the ion; it only depends on the hydrodynamic flow pattern
near the surface and the resulting fluid mixing. For a symmetric salt (where 𝑧+ = |𝑧− |)
and in case 𝐷 = 𝐷+ = 𝐷− , we obtain 𝐷⋄hm = 𝐷⋄ = 𝐷 +𝐷disp. If dispersion is much
larger than diffusion, so the 𝐷⋄

𝑖
’s become the same for both ions (because the dispersion

coefficient does not depend on the ion), we end up with 𝐷⋄hm=𝐷disp for any binary salt.
If this limit applies, then nothing about an ion’s charge, valency, or diffusion coefficient
matters in determining salt concentration profiles, only the dispersion coefficient. This
is correct in a bulk phase sufficiently far away from any surface, but certainly does not
apply to the last 10s of 𝜇m’s right next to a selective interface, where mass transfer
limitations most certainly are important.

The approach described in this box, where 𝐷hm depends on a dispersion coefficient, is
generally valid whichever expression is used for the dispersion coefficient, irrespective
of whether it is invariant or not with position. This is the case when we use the general

viiThe presence of which, as we explain in Ch. 12, leads to an additional term 𝑝/𝝉 (with 𝝉 the tortuosity factor) in
front of each factor 𝐷, and to the porosity-term 𝑝 in front of the 𝜕𝑐/𝜕𝑡-term.
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form of Eq. (7.29) with 𝐷hm ‘inside the differential’. We can only take 𝐷hm outside the
differential if there is no dependence of it on position or concentration. That will be the
approach in the next box.

Simplified approaches to include dispersion in mass transfer modelling in channels. In
several cases, especially for a flow channel (not so much for a surface in contact with
bulk solution), it is useful to assume the dispersion coefficient is some constant, for
instance we set it to a multiple of the diffusion coefficient, thus not x- or c-dependent.
We can then simplify Eq. (7.29) (also leaving out refreshment), resulting in

𝑝
𝜕𝑐

𝜕𝑡
= 𝐷⋄hm

𝜕2𝑐

𝜕𝑥2 − ∇ · (𝑐vF) . (7.33)

Even though salt transport is enhanced because of dispersion, a calculation of potentials
and currents, making use of Eqs. (7.2), (7.18), and (7.28), is based on the molecular
diffusion coefficients, 𝐷𝑖 , and thus is not directly affected by dispersion. This is a
very useful approach to describe transport across the flow channels used in membrane-
based water desalination technologies described in Chs. 11 and 12. When this model
is evaluated in the limit of a very high dispersion coefficient, then flat concentration
profiles are predicted in the direction across the flow channel. This limiting model
should then give the same outcome as a simple model where this flat profile is a-
priori assumed, i.e., where in the 𝑥-direction towards an interface concentrations are
assumed to be invariant. Of course in this model, all effects of mass transport across
the channel that could lead to concentration profiles are gone but this may nevertheless
be a realistic first order model for reverse osmosis or electrodialysis when combined
with a plug flow reactor (PFR) approach in the z-direction along the membrane. An
Ohmic resistance across the channels, relating current and voltage drop, depends on the
molecular diffusion coefficients, and is still part of the the model even when dispersion
is so large that all concentration profiles are equalized out. For a given current, the
voltage changes across a channel are less when concentrations are more equalized out,
but except for this effect, more stirring does not enhance charge transport or reduce
voltages.
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Convection in a model for concentration polarization (CP) in membrane transport.
When we make use of the full extended NP equation also including convection,
Eq. (7.2), then a DBL model solved for a binary 𝑧+ : |𝑧− | salt for zero current leads to
the result that the ‘monovalent equivalent’ (m.e.) molar flux (𝐽m.e. = 𝑧+𝐽+ = |𝑧− |𝐽−) is
given by

𝐽m.e. = 𝑐 𝑣F − 𝐷hm
𝜕𝑐

𝜕𝑥
(7.34)

where the harmonic mean diffusion coefficient 𝐷hm is given by Eq. (7.30). For a
1:1 salt, 𝐽m.e. simply corresponds to the salt flux, 𝐽𝑖 (the same molar flux for cations as
for anions), and c is simply the salt concentration, at any point in the DBL. In Ch. 11
this expression is integrated to obtain an analytical expression for the DBL in front of a
membrane used for water desalination.

7.4 Boundary equations for binary salts
We will explain how the general validity of Eq. (7.29), also for asymmetric salts, has the
implication that the various analytical results of §7.1 are valid not just for a neutral solute,
but just as much for any binary asymmetric salt with two ions with different valencies and
diffusion coefficients. [And even for a system with many more solutes, but all of these then
have to be neutral.] The only added complexity is that we must analyze what the flux 𝐽 used
in §7.1 means to in the context of a binary salt solution.

We make this comparison on the basis of a simplification of the binary salt balance,
Eq. (7.29), neglecting convection and assuming a constant diffusion coefficient, leading to

𝑝
𝜕𝑐

𝜕𝑡
= 𝐷hm

𝜕2𝑐

𝜕𝑥2 +
𝑐 − 𝑐∞
𝜏

(7.35)

which we will analyze for steady state, i.e., we set the left side to zero. Eq. (7.35) is
very similar to Eq. (7.11) which was based on a neutral solute with concentration c and
diffusion coefficient D, while Eq. (7.35) is for a binary salt with monovalent equivalent
concentration c and harmonic mean diffusion coefficient 𝐷hm. Thus these equations are
completely analogous, and results from §7.1 can also be used for a binary salt, also in the
presence of electrical potential gradients and/or non-zero current densities. Note that this
analogy only holds for three out of the four models used in §7.1, namely for the standard
DBL model where the term (𝑐 − 𝑐∞) /𝜏 is zero, and for the two refreshment models, the one
with fixed 𝜏 and the one with position-dependent 𝜏. Thus, we will not consider the model
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with ‘dispersion parallel to diffusion’ in this section, because it is not exactly described by
Eq. (7.35).

We will explain how to make use of results from §7.1. There several results were
obtained for the relationship between the boundary flux 𝐽 in steady state, and the difference
in concentration between bulk and surface based on solving Eq. (7.11) with the boundary
condition at the surface 𝐽 = −𝐷 · 𝜕𝑐/𝜕𝑥 |∗ (and 𝜕𝑐/𝜕𝑥 = 0 far away). First of all, terms J
in the expressions in §7.1 must be replaced by −𝐷 𝜕𝑐/𝜕𝑥 |∗, and we must interpret D now
as 𝐷hm. Then we have an expression for 𝑐∗−𝑐∞ versus 𝜕𝑐/𝜕𝑥 |∗ based on Eq. (7.11) with
D replaced by 𝐷hm. Next we need to know what is 𝜕𝑐/𝜕𝑥 |∗ in the new model for a binary
salt, as function of current, 𝐽ch, transport numbers at the surface, 𝑇𝑖 , ion valencies, and ion
diffusion coefficients. This is the step we make next.

We can evaluate the expression for current density, Eq. (7.18), for a binary salt, use
𝐽ch = 𝐼/𝐹, assume electroneutrality, thus

∑
𝑖 𝑧𝑖𝑐𝑖 = 0, make use of 𝑧2

− = |𝑧− |2, define c again
as the ‘monovalent equivalent’ salt concentration, and thus obtain

𝐽ch = − (𝐷+ − 𝐷−)
𝜕𝑐

𝜕𝑥
− (𝑧+𝐷+ + |𝑧− |𝐷−) 𝑐

𝜕𝜙

𝜕𝑥
. (7.36)

Free diffusional potential. When current density 𝐽ch is zero, we can derive what is
the potential gradient that develops when the asymmetric salt diffuses through ‘free’
solution, or through a porous medium without fixed charges. This ‘free diffusional
potential’ (Sasidhar and Ruckenstein, 1982; p. 351)4 can be derived from Eq. (7.36) by
setting 𝐽ch to zero, leading to

𝜕𝜙

𝜕𝑥
= − 𝐷+ − 𝐷−

𝑧+𝐷+ + |𝑧− |𝐷−
𝜕 ln 𝑐
𝜕𝑥

(7.37)

which can be integrated from a position I to II, leading to

𝜙II − 𝜙I = −
𝐷+ − 𝐷−

𝑧+𝐷+ + |𝑧− |𝐷−
ln
𝑐II

𝑐I
(7.38)

which we can also rewrite to

𝑐 = 𝑐∞ · exp (−𝛼𝜙) (7.39)

where we replaced 𝑐II by just c, 𝑐I by 𝑐∞, set 𝜙I = 0, replace 𝜙II by 𝜙, and use 𝛼 =

(𝑧+𝐷+ + |𝑧− |𝐷−) /(𝐷+ − 𝐷−). Eq. (7.39) seems similar to the Boltzmann equation,
Eq. (2.2), but this similarity is only superficial and is not real. Because the Boltzmann
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distribution exists independent of diffusion coefficients, while here the sign of 𝐷+−𝐷−
determines the slope of the potential change versus the concentration change, setting this
slope to negative, zero, or positive. This different dependence on diffusion coefficients,
shows that there is no relation between Eq. (7.39) and Boltzmann’s law.

Second, we make use of the definition of the transport number, 𝑇𝑖 = 𝑧𝑖𝐽𝑖/𝐽ch, which
we combine with Eq. (7.2) evaluated for one of the ions (we choose the cation), and then
combine with Eq. (7.36), resulting finally in

𝜕𝑐

𝜕𝑥
· (𝑇+𝐷− + 𝑇−𝐷+) = 𝑐

𝜕𝜙

𝜕𝑥
· ( |𝑧− |𝐷−𝑇+ − 𝑧+𝐷+𝑇−) . (7.40)

This we combine again with Eq. (7.36), resulting in

𝐽ch = − 𝐷+𝐷− (𝑧+ + |𝑧− |)
|𝑧− |𝐷−𝑇+ − 𝑧+𝐷+𝑇−

· 𝜕𝑐
𝜕𝑥

����∗ = −𝑐 𝐷+𝐷− (𝑧+ + |𝑧− |)𝐷−𝑇+ + 𝐷+𝑇−
· 𝜕𝜙
𝜕𝑥

����∗ (7.41)

reiterating that index * refers to a position at the surface. This general relationship provides
for any binary 𝑧+ : |𝑧− | salt the required boundary condition for 𝜕𝑐/𝜕𝑥 |∗ at the surface
as function of current density 𝐽ch, transport numbers, and ion diffusion coefficients and
valencies.

Thus when in a certain experiment with a certain binary salt solution we know 𝐽ch and the
𝑇𝑖’s, we can use Eq. (7.41) to calculate 𝜕𝑐/𝜕𝑥 |∗, which is then equal to the related expression
for 𝐽𝑖/𝐷hm from §7.1. Below we provide examples of how this works out exactly, but first
let us discuss certain simplifications of Eq. (7.41).

As a first simplified case of Eq. (7.41), we can assume that the surface is only accessible
to cations (i.e., only cations can cross the surface), and thus we have 𝑇+=1 and 𝑇− =0 there,
and then the general expression, Eq. (7.41), simplifies to

𝐽ch = − 𝑧+ + |𝑧− ||𝑧− |
𝐷+

𝜕𝑐

𝜕𝑥

����∗ (7.42)

which shows that for a certain current density the concentration gradient in solution next to
a selective interface (for instance a membrane or electrode) only depends on the diffusion
coefficient, D, of the ion that goes through the interface, and not on D of the ion that is
blocked.viii For a given current density, the resulting concentration gradient also depends on
the valencies of both ions. Note that this result that 𝐽ch is independent of 𝐷coion, as Eq. (7.42)
viiiEq. (7.42) is the same as Eq. (72-11) in Newman (1983) when we use 𝑢𝑖 ∝ 𝐷𝑖 . Note that in Newman, 𝜐+ 𝑧+ = 1.
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shows, is only correct for a membrane or electrode that completely blocks the coions, and is
only valid at the very interface. Eq. (7.42) is also valid away from the interface but then only
in the simple DBL model of §7.1.1 for steady state. It is not valid away from the surface for
the models that include refreshment if only because transport numbers 𝑇𝑖 gradually change
from their values at the surface (which relate to the selectivity of the interface) to values in
bulk where they are equal to the transference numbers, 𝑡𝑖 .

For a 1:1 salt, Eq. (7.42) simplifies to the classical result

𝐽ch = −2𝐷+
𝜕𝑐

𝜕𝑥

����∗ (
= −2𝑐𝐷+

𝜕𝜙

𝜕𝑥

����∗) (7.43)

which illustrates that the cation flux (which is equal to the current density, 𝐽ch, in this case of
a perfectly selective interface) is twice the flux by molecular diffusion, and twice the Ohmic
transport of cations. Thus the cation flux is now for 50% due to diffusion, and for 50% due to
electromigration. The electrical field that drags the cations (counterions) to and through the
surface (which leads to the Ohmic contribution to cation transport), also pushes the coions
away from the surface. This leads to the salt concentration near the surface to go down until
the concentration gradient becomes steep enough that diffusion attracts the coions with the
same force as the force of the electric field pushes them away. That concentration profile
–with the concentration now decreasing towards the interface– now acts as a diffusional
driving force for the counterions towards the surface. The end result is that the counterion
has a twice larger flux than one would guess based on Ohm’s law only and assuming only
cations to be mobile charge carriers. Instead, the coions, even if they don’t go through the
interface, play a role, are coupled to the counterions, and for a given current they reduce the
voltage drop over a film or channel by a factor of 2 compared to the case that they would be
fixed in space, homogeneously distributed. For a 2:1 salt and again a membrane which does
not allow anions through, the proportionality between 𝐽ch and −𝐷+𝜕𝑐+/𝜕𝑥 (with 𝑐+ = 𝑐/𝑧+)
is not 2 but 6. For a 1:2 salt it is a factor 1.5 (𝑐+ = 𝑐).

The examples here for an interface that only allows cations through, can be easily modified
to represent the opposite case of an interface only allowing access to the anions, by replacing
each 𝑧+ by |𝑧− |, and vice-versa. To derive these equations, it is best to start again at Eq. (7.41).

A different simplification is when we have a symmetric z:z salt, with equal diffusion
coefficients, 𝐷=𝐷hm, but the surface is no longer perfectly selective to one of the ions. We
then simplify Eq. (7.41) to

𝐽ch = − 2𝐷
𝑇+ − 𝑇−

𝜕𝑐

𝜕𝑥

����∗ (7.44)

and, interestingly, this relationship is independent of the ion valency, i.e., Eq. (7.44) is
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equally valid for a 1:1 and a 2:2 salt. Note that for a 2:2 salt, concentration c is twice higher
than the salt concentration.

As explained, an important application of the above expressions for 𝐽ch as function
of 𝜕𝑐/𝜕𝑥 |∗ is that it allows us to generalize results from §7.1. Thus, for instance, we
can use Eq. (7.13) for the convection-along-the-surface-with-constant-𝜏-model, implement
𝐽 = −𝐷hm · 𝜕𝑐/𝜕𝑥 |∗, and have 𝜕𝑐/𝜕𝑥 |∗ replaced by an expression involving 𝐽ch and the 𝑇𝑖’s
based on any of the expressions just discussed, such as Eq. (7.41) in the general case.

Here let us analyze the example of a solution of a 1:1 salt, with equal diffusion coefficients,
𝐷=𝐷hm, based on Eq. (7.44). We use Eq. (7.13) and then arrive at

𝐽ch =

√︂
𝐷

𝜏
· 2
𝑇+ − 𝑇−

· (𝑐∞ − 𝑐∗) . (7.45)

In a different example, again for a 1:1 salt, but now with unequal diffusion coefficients,
for a perfectly selective interface (only allowing cations through, thus 𝑇+ =1), combination
of Eqs. (7.13) and (7.42) leads to

𝐽ch = 2
√︂
𝐷+
𝜏

√︂
𝐷+
𝐷hm

· (𝑐∞ − 𝑐∗) (7.46)

which interestingly still includes a dependence on the coion (anion) diffusion coefficient (via
𝐷hm). There will not be such an influence of the coion when we use the classical film model
without a refreshment effect from §7.1.1. The two last expressions lead to the same result
when we set 𝑇+=1 and 𝑇− =0 in the first, and 𝐷hm=𝐷+=𝐷 in the second expression.

Note that when expressions similar to Eqs. (7.45) and (7.46) are derived for 2:1, 2:2, etc.,
salts, that 𝑐∞ and 𝑐∗ again refer to bulk and surface, but they are not the salt concentration, in
the way that throughout this book 𝑐∞ is defined as a salt concentration of a 1:1 salt. Instead
they are monovalent equivalent salt concentrations.

7.5 Simplified solutions for a symmetric 1:1 salt

In this section we consider the simplified situation of a 1:1 salt with the anion and cation
having the same diffusion coefficient, D. We first consider the situation of the simple film
layer as described in §7.1.1. The current density running across the DBL is given by the
general equation, Eq. (7.41), which we solve for 𝑧+= |𝑧− |=1 and 𝐷=𝐷− =𝐷+, resulting in

𝐽ch = −2𝐷
𝜆

𝜕𝑐

𝜕𝑥
(7.47)
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where we implemented Eq. (7.25) for current efficiency, 𝜆. And thus according to Eq. (7.24),
the ions flux across the DBL is given by

𝐽 ions = −2𝐷
𝜕𝑐

𝜕𝑥
(7.48)

a result we can also have arrived at from adding up 𝐽+ and 𝐽− , based on the NP-equation
without convection, Eq. (7.2). We can then integrate Eq. (7.48) across the film layer, thus
from bulk to surface, and obtain

𝐽 ions = 2 𝑘L (𝑐∞ − 𝑐∗) (7.49)

where as before 𝑘L =𝐷/𝛿, and 𝛿 is the thickness of the film layer (DBL), and 𝑐∗ is the salt
concentration at the surface.

We can also derive an expression for current density from Eq. (7.2) based on 𝐽ch = 𝐼/𝐹 =

𝐽+ − 𝐽− , resulting in

𝐽ch = −2𝐷 𝑐
𝜕𝜙

𝜕𝑥
(7.50)

which can be combined with Eq. (7.47) which then results in

𝜆 =
𝜕 ln 𝑐
𝜕𝜙

(7.51)

and if 𝜆 is the same at all positions in the film layer (which is the case for the simple film
model of §7.1.1), then Eq. (7.51) can be integrated over the DBL toix

𝑐∗ = 𝑐∞ · exp (𝜆𝜙dbl) (7.52)

where 𝜙dbl is the potential across the film layer (potential at surface minus that in bulk).
These equations define transport in the film layer, or DBL, when diffusion and

electromigration are both important driving forces. In combination with knowledge of
ion reactions at the surface, or transport through it, for instance because of a membrane, the
factor 𝜆 is established at that position, and for a given current 𝐽ch we then know 𝐽 ions, and
the above equations provide information on the surface concentration 𝑐∗, and potential drop
over the DBL.

We can integrate Eq. (7.47) across the film and obtain

𝐽ch =
2𝑘L

𝜆
(𝑐∞ − 𝑐∗) → 𝑐∗ = 𝑐∞ −

𝐽ch𝛿

2𝐷𝜆
. (7.53)

ixThis equation is an extension of Eq. (2.118b) in Vetter (1967). Many of the equations in the present and former
sections can be found there.
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If both 𝜆 and current 𝐽ch are positive, then Eq. (7.53) predicts that the surface concentration is
lower than the bulk concentration, thus the concentration of both ions goes down towards the
membrane. For a current 𝐽ch that is positive in the direction to the surface, the potential over
the DBL, 𝜙DBL is negative which inspection of Eq. (7.50) also shows, and then Eq. (7.52)
shows the same, that for 𝜆 > 0, that 𝑐∗ < 𝑐∞. This decrease in salt concentration towards
the surface is indeed the general observation in (models of) electrodialysis (ED) for the
concentration profile of ions near a membrane in the diluate channel. The case of positive
𝐽ch and positive 𝜆 relates to the surface being a cation exchange membrane. For an anion-
exchange membrane, both 𝐽ch and 𝜆 are negative and again we have the concentration going
down towards the membrane in the diluate channel. In the concentrate channels the situation
is reversed, and at the membranes the salt concentration is higher than in the center of the
flow channels.

If we consider the case of 𝜆=±1, we have a perfectly selective interface that only allows
one type of ion to go through. Then 𝐽 ions only has a contribution from the ion that reacts
at, or moves through, the surface. This ion we can call the counterion. The other ion is
the coion and this ion cannot cross the interface, and thus it is at equilibrium throughout
the DBL, and thus its concentration profile must follow Boltzmann’s law. With 𝜆 = 1 and
𝐽ch > 0, then anions are the coions, thus Eq. (7.52) should be the Boltzmann equation for
anions, which indeed it is. If the membrane only allows anions through, then 𝜆=−1 and now
Eq. (7.52) results in the Boltzmann distribution for cations. Thus for a perfectly selective
surface, the Boltzmann relation is established for the coions over the entire film layer. Note
that this is only the case in the classical DBL model of a fixed thickness, that was explained
in §7.1.1.

Next we continue with models in which a dispersion effect is included by the refreshment
concept of adding a term (𝑐 − 𝑐∞) /𝜏 in the salt mass balance that was explained in §7.1.3.
For neutral solutes this led to the same relationship between 𝐽𝑖 and surface concentration as
for the standard film model, just with a different definition of 𝑘L. That will then also be the
case for a 1:1 salt solution, thus Eq. (7.53) is again valid. But the concentration and voltage
profiles are now different. Compared to the basic film model of §7.1.1 where transport is
across a layer of thickness 𝛿, the result we arrive at is more elegant because it integrates
simultaneously over the entire bulk phase (such as a channel) and the DBL, without an ad
hoc dividing plane.

To find the potential across a channel including the DBL, we use Eq. (7.10) in which we
implement Eq. (7.47), resulting in

𝑐 (𝑥) = 𝑐∞ −
𝐽ch𝜆

2𝑘L
· exp (−𝑥/𝛿) (7.54)
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where 𝑘L =
√︁
𝐷/𝜏 and 𝛿=

√
𝐷𝜏. Eq. (7.54) can be implemented in Eq. (7.50)x to obtain an

expression for the potential, 𝜙ch, across a layer or channel with thickness 𝐿ch, as function of
the current density (directed across the channel) and salt concentration 𝑐∞

𝜙ch = − 𝐽ch

2𝑘L𝑐∞

(
𝐿ch

𝛿
− ln

(
1 − 𝜆 𝐽ch

2𝑘L𝑐∞

))
. (7.55)

This 𝜙ch is the total voltage drop across the channel, all the way up to the surface; thus it
includes the DBL. For low currents, Eq. (7.55) simplifies to

𝜙ch |Ohmic = −
𝐽ch

2𝑘L𝑐∞

𝐿ch

𝛿
= − 𝐽ch𝐿ch

2𝐷𝑐∞
(7.56)

which describes the Ohmic potential drop over a channel with concentration 𝑐∞, independent
of refreshment parameters such as 𝜏 and 𝛿. In the other limit, Eq. (7.55) leads to a limiting
current (LC). For 𝜆 = ±1 we arrive at 𝐽ch,LC = ±2𝑘L · 𝑐∞. When the current density
approaches this limit, the potential drop over the entire layer, 𝜙ch, diverges. xi

In Fig. 7.3 we provide calculation results for voltage versus current across a channel of
thickness 𝐿ch for a 1:1 salt that is next to a perfectly selectivity interface (𝜆 = 1). [These
results also apply to a ‘half-channel’ with a symmetry plane, with a surface on both sides,
as in the diluate channel in the ED-process.] We use the refreshment model, Eq. (7.55),
scaled to the Ohmic voltage drop given by Eq. (7.56). We use a value of 𝛿 that is 10% of the
channel thickness 𝐿ch, and we scale 𝐽ch to 𝐽ch,LC. We also plot the result for the standard
DBL model given by Eq. (7.52) for a DBL of thickness 𝛿, to which we must add the Ohmic
voltage drop across the remaining channel of thickness 𝐿ch-𝛿. The standard model with
fixed film layer thickness predicts a lower voltage across the channel than Eq. (7.55). This
can be understood because in the standard film model 90% of the channel is at the bulk salt
concentration, and only 10% is perturbed, while in the refreshment model, the decrease in
salt concentration penetrates further into the channel, i.e., the average salt concentration will
be somewhat less, implying a higher resistance across the full channel thus a higher voltage.
For low currents, the slope of 𝜙ch/𝜙ch |Ohmic vs. 𝐽ch/𝐽ch,LC in the refreshment model is given
by 𝛿/𝐿ch, which in this calculation then has a value of 0.1. The standard film model has a
slope in this limit that is exactly half that value. This difference has the consequence that if a
transfer coefficient, 𝑘L, is derived on the basis of (the deviation from linearity of) a curve of

xThis equation is also valid with refreshment included, see Eq. (7.36) for the case considered of a 1:1 symmetric
salt.

xiFor the refreshment model with variable 𝜏 of §7.1.4, the 𝑐 (𝑧)-function is given by Eq. (7.17) which can be
implemented in Eq. (7.50) and then integrated to obtain an expression for 𝜙ch. This is possible but the result is
a very lengthy expression.
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Fig. 7.3: The voltage across a channel that has a selective interface on one side, as function of current
density, according to the standard film model, and based on the fixed-𝜏 refreshment theory. For
parameter settings see main text.

voltage versus current in the limit of low currents, that we obtain a a difference by a factor of
two in the predicted value of 𝑘L, depending on the chosen model. The standard film model
with fixed thickness would lead to the prediction of a twice lower 𝑘L than when the same
data of voltage vs. current are analysed using the constant-𝜏 refreshment model.

7.6 Electrolytic conduction across a planar channel

To illustrate the concepts of previous sections, we will analyze the transfer of charge across
a planar channel, a classical experiment in electrochemical engineering, relevant for many
applications, for instance metal plating and Li+-ion batteries. It is also a good example to
show the results of the theory for ion transport and dispersion, and how it affects transport
numbers. We discuss the problem of a metallic cation dissolving from one electrode and
depositing on the other, with a fixed total concentration of anions in the gap (channel) in
between the two electrodes. This problem is discussed for Cu2+ dissolution and deposition
in Newman (1983), and for Li+-ion transport in Lacey (2017). For simplicity, we discuss in
this section a system with all ions monovalent, as for the LiX solution described by Lacey
(2017).

We first discuss the case of this 1:1 salt without dispersion, thus we only have diffusion

http://lacey.se/science/transference
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and migration. The two electrodes are planar and parallel and the 𝑥-coordinate runs at
right angles from the one to the other electrode. We describe the system as if the Li-metal
dissolves from one electrode and deposits on the other. In reality in a Li+-ion battery, there
is no dissolution, but instead Li+-ions desorb from and absorb in porous battery electrodes.
Thus, we apply a constant current 𝐼 leading to a flow of Li-ions from one to the other
electrode. The total amount of anions in the gap in between the electrodes is conserved, i.e.,∫ 𝐿

0 [𝑋]d𝑥 = 𝐿 𝑐0 with 𝐿 the width of the gap.
In this theoretical calculation the transport numbers at the two surfaces are 𝑇+ = 1 and

𝑇− = 0. (With porous battery electrodes on each side of the channel we will not have these
ideal numbers.) Based on Eq. (7.43) we then know the gradients in concentration at the two
surfaces, only dependent on the cation diffusion coefficient. In between the surfaces we use
the salt balance, Eq. (7.29) (with 𝑣F=0 and no refreshment). This salt balance immediately
makes clear that in the steady-state the concentration changes linearly. This means that at
any position in the channel the concentration gradient will be the same as at the surfaces,
thus independent of the anion diffusion coefficient. The anion diffusion coefficient only
influences the dynamic part of this process, but not the final steady-state behaviour.

Next we present results for concentration profiles and transport numbers for 𝐷+=𝐷− , and
thus the transference number of both ions is 𝑡+ = 𝑡− =½. Results are presented in Fig. 7.4.
As discussed in the previous section (and by Newman, 1983), at the start of this process the
fraction of the current carried by the two ions is described by their transference number, 𝑡𝑖 ,
but this is no longer the case when concentration gradients develop. When we reach steady
state, the transport number of the cation is unity, 𝑇+ = 1, at each position in the channel,
and for the anion, the transport number has become zero, 𝑇− =0, everywhere. We show the
changes in 𝑇− with position and time (𝑇+ always given by 1−𝑇−) in Fig. 7.4B.

Across the midplane of the channel, concentration profiles are exactly ‘point-symmetric’,
with concentrations increasing on the anode, and decreasing on the cathode in an exact
mirror-image, also when 𝐷+≠𝐷− , like shown in Fig. 7.4A. Initially, we have concentration
profiles ‘growing’ from the electrodes into solution, until they ‘meet’ in the middle. In
steady state, we arrive at a linear concentration profile, also when 𝐷+ ≠ 𝐷− . At the
midplane, concentrations remain the same as initially, also when 𝐷+≠𝐷− .

For equal anion and cation diffusion coefficients, there is an analytical solution for 𝑐(𝑥, 𝑡)
given as Eq. (15) in Van Soestbergen et al. (2010). Here, however, we numerically solve
the equations: the salt balance, the charge balance, and the boundary conditions for 𝜕𝑐/𝜕𝑥
vs. current 𝐽ch. We choose a current such that in steady state we just reach the limiting
current, i.e., the concentration eventually reaches zero at the cathode, which is on the right
in Fig. 7.4A. With that choice, the entire problem is defined.
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Fig. 7.4: Electrolytic conduction, i.e., the development of concentration profiles across the gap between
anode and cathode which are perfectly selective for cations (all ions monovalent; current density equal
to the limiting current).

On the anode the salt concentration increases, and on the cathode it goes down, to finally
reach a linearly decaying profile in salt concentration. The transport number of the anion,
𝑇− , is plotted in Fig. 7.4B, and we note how it quickly drops from the initial value of 𝑇− =0.5
to values close to zero after some time. The profiles for the cation transport number are
a mirror image (vertically mirrored across the horizontal line at 𝑇 = 0.5), and starting at
𝑇+=0.5 they increase to ultimately reach 𝑇+=1.0 after some time. Interestingly, these curves
for the transport number are symmetric across the midplane of the channel, even though the
concentration profiles are not, and neither is the potential profile symmetric. This potential
profile decays from left to right, going down steeper and steeper. Still, the plots for the
transport numbers vs. position (at various moments in time) remain perfectly symmetric
(between left of the midplane, and right of the midplane). This is even the case when the
two ions have different diffusion coefficients, which to us is not an immediately intuitive
outcome. [With different diffusion coefficients only the ‘starting value’ of 𝑇𝑖 shifts. This can
be easily derived because at time zero, 𝑇𝑖 = 𝑡𝑖 , and 𝑡𝑖 depends via Eq. (7.21) on the diffusion
coefficients of the two ions.]

Next we implement dispersion as an additional effect, as also addressed by Newman
(1983, p. 11). We implement dispersion by adding to the mass balance the refreshment
effect, (𝑐0−𝑐) /𝜏, due to flow parallel to the surface, see §7.1.4. We assume that the parallel
fluid velocity, 𝑣 ∥ , has a parabolic profile, starting at zero at the walls, with a maximum in
the middle of the channel. Thus at each point, the salt is mixed up with the average value,
𝑐0, with a frequency that has a maximum in the middle of the channel and decreases to zero
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at the two electrodes.
The outcome is presented in Fig. 7.5A which shows that the higher the refreshment of

fluid and ions, the closer the anion transport number remains to the maximum value, which
is given by the transference number, which in this case is 𝑡+ = 0.5. But in all cases, near
the sides of the channel the transport number for the anions drops to zero, also for a high
refreshment rate. The profiles remain left-to-right symmetric across the midplane. When
we reduce the anion diffusion coefficient, the transport number for the anion decreases, but
the profiles of transport number are still symmetric with the maximum for 𝑇− in the center
of the channel (and here is the minimum for 𝑇+).

The voltage across the channel (analysed as a positive number) goes down if the
refreshment rate (the degree of dispersion) goes up. In the steady state, without any
dispersion this voltage becomes infinite because we work at the limiting current, while
dispersion leads to a steady drop in voltage the more we mix, though after some point the
further reduction in voltage becomes very minor. When we reduce the diffusion coefficient
of the anion (for a certain degree of dispersion) the voltage increases (the resistance of the
solution goes up), also in steady state. Thus, while without dispersion the anion diffusion
coefficient does not play a role in determining the steady state profiles (and neither does it
have an effect on the voltage across the channel), it does play a role when there is some
mixing.

Effect of indifferent salt. A related topic is the effect of added inert, or ‘indifferent’
salt. Inert salt is added in many electrochemical experiments to reduce voltages across
a channel. We make several calculations extending on the example just discussed.
In the calculation we add an extra cation that is inert, while for charge balance more
(of the same, inert) anions are added. [Note that a very different outcome would be
obtained when a third ion (either anion or cation) is added that has zero mobility, i.e.,
an ion which is homogeneously distributed across the channel. That would actually
be a model for flow of ions across a charged gel or membrane.] Theoretical analysis
is not straightforward because we have many variables to consider: concentrations,
diffusion coefficients, type and intensity of dispersion. . . Some key results we obtain
are as follows:
1. In all calculations, the transport number for the anion remains symmetric around the
midplane, behaving similarly as above, dropping to zero over time in a a calculation
without dispersion, and remaining at higher values (except near the surfaces) when there
is dispersion.
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Fig. 7.5: Anion transport number, 𝑇− , for electrolytic conduction of a cation across a channel between
two electrodes. a) Steady state profiles at various degrees of refreshment (convective mixing), described
by a parabolic profile for the flow velocity along the electrodes. With increasing refreshment, the anion
transport numbers more closely approach the maximum value, which is equal to the anion transference
number 𝑡− =0.5. (Except for refreshment (convective mixing), this is the same calculation as Fig. 7.4.)
b) Development in time of 𝑇− in a three-ion system with an alternative, realistic, mixing model where
salt and water are exchanged between positions equally far from the electrode that are on either side of
the channel. In this case the transference number is 𝑡− =0.25 while the transport number, 𝑇− , can be
both larger and smaller than 𝑡− , and exhibits very non-monotonic profiles.
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2. Now with a second cation, the transport number profiles for the cations can become
asymmetric.
3. In a small channel, when there is not much mixing, or none at all, adding salt reduces
the electric field, which thus reduces the migration term for the reactive cation, and as a
consequence –for the same current– its concentration profile must become steeper, and
thus the limiting current decreases, i.e., certain high values of current can no longer
be realized. (Interestingly, this limiting current in the reactive cation is now arrived at
without the voltage across the channel diverging.) Nevertheless, adding this indifferent
salt, for any current that can be realized, we obtain a lower voltage.
4. For wider channels, with mixing, adding salt reduces the voltage across the channel
for the same current.

An alternative dispersion model for a rotating electrode pair. Interestingly, the
calculation with three ions leads to slight errors when dispersion is included, which was
considered by adding the term

(
𝑐0,𝑖−𝑐𝑖

)
/𝜏 to each ion’s individual mass balance, where

𝑐0,𝑖 is the initial concentration in the channel. This works fine, but an interesting effect is
that the total amount of the two cations in the channel will no longer be equal to the initial
value. This is due to concentration profiles no longer remaining point-symmetric across
the midplane. This is fine if the model is meant to represent a channel flown through
from a larger container. But otherwise, there are two alternatives. The first is that we do
impose mass conservation in the channel, and thus have the convective outflow, which is
the term −𝑐𝑖/𝜏, slightly corrected by a factor 𝛼 (the same across the channel, varying in
time), such that this convective outflow exactly equals the total inflow, which is always
𝑐0,𝑖/𝜏. The second option is much easier. And this second option is representative
of the circulation patterns that are possible between two electrodes when the inner
electrode rotates (Newman, 1983). What we do in this second option, mathematically,
is to have the fluid (and the ions inside any volume of fluid) at a distance 𝛿 from the
one electrode, mix with fluid located at the same distance 𝛿 from the other electrode.
The mixing frequency is related to the velocity profile in the direction parallel to the
surface, 𝑣 ∥ . This velocity, as before, will be zero at the electrode surface, and now is
also zero in the center of the channel; thus we assume a parabolic profile in one half of
the channel, as well as in the other half, thereby representing the flow pattern presented
on p. 7 in Newman (1983). This second model is easily implemented in our numerical
code and then works flawlessly. Interestingly, with this corrected model, that keeps all
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salt in the channel (no exchange with an outside reservoir), the transport numbers, for
instance for the anion, can be both larger and smaller than the transference number,
see Fig. 7.5B for one particular example calculation (details here) in which all three
ions have different diffusion coefficients. Fig. 7.5B shows interesting non-monotic and
asymmetric profiles in 𝑇− , until steady state is reached. In steady state, the profile in 𝑇−
is symmetric across the midplane with a single maximum value at that position which
is around 6% larger than 𝑡− . For the two cations the profiles in transport number are
asymmetric during the lead-up to steady state as well as in steady state.

7.7 Transient solute transport to an interface for
electrolyte solutions

In §7.1 we discussed boundary layer models for steady state transport towards a selective
interface. Dynamic transport was discussed in §7.6 for flow across a channel. In the
present section we discuss transient (dynamic, time-dependent) transport in DBL models,
thus extending the results of §7.1.

Let us analyze the dynamics of the salt balance, Eq. (7.29), for transport towards a selective
interface from a bulk phase that is sufficiently large. We first consider the simplest case of
no refreshment (no convection along the surface), thus we have to solve Fick’s second law,
𝜕𝑐/𝜕𝑡 = 𝐷 · 𝜕2𝑐/𝜕𝑥2, often associated with flow of neutral solutes. But because of the
results in §7.2, we know we can apply Fick’s law also to any binary salt, symmetric and
asymmetric, when we make use of the harmonic mean diffusion coefficient, 𝐷hm.

In the context of neutral species, an important dynamic situation involving Fick’s second
law is the response of the system after a sudden step change in surface concentration. The
resulting ‘penetration theory’ describes the flux at the surface 𝐽 = −𝐷 · 𝜕𝑐/𝜕𝑥 |∗ as function
of the suddenly applied step change Δ𝑐. Interestingly, the result of this calculation does not
depend on ‘where we are in the 𝑐-range,’ but solely the step change Δ𝑐 matters, i.e., the
value by which the surface concentration is suddenly increased or decreased compared to the
concentration 𝑐∞ in a far-away bulk phase. The resulting expression for flux at the surface
is then

𝐽 = ±
√︂
𝐷

𝜋𝑡
Δ𝑐 (7.57)

where 𝑡 is time after the sudden step change. A step change downward (the surface
concentration is suddenly lowered) of course leads to a flux towards the surface, and a step

http://www.physicsofelectrochemicalprocesses.com/supp_mat/transport_1/
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change upward to flow away from the surface. Thus, as function of time 𝑡, the flux starts off
infinitely high, and then drops down, ultimately to zero, because the concentration profiles
extend further and further away, becoming more and more shallow. The concentration
change at each distance 𝑥 away from the surface, as a fraction of the applied step change Δ𝑐,
is given by erf

(
𝑥/

(
2
√
𝐷𝑡

))
, where erf is the Error function. Note that penetration theory

often uses the flux averaged from time zero to time 𝑡. This averaged flux is equal to twice
the ‘instantaneous’ flux (i.e., the flux at any time t) that is given by Eq. (7.57).

When instead of a step change in concentration, a step change in boundary flux 𝐽 is applied
from time 𝑡=0 onward, the solution for the surface concentration vs. time is given by Sand’s
equation

Δ𝑐 = ± 2 𝐽
√︂

𝑡

𝜋𝐷
. (7.58)

In electrochemical processes, we often analyze the situation of a step-change in current
𝐽ch from time 𝑡 = 0 onward (with current zero before 𝑡 = 0). As explained above, together
with information on the transport numbers 𝑇𝑖 (or 𝜆 for a 1:1 salt, and then 𝜆 =𝑇+−𝑇−), we
can convert this information into a concentration gradient at the surface, see Eq. (7.41). And
results from §7.1 can be rewritten such that they apply to a binary salt solution, by making
the replacements 𝐽 → −𝐷 𝜕𝑐/𝜕𝑥 |∗ and 𝐷 → 𝐷hm. Concentration c is the monovalent
equivalent (m.e.) salt concentration.

For a 1:1 salt and a perfectly selective interface, i.e., an interface where only one type of
ion reacts or moves across (the counterion, abbreviated as ‘ct’), we can use Eq. (7.43), and
combination with Eq. (7.58) then results in

Δ𝑐 = ± 𝐽ch

𝐷ct

√︂
𝐷hm

𝜋
𝑡 (7.59)

which shows that the dynamics of the change in surface concentration depend on the diffusion
coefficients of both ions, also the one that is completely blocked from the interface.

If we start at a concentration 𝑐∞, which is the unvarying bulk concentration, and if we
remove counterions from solution through the interface for a fixed current (and 𝜆=1), then
the surface concentration drops, first fast then slower, and it reaches zero at the transition
time, which we can calculate after rearranging Eq. (7.59) to

𝑡 =

(
𝜋𝐷2

ct𝑐
2
∞

)
/
(
𝐷hm𝐽

2
ch

)
. (7.60)

At this time, the salt concentration at the interface reaches zero, and the voltage across the
solution phase diverges. Measurement of this transition time can be helpful to establish ion
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Fig. 7.6: Sand’s equation for the transition time for diffusion to a surface. a) Qualitative illustration
of the transition time for a semi-infinite layer of electrolyte solution (orange dots), as considered by
Eq. (7.61), compared with the case of a film layer of finite thickness, according to Eq. (28) in Van
Soestbergen et al. (2010) (blue dots). For currents below the limiting current, in this second case (blue
dots), we never reach a surface concentration of zero. For high enough currents, the two calculations
give the same result, with the transition time dependent on current to the power -2. b) The surface
concentration in a model with diffusion and dispersion with a variable refreshment time 𝜏, all as
function of time 𝑡. Only when the flux is high enough (resulting in a high enough value of 𝜕𝑐/𝜕𝑥) will
the concentration at the surface drop to zero at some point. All calculations are based on a 1:1 salt,
equal 𝐷’s and current efficiency 𝜆=1.

transport numbers when the measured time for the voltage to diverge is longer than predicted
by Eq. (7.60).

Indeed, when the surface is not perfectly selective for counterions, and thus the transport
numbers are not either 0 or 1, and when we have a 1:1 salt with both ions having the same
diffusion coefficients, 𝐷 =𝐷hm, then we can combine Eq. (7.44) with Eq. (7.59), and arrive
for the relationship between transition time and transport numbers at

𝑡 = 𝜋𝐷𝑐2
∞/((𝑇+ − 𝑇−) 𝐽ch)2 . (7.61)

Eq. (7.61) for the transition time predicts that at some time the concentration will always
reach zero and the current will diverge, see the orange dots in Fig. 7.6A. This relates to the
assumption that we have an unstirred bulk solution that extends to far away. It is, however,
more realistic to consider a film layer with a certain thickness, or assume some dispersion.
Then for currents that are too low, the concentration will never hit zero and the voltage will
not diverge, see the blue dots in Fig. 7.6A. So in the latter case there is a minimum current
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required to reach zero concentration after some time. For the standard film layer model
with thickness 𝛿, Eq. (28) in Van Soestbergen et al., Phys. Rev. E 81, 021503 (2010) is
used, which as function of 𝛿 (for a 1:1 salt, equal ion diffusion coefficients, and for 𝑇ct =1),
provides the relationship between transition time and current, see the blue dots in Fig. 7.6A.

Next we consider the case where in addition to diffusion and electromigration towards
the surface we have dispersion described by the refreshment approach. Here we analyze the
case that 𝜏 is a decreasing function with distance to the surface, see §7.1.4. For this model
we can rewrite the salt balance, Eq. (7.29), to

𝜕𝑐

𝜕𝑡
=
𝜕2𝑐

𝜕𝑥2 + (1 − 𝑐) 𝑥 (7.62)

where 𝑐 = 𝑐/𝑐∞ and 𝑡 = 𝑡 · 3
√︁
𝐷𝛾2 . For a given gradient 𝜕𝑐/𝜕𝑥 at the surface –proportional

to the applied current, 𝐽ch, and also dependent on the counterion transport number, 𝑇ct– we
can analyze how 𝑐 at the surface drops with time 𝑡, see Fig. 7.6B. Results here show that we
do not reach a zero concentration at the surface when the current, thus 𝜕𝑐/𝜕𝑥, is too low,
but for a higher value of the current we do reach zero concentration at the surface after some
time. When that happens, the voltage will steeply increase. If the aim is to avoid reaching
this limiting situation, and when current is fixed, then we must reduce the mass transfer
resistance, i.e., stir more (increase 𝛾), or make the surface more leaky for coions, because
that reduces 𝑇ct.

This finalizes our discussion of diffusion and electromigration to a selective surface, such
as an electrode or membrane, for steady state and for the dynamic approach to steady state, for
arbitrary binary salt solutions (i.e., solutions with two ions that can have different valencies
and/or diffusion coefficients). We also showed that when we have more than two ions, the
situation can become drastically different, and for instance we can reach a limiting current
in one of the ions, but not in other ion types.

Sand’s equation with background salt. Note that we presented here results of
concentration changes in time for an electrolyte with one type of anion and one type
of cation, and we include all electric field effects. Instead, the classical analysis of the
Sand equation and the transition time (e.g., Bard & Faulkner (1980) p. 252) is based on
the absence of electric fields because of addition of indifferent background electrolyte,
or because the species moving to the interface is neutral and therefore only experiences
a diffusional force. This is why in that literature there is effectively a factor 2 difference
with our equations, i.e., their results make use of 𝐽ch = −𝐷ct 𝜕𝑐/𝜕𝑥 |∗. In addition,
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because of neglecting electromigration, results in these literature sources never have
an influence of the diffusion coefficient of the coion, or a dependence on transport
numbers. In an electrochemical experiment indeed the electric field can be cancelled
by adding ‘indifferent electrolyte’, but of course this is not generally advisable in an
electrochemical process, for instance for water desalination with membranes.

7.8 From a force balance to the Nernst-Planck equation
In this section we explain how the velocity of solutes (such as ions) can be calculated from
a force balance that includes all driving forces acting on a certain ion as well as all frictions
it experiences with other species that surround it. Driving forces are for instance gradients
in concentration and in electrical potential, but also gradients in the total pressure must be
incorporated when ions have volume. These driving forces are balanced by friction of the
ion with the fluid (often water), with the porous medium (such as the solid structure of a
membrane), and with other dissolved solutes. We explain how under certain conditions this
force balance simplifies to an extended NP equation including convection. This extended
NP equation is used frequently throughout this book.

The molar fluxes of solutes are described by a balance of forces acting on the solutes that
includes all driving forces acting on them, and at the same time includes frictions with the
water, with other types of ions and solutes, and when flowing through a porous medium,
friction with this medium. This friction-based approach for solutes and solvent in a porous
medium dates back at least to Spiegler (1958). Fig. 7.7 illustrates the related terminology
such as fluid, pore, and porous medium. To find the driving force on an ion or other solute
we start with an expression for the chemical potential of an ion, 𝜇𝑖 , including ion entropy
and charge, but also including the insertion pressure, i.e., the energy required to free up a
volume 𝜐𝑖 (the molar volume of the hydrated ions) against the total pressure, 𝑃tot, and thus
the total chemical potential is

𝜇𝑖 = 𝜇ref,𝑖 + ln 𝑐𝑖 + 𝑧𝑖𝜙 + 𝜇exc,𝑖 + 𝜐𝑖𝑃tot (7.63)

where concentrations are defined per unit pore volume, and we leave out a
gravitational/centrifugal contribution, an affinity term, and an ion-ion attraction energy
discussed in §4.3. The driving force on an ion moving through a tortuous pore is given by
the negative of the gradient in the chemical potential, −𝜕𝜇𝑖/𝜕𝑥′, where 𝑥′ is a coordinate
following the tortuous path of a pore, and this driving force is combined with all frictions
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Part 4. General force balances on ions and water in membranes
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Fig. 7.7: Illustration of the terminology used to describe transport of solvent and solutes in a porous
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of the ion with all other phases, and these depend on the velocity difference between the ion
and that phase, resulting in

−𝜕𝜇𝑖
𝜕𝑥′
+

∑︁
𝑘

𝑓 𝑖-𝑘
(
𝑣′𝑘 − 𝑣

′
𝑖

)
= 0 (7.64)

where the summation over 𝑘 is over all phases and species, including the solvent and the
porous structure, and where 𝑓𝑖-𝑘 is a measure of the friction of a mole of ions 𝑖 with all of
phase 𝑘 present. In Eq. (7.64) we introduce the notation ′ for movement following a path
through a tortuous pore. Velocities 𝑣′

𝑘
are ‘real’ interstitial velocities following this path.

When phase 𝑘 is a species of which the concentration can change, such as for any of the ion
types, it is relevant to make the frictional term proportional to the amount (concentration) of
that species. Thus for ion-ion friction, acting between ion type 𝑖 and 𝑘 , in the force balance
for ion type 𝑖, Eq. (7.64), 𝑓𝑖-𝑘 is made a linear function of the concentration of the other type
of ion, 𝑘 . Thus for ion-ion friction, in the force balance for species 𝑖, 𝑓𝑖-𝑘 is replaced by
𝛽𝑖-𝑘 𝑐𝑘 , where 𝛽𝑖-𝑘 is a constant, and 𝑐𝑘 is the local concentration of the other solute. (In
doing so, there will ultimately be one ion-ion friction coefficient for each ion-ion pair, i.e.,
𝛽𝑖-𝑘 = 𝛽𝑘-𝑖 .) However, when the other phase ‘is simply there’, the use of 𝑓𝑖-𝑘 as a friction
factor between ionic species 𝑖 and that other phase, suffices. This applies for the friction with
the porous medium, such as a membrane, and for friction with the fluid, because it surrounds
all ions and solutes. There is no ‘concentration’ to speak of for these other phases. Indeed for
friction of an ion with these two phases, there is no need to consider a proportionality with
the ‘concentration of the porous medium’ or with ‘the concentration of water’. The porous
medium is just there, while each ion is always completely enveloped by water molecules.
Of course, for friction of solutes with the porous medium, if we have an open structure with
large pores, 𝑓𝑖-m will be much lower than for a tight structure with small pores, but for a
given porous structure, 𝑓𝑖-m can be taken as a constant that describes the ion-matrix friction.

From this point onward, we first leave out ion-ion friction. Including that the porous
medium has zero velocity, combination of Eqs. (7.63) and (7.64) results in

−𝜕 ln 𝑐𝑖
𝜕𝑥′

− 𝑧𝑖
𝜕𝜙

𝜕𝑥′
−
𝜕𝜇exc,𝑖

𝜕𝑥′
− 𝜐𝑖

𝜕𝑃tot

𝜕𝑥′
= − 𝑓𝑖-F

(
𝑣′F − 𝑣

′
𝑖

)
+ 𝑓𝑖-m𝑣′𝑖 (7.65)

where we include the excess term that describes volumetric interactions, and the insertion
pressure of a solute that has volume. These last two terms on the left would be zero when
we assume the ions to be point charges.
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Effect of temperature on transport. We continue here a discussion of temperature
effects set up for equilibrium (EDL theory) on p. 39. As explained above, the driving
force on (a mole of) ions is minus the gradient of the chemical potential, and in that
analysis we should multiply equations given above with the factor RT to obtain a driving
force with the correct unit of N/mol, for instance in Eq. (7.65). Then the right side
is also multiplied by RT and the resulting friction factors 𝑅𝑇 𝑓𝑖-F and 𝑅𝑇 𝑓𝑖-m do not
have a specific relation to RT. Below we replace 𝑓𝑖-F with 1/𝐷𝑖 and thus 𝐷𝑖 linearly
increases with 𝑅𝑇 . Thus, in a typical NP equation, such as Eq. (7.67) below, diffusion
coefficients linearly depend on temperature, T, and the origin of this effect is in a
temperature dependence of driving forces, not in a an intrinsic change to its mobility. In
addition, there will be such an intrinsic effect because the viscosity of solvent decreases
with temperature and thus mobility will go up. So a T-dependence of the diffusion
coefficient combines an intrinsic increase in solute mobility, with the RT-term.

In the next step we multiply each side by 𝑐𝑖 and we make the replacement 𝐽′
𝑖
= 𝑣′

𝑖
𝑐𝑖 , because

the flux of an ion through a pore 𝐽′
𝑖

is equal to its own velocity 𝑣′
𝑖
times its concentration 𝑐𝑖 .

We make the replacement 𝑓𝑖-F = 1/𝐷𝑖 for the ion-fluid friction, resulting in

−𝜕𝑐𝑖
𝜕𝑥′
− 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥′
− 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥′
− 𝑐𝑖𝜐𝑖

𝜕𝑃tot

𝜕𝑥′
= − 1

𝐷𝑖

(
𝑐𝑖𝑣
′
F − 𝐽

′
𝑖

)
+ 𝑓𝑖-m𝐽′𝑖 (7.66)

which we rewrite to an expression explicit in flux 𝐽′
𝑖

that is

𝐽′𝑖 = 𝐾f,𝑖𝑐𝑖𝑣
′
F − 𝐾f,𝑖𝐷𝑖

(
𝜕𝑐𝑖

𝜕𝑥′
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥′
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥′
+ 𝑐𝑖𝜐𝑖

𝜕𝑃tot

𝜕𝑥′

)
(7.67)

where (Spiegler and Kedem, 1966, Eq. 49)

𝐾f,𝑖 = 1/(1 + 𝑓𝑖-m/ 𝑓𝑖-F) . (7.68)

is a factor which describes the importance of ion-matrix friction relative to ion-fluid friction,
with 𝐾f,𝑖 → 1 for very low ion-matrix friction, and 𝐾f,𝑖 → 0 when ion-matrix friction is
very large.

In the next step, Eq. (7.67) –in which fluxes and velocities 𝐽′
𝑖

and 𝑣′F are defined inside
a tortuous pore– is converted to an expression with fluxes and velocities defined on the
macroscopic scale of the porous material, 𝑣F and 𝐽𝑖 , which is the common usage of fluxes
and velocities in this book. To this end, we implement that 𝐽𝑖 = 𝐽′𝑖 · 𝑝/𝜏 where p is porosity
and 𝜏 is tortuosity. The latter describes that the path through a pore is longer than straight
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across a material, because it is constantly at an ever-changing angle to a direct line that goes
from one to the other side of a material. If there is a certain flux 𝐽′

𝑖
along that curvy path,

it is less by a factor 𝜏 (with 𝜏 larger than 1) if we project on the direction straight through
the material. The factor p for porosity enters because flux 𝐽′

𝑖
is per unit pore and with 𝐽𝑖

we aim to describe the superficial flux (which is per unit geometrical, i.e., ‘total’ area).
These conversions from 𝐽′

𝑖
to 𝐽𝑖 also apply to the conversion from 𝑣F

′ to 𝑣F. But for the
fluid, also a factor 1−𝜂 enters in the conversion, because inside the pores, a volume fraction
𝜂 is blocked out for the fluid.xii Thus the interstitial fluid velocity in the pore, along the
pore direction, 𝑣′F, relates to the superficial fluid velocity straight across the material, 𝑣F, by
𝑣F = 𝑣′F · (1 − 𝜂) · 𝑝/𝜏. The final implementation is that the coordinate axis straight through
the material is shorter than the curved path, and thus 𝜕𝑥 = 𝜕𝑥′/𝜏. If we include all of this
in Eq. (7.67), we obtain the intermediate result that

𝐽𝑖
𝜏

𝑝
= 𝐾f,𝑖𝑐𝑖 𝑣F

𝜏

𝑝 (1 − 𝜂) −
1
𝜏
𝐾f,𝑖𝐷𝑖

(
𝜕𝑐𝑖

𝜕𝑥′
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥′
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥′
+ 𝑐𝑖𝜐𝑖

𝜕𝑃tot

𝜕𝑥′

)
. (7.69)

Multiplying all sides by 𝑝/𝜏, and making use of the variable 𝜀 = 𝑝/𝜏2, we obtain the most
general NP equationxiii,xiv

𝐽𝑖 =
𝐾f,𝑖

1 − 𝜂 𝑐𝑖𝑣F − 𝜀𝐾f,𝑖𝐷𝑖

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥
+ 𝑐𝑖𝜐𝑖

𝜕𝑃tot

𝜕𝑥

)
(7.70)

where the fraction of the pores occupied by solutes is 𝜂 and the porosity (fraction of total
volume that is pores) is p. Fluxes are defined per cross-section of the total material (pores
plus matrix), but concentrations are defined per volume of pore phase. Thus, a balance
of forces acting on solutes inside a porous medium results in a general NP-equation that
includes a group 𝐾f,𝑖/(1 − 𝜂) → 𝐾 ′c,𝑖 and 𝜀𝐾f,𝑖 → 𝐾 ′d,𝑖 , where 𝐾 ′c,𝑖 > 𝐾

′
d,𝑖 . These latter

𝐾 ′-values have similarities to the convective and diffusive hindrance functions derived on
the basis of hydrodynamic theories for transport of spherical particles through cylindrical
pores, where also the term for convection is larger than for diffusion, as used for instance in
SEDE theory (see next box).

If we neglect all possible solute volume effects, Eq. (7.70) simplifies to the extended NP

xiiThe volume fraction 𝜂 used here is different from 𝜂 in Ch. 4 where it relates to the volume fraction of the
immobile structure. Here it relates to the fraction of the pores (that themselves have a porosity p) that contains
solutes.

xiiiOften this term 𝜏2 is replaced by 𝝉 and then called the tortuosity factor.
xivIn this book we generally present flux expressions as if there is only one direction, 𝑥, to make the equations more

insightful. The reader familiar with flow in multiple directions will understand that a gradient 𝜕/𝜕𝑥 can be
generalized, for instance by using the notation ∇.



From a force balance to the Nernst-Planck equation 199

equation

𝐽𝑖 = 𝐾f,𝑖𝑐𝑖𝑣F − 𝜀𝐾f,𝑖𝐷𝑖

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(7.71)

which is an equation we will use extensively throughout this book. When solutes have no
direct friction with a porous medium, then 𝐾f,𝑖 = 1 and Eq. (7.71) simplifies to Eq. (7.2).
The complete transport model based on Eq. (7.71), partition functions such as Eq. (2.1), and
solvent transport equations given by Eq. (8.2), is called the two-fluid model (TFM), and in
the context of membrane transport is called the solution-friction (SF) model.

The DSP model for ion transport in membranes. When the model explained in this
section for multicomponent transport of charged and uncharged species through a
membrane (which is typically also charged) is combined with a description for
the Donnan equilibrium at the membrane-solution interfaces, and also includes
contributions to the partitioning of ions at these interfaces such as related to ion volume,
as discussed in §2.2, §2.8, and §4.2, we end up with a model called the Donnan Steric
(Partitioning) Pore model, or DSP model. The state-of-the-art version is called the
extended DSP-model. This ext-DSP model also includes how membrane charge is a
function of local ion concentrations (especially pH and absorbing ions such as Ca2+)
and also includes how ions react with one another in the pore space, as will be addressed
in Ch. 10. For instance, the bicarbonate ion, HCO –

3 , can react with a proton to form
carbonic acid, H2CO3, and this reaction is included in the ext-DSP model. And many
similar reactions can be included at the same time as well. Also the formation of ion
pairs, for instance because Mg2+ reacts with Cl– to MgCl+, can be included in the
ext-DSP model, see Kimani et al., J. Chem. Phys. 154 124501 (2021), and references
therein.

A different line of theory that was specifically developed for nanofiltration, is the
SEDE model, which is a very detailed extension to the SF model, as explained in detail
in Lanteri et al., J. Colloid Interface Sci. 331, 148–155 (2009). For a comparison of
this SEDE model with the SF model of this section, see here.

Finally we explain the theory to describe ion fluxes in five different cases. The first case
we consider is to include ion-ion friction in addition to the other frictional forces. Leaving
out all effects related to solute volume, we then have an implicit relationship for ion flux,

http://www.physicsofelectrochemicalprocesses.com/supp_mat/transport_2/SEDEvsSF.pdf
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given byxv

𝑓𝑖-m𝐽𝑖 − 𝑓𝑖-F (𝑐𝑖𝑣F − 𝐽𝑖) −
∑︁
𝑘

𝛽𝑖-𝑘 (𝑐𝑖𝐽𝑘 − 𝑐𝑘𝐽𝑖) = −𝜀
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(7.72)

where the summation runs over all ion types 𝑘 that are present. For any problem with k ions,
Eq. (7.72) can be inverted resulting in expressions where each flux 𝐽𝑖 , with i running from 1
to k, is made an explicit function of the gradients in ion concentration, potential, and of fluid
velocity, 𝑣F, but is then no longer related directly to the other fluxes. However, because this
problem will be solved numerically anyway –by first discretizing along the space coordinate,
which results in several algebraic equations at each gridpoint which are then jointly solved
for all gridpoints, together with all boundary conditions, see Ch. 21– there is no use for this
mathematical inversion procedure.

The second extension of the theory is with the ion-ion Coulombic energy that was
discussed in §4.3. For a 1:1 salt this extra contribution is given by Eq. (4.26), and we
can include that in Eq. (7.63). We evaluate the force balance, Eq. (7.64), for a solution inside
a porous medium, and we make the following assumptions: no friction of solutes with the
porous medium, thus 𝐾f,𝑖 =1, no ion-ion friction, and no ion volume effects. We then arrive
at

− 1
𝑐𝑖

𝜕𝑐𝑖

𝜕𝑥
− 𝑧𝑖

𝜕𝜙

𝜕𝑥
+ 1/3 · 𝛼 · 𝜆B · 3

√︁
𝑁av𝑐∞ ·

𝜕 ln 𝑐∞
𝜕𝑥

= − 1
𝜀𝐷𝑖
(𝑣F − 𝑣𝑖) (7.73)

where 𝛼 = 3
√︁
𝜋/3 and 𝜆B is the Bjerrum length. Eq. (7.73) can be rewritten to (making use

of 𝐽𝑖 = 𝑐𝑖𝑣𝑖)

𝐽𝑖 = 𝑐𝑖𝑣F − 𝜀𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥
− 1/3 · 𝛼 · 𝜆B · 3

√︁
𝑁av𝑐∞ ·

𝜕𝑐∞
𝜕𝑥

)
. (7.74)

When we leave out convection and electromigration, Eq. (7.74) leads to Eq. (4.28) if we also
implement that for a binary 1:1 salt we have 𝑐𝑖 = 𝑐∞. Note that Eq. (7.74) can also be used
for mixtures of salts as long as all ions are monovalent.

A third analysis is to include the molecular volume of solutes, diffusing through water
inside a porous medium. We consider neutral solutes that have no friction with the porous
medium, thus 𝐾f,𝑖 =1. For the flow of fluid (water), we can now use Eq. (8.11) with 𝜌E set
to zero. When the overall hydrostatic pressure difference is zero, and in steady state,xvi this
xvEq. (3) in Tedesco et al., J. Membrane Sci. 531, 172–182 (2017).
xviDynamically, when we started with pure solved, and now, after adding solutes to the solution on one side of

a porous layer (such as a membrane placed between two solutions), and now solutes entering the layer and
diffusing to the other side, water will be displaced from the pores of the material, and might either flow left or
right, dependent on external conditions. If the overall pressure difference is set to zero, water flows to the left
in the left part of the layer, and to the right in the right part; inside the porous layer, the hydrostatic pressure is
temporally higher than on the outsides.
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Eq. (8.11) predicts that 𝑣F is zero as well. The total volumetric flow rate 𝑣tot is only due to
the flow of solutes, thus 𝑣tot = 𝜐𝑖𝑐𝑖𝑣𝑖 = 𝜐𝑖𝐽𝑖 = 𝜂𝑣𝑖 , thus based on Eq. (7.70) we obtain

𝐽𝑖 = −𝜀𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥
− 𝜐𝑖𝑐𝑖

𝜕Π

𝜕𝑥

)
(7.75)

where we implemented that 𝑃tot = 𝑃h − Π and 𝜕𝑃h/𝜕𝑥 = 0. We now assume there is only
one type of solute, and thus 𝜂 = 𝜐𝑖𝑐𝑖 . We implement the Gibbs-Duhem equation, Eq. (8.9),
which we discuss in the next chapter, and we then rewrite Eq. (7.75) to

𝐽𝑖 = −𝜀𝐷𝑖 (1 − 𝜂)
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥

)
(7.76)

This result shows that in this case we end up with Fick’s law for solute diffusion including an
excess-term (that describes volumetric interactions), extended with a reduction factor 1 − 𝜂.

The fourth example is like the previous one, with one neutral solute, but now the total
flowrate 𝑣tot is set to zero, and 𝜕𝑃h/𝜕𝑥 is free to adjust itself. For the water flowrate we
again have Eq. (8.11), and for 𝐽𝑖 Eq. (7.70). Because 𝑣tot =0, thus 𝑣tot = 0 = 𝑣F + 𝜐𝑖𝐽𝑖 , we
have 𝐽𝑖 = −𝑣F/𝜐𝑖 . Thus

𝐽𝑖 = −
𝜂

1 − 𝜂 𝐽𝑖 − 𝜀𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥
+ 𝜂 𝜕

𝜕𝑥

(
𝑃h − Π

))
. (7.77)

After implementing the Gibbs-Duhem equation (again assuming there is only one solute)
we obtain

𝐽𝑖 = −𝜀𝐷𝑖 (1 − 𝜂)
(
(1 − 𝜂) 𝜕Π

𝜕𝑥
+ 𝜂 𝜕𝑃

h

𝜕𝑥

)
. (7.78)

Replacing 𝜕𝑃h/𝜕𝑥 by Eq. (8.11) and implementing 𝐽𝑖 = −𝑣F/𝜐𝑖 we obtain

𝐽𝑖 =

(
𝜂𝜐𝑖

kF-m
+ 1
𝜀𝐷𝑖

)−1
(1 − 𝜂)2

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥

)
(7.79)

where kF-m is a water-matrix friction coefficient that is discussed in the next chapter. When
kF-m →∞, Eq. (7.79) simplifies to

𝐽𝑖 = 𝜀𝐷𝑖 (1 − 𝜂)2
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥

)
. (7.80)

The reduction factor here, (1 − 𝜂)2, is the same as a factor required in the study of the
sedimentation rate of suspensions in a closed container.xvii One contribution 1−𝜂 is because

xviiP.M. Biesheuvel, Chem. Eng. Sci. 55, 2595–2606 ( 2000).



202 Solute Transport

diffusion is relative to the fluid velocity, and the fluid now moves opposite to the direction
of solute movement, which reduces the diffusion rate in the ‘laboratory frame of reference’,
and the other contribution is because of the term −𝜐𝑖𝜕Π/𝜕𝑥.

When we analyze 𝜇exc,𝑖 based on Carnahan-Starling, Eq. (4.4) in Ch. 4, then the
derivative 𝑐𝑖𝜕𝜇exc,𝑖/𝜕𝑥 = 2𝜂 (4 − 𝜂) /(1 − 𝜂)4 𝜕𝑐𝑖/𝜕𝑥 with 𝜂 = 𝜐𝑖𝑐𝑖 . If we implement this
in Eq. (7.80), for a single solute, we arrive at

𝐽𝑖 = −𝜀𝐷𝑖 ·
1 + 4𝜂 + 4𝜂2 − 4𝜂3 + 𝜂4

(1 − 𝜂)2
· 𝜕𝑐𝑖
𝜕𝑥

(7.81)

which for low 𝜂 simplifies to

𝐽𝑖 = −𝜀𝐷𝑖
(
1 + 6𝜂 + 15𝜂2 + . . .

) 𝜕𝑐𝑖
𝜕𝑥

(7.82)

which predicts that diffusion goes (very slightly) faster at higher 𝜂 if it were just for the
volumetric excess effect.

In the fifth example we discuss ‘free’ diffusion of solutes through water without hydrostatic
pressure gradients, and we set 𝜀 =1, and we do not consider an overall volume balance but
define a flux of solutes relative to the interstitial, or ‘real’, water velocity, 𝑣F/(1 − 𝜂). This
flux is then 𝐽†

𝑖
= 𝑐𝑖 (𝑣𝑖 − 𝑣F/(1 − 𝜂)). Then (with 𝐽𝑖 = 𝑣𝑖𝑐𝑖) we have

𝐽
†
𝑖
= 𝐽𝑖 −

𝑐𝑖𝑣F

1 − 𝜂 = −𝐷𝑖
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥
− 𝜐𝑖𝑐𝑖

𝜕Π

𝜕𝑥

)
. (7.83)

Making use of the Gibbs-Duhem equation, assuming only one type of solute, we obtain

𝐽
†
𝑖
= −𝐷𝑖 (1 − 𝜂)

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥

)
(7.84)

which is the same as Eq. (7.76). If one would now use a lattice expression for 𝜇exc,𝑖 , namely
Eq. (1.8) in Ch. 1, which is 𝜇exc,𝑖 = − ln (1 − 𝜂), then we end up with

𝐽
†
𝑖
= −𝐷𝑖

𝜕𝑐𝑖

𝜕𝑥
(7.85)

which is exactly Fick’s law, but now for the case of solutes that do have volume, and expressed
relative to the ‘real’ water velocity. Note that this particular result is only arrived at when this
specific function is used for the excess-term, for a system with only one type of solute. So in
general, Eq. (7.85) does not describe diffusion of solutes when volume effects are included.
When there is a hydrostatic pressure gradient, then the solutes in addition experience a force
to move relative to the fluid to lower hydrostatic pressure. So when a fluid has friction with a
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porous medium through which it is pushed, but dissolved solutes do not have such a friction,
but do have volume, they move faster than the fluid through the pores of the medium.

Based on these five examples, what will be clear by now is that dependent on how many
driving forces we include, how many types of solutes, and what expressions are used for
each term, and dependent on which contributions we consider for the frictions acting on a
solute, a range of modified NP-equations is possible, from simple to detailed.

Local electroneutrality. The topic of local electroneutrality (EN), or called charge
neutrality, is addressed at many points in this book, stating how this condition of EN can
be used at positions away from interfaces, involving the local concentrations of all ions
and fixed charges (e.g., those of a membrane structure) in the EN balance. According
to EN, all of these contributions to the charge, of all ions and fixed charges, add up to
zero. Only in calculating detailed profiles of concentration and potential in an EDL, is
it relevant to use the full Poisson equation, ∇· (𝜀E) = 𝜌. It may seem that the use of EN,
which leads to a zero charge density 𝜌, can be implemented in the Poisson equation,
and then (when 𝜀 is constant) we obtain the Laplace equation, ∇2𝜙 = 0, which we
can solve to calculate the distribution of 𝜙 across the system. However, this is not the
case! Once we assume EN, i.e., use the local EN-condition, we can no longer use the
Poisson equation, or the Laplace equation. Instead, we directly implement EN in the
transport equations, as we do throughout this book, see Newman (1983), p. 231, for a
detailed discussion. Interestingly, there are instances where the two routes lead to the
same result, i.e., that after inserting EN in the ion transport equations, we do arrive at
the Laplace equation for the potential field. This for instance occurs when there are no
concentration gradients (Newman, 1983, p. 223).

In the next chapter we continue this topic and use the two-fluid model (TFM) to describe
the transport of the fluid or solvent, such as water, flowing around the ions inside a porous
medium.
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8
Electrokinetics

In this chapter on electrokinetics we address the flow of solvent in combination with that
of solutes, both in bulk electrolyte phases and inside porous media. We describe the
dependence of electrolyte flow on hydrostatic and osmotic pressure gradients, and explain
how water-ion frictional forces lead to the electrical body force in the Darcy equation and
in the Navier-Stokes equation. We describe electrolyte flow through charged membranes,
and discuss the classical experiments of water flow by osmosis and electro-osmosis. In the
last section we discuss the various relations between hydrostatic, osmotic, Maxwell, and
disjoining pressures, pressures relevant for the interaction between charged surfaces in the
study of colloidal interactions, and relevant for the forces that develop between charged
layers when a current flows.
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8.1 The Navier-Stokes equation for flow in charged
porous media

Flow of solutes such as ions was addressed in Ch. 7, both in free solution in the context of
transport in a boundary film in front of a reactive or selective surface, as well as in porous
media such as membranes. What is addressed in the present chapter is the equally important
topic of transport of the fluid, often water, which is the solvent that fills up all space that
is not already occupied by the porous medium structure or by the solute particles such as
the ions, see Fig. 7.7. To describe fluid flow rates, we use the porous-medium version
of the Navier-Stokes (NS) equation for flow of electrolyte solutions. We explain how the
electrostatic body force term naturally appears when we include as driving forces on the
fluid not only hydrostatic pressure gradients but also osmotic pressure gradients, and when
we include that the solvent has friction with the solutes that move through it. We will also
present the NS equation in free solution. In §8.4.1 we use these results to describe the forces
in EDLs and between charged particles.

The theory for transport of solutes and fluid in porous media that combines the force
balance approach for solutes from Ch. 7 with a force balance for the fluid, is called the two-
fluid model (TFM) which was originally developed for liquid-solid flows in fluidized beds
(Kuipers et al., 1992). In these applications the dispersed particles are macroscopic, i.e.,
their mass and buoyancy were the most relevant driving forces acting on them. This approach
was later extended to encompass colloidal particles and ions by including entropic effects
(diffusion), electrostatics, and other effects related to solute volume and affinity (Biesheuvel,
2011).

We will explain the theory of the flow rate of fluids as a function of osmotic and hydrostatic
pressures and the frictional forces between the fluid and solutes. The starting point is a force
balance for fluid flow inside a porous medium. This balance considers the force per unit
pore volume acting on the fluid, which equals minus the gradient in total pressure, 𝑃tot, and
adds to that the sum of frictional contributions, first a friction of the fluid with the porous
medium, and second, frictional forces of the fluid with all solutes that are dispersed in the
fluid. The sum-total of the forces is zero. This force balance is

− (1 − 𝜂) 𝜕𝑃
tot

𝜕𝑥′
− 𝑓 ′F-m𝑣

′
F +

∑︁
𝑖

𝑓𝑖-F 𝑐𝑖
(
𝑣′𝑖 − 𝑣′F

)
= 0 (8.1)

where 𝑓 ′F-m is a fluid-matrix friction coefficient (defined per unit pore volume, for flow along
a tortuous path), while on the right of Eq. (8.1), to calculate the friction of the fluid with
the solutes, we sum over all solutes that are in the fluid, inside the porous medium. On the
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left, the factor 1−𝜂 is the open fraction of the pore volume available for fluid, i.e., a fraction
𝜂 is blocked out by solutes (such as hydrated ions). Just like the procedure for Eq. (7.67),
Eq. (8.1) can be converted to an expression based on fluxes defined per unit geometrical
area, with coordinate 𝑥 directed straight through the porous medium, to arrive at

− (1 − 𝜂) 𝜕𝑃
tot

𝜕𝑥
− 𝑓F-m𝑣F

1 − 𝜂 = −
∑︁
𝑖

1
𝜀𝐷𝑖

(
𝐽𝑖 −

𝑐𝑖𝑣F

1 − 𝜂

)
(8.2)

where 𝑓F-m = 𝑓 ′F-m/𝜀. Just as in Ch. 7 we use 𝐷𝑖 = 1/ 𝑓𝑖-F, 𝜕𝑥′ = 𝜏 𝜕𝑥, 𝑣F = 𝑣′F (1 − 𝜂) 𝑝/𝜏
and 𝑣𝑖 = 𝑣′𝑖 𝑝/𝜏. The factor 𝜀 is again the porosity, p, divided by the tortuosity factor, see
p. 198. (This 𝜀 relates to the structure of the porous medium, and is unrelated to the fraction
of pores, 𝜂, that is filled with solutes.) This general force balance can be solved jointly with
general expressions for solute flow, such as by the most general NP expression given in Ch. 7
as Eq. (7.70).

A simplification we will often use is to set the volume fraction of solutes inside the pores
to zero, i.e., we set 𝜂=0, resulting in

−𝜕𝑃
tot

𝜕𝑥
− 𝑓F-m𝑣F = −

∑︁
𝑖

1
𝜀𝐷𝑖
(𝐽𝑖 − 𝑐𝑖𝑣F) . (8.3)

It is interesting to analyze Eq. (8.3) in case we only have neutral solutes that move
by convection and diffusion without friction with the porous matrix, so 𝐾f,𝑖 = 1. Thus
we can use Eq. (7.2) without the migration-term, because for all species 𝑧𝑖 =0. So we
analyze the case of ideal thermodynamics, thus with the activity coefficient equal to
unity and the osmotic pressure given by Π=

∑
𝑖 𝑐𝑖 . If we combine Eqs. (7.2) and (8.3),

we have
−𝜕𝑃

tot

𝜕𝑥
− 𝑓F-m𝑣F =

𝜕
∑
𝑖 𝑐𝑖

𝜕𝑥
(8.4)

and implementing 𝑃tot = 𝑃h − Π we arrive at

−𝜕𝑃
h

𝜕𝑥
− 𝑓F-m𝑣F = 0 (8.5)

which we can rewrite to the Darcy equation

𝑣F = −kF-m
𝜕𝑃h

𝜕𝑥
(8.6)

where fluid only flows as function of a hydrostatic pressure gradient, with kF-m = 1/ 𝑓F-m

describing the permeability of the fluid through the porous medium. As this derivation
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shows, even though an osmotic pressure gradient acts on the fluid (for instance water),
which would tend to make it flow to more concentrated regions, the diffusion of solutes
in the opposite direction exactly cancels this effect, and we arrive at the expected, logical,
result, that the flow of fluid is not impacted by diffusion of solutes across that fluid, as
long as those solutes only have friction with the fluid, and no further forces act on them.
Interestingly, Eq. (8.6) is also arrived at when we do include an activity correction in
the expression for convection and diffusion, and at the same time implement the related
contribution to the osmotic pressure.

So Darcy’s equation that only has a hydrostatic pressure gradient to drive the fluid,
follows from a balance of forces on the fluid, which includes frictions with solutes,
and a total pressure, which has contributions from a hydrostatic pressure, and osmotic
pressure.

Further on, Darcy’s law is derived again, and it is also shown that even when the
solutes do occupy some volume (thus 𝜂 ≠ 0), we arrive at the same Darcy equation
describing the total volume flow (of solutes and solvent together).

In a steady-state one-dimensional process, for instance for transport across a porous
(charged) layer, Eq. (8.3) can be applied in a simplified form. We assume ions are
unreactive so just like 𝑣F, their fluxes 𝐽𝑖 are invariant with position x. Integration of
Eq. (8.3) over the thickness of the layer, from one end to other, staying inside the layer,
then leads to

−Δ𝑃tot − 1
𝑘F-m

𝑣F = −
∑︁
𝑖

1
𝑘m,𝑖
(𝐽𝑖 − ⟨𝑐𝑖⟩ 𝑣F) (8.7)

where 𝑘F-m = 1/( 𝑓F-m𝐿m) is a ‘clean water permeability’, 𝐿m is the thickness of
the charged porous layer (membrane), and 𝑘m,𝑖 = 𝜀𝐷𝑖/𝐿m is a solute mass transfer
coefficient in the porous layer. Eq. (8.7) can be used in a numerical model where fluxes
and concentrations are calculated. This can be more insightful than implementing all
expressions for fluxes, 𝐽𝑖 , in Eq. (8.7), though we will follow that approach below.

We can make a significant simplification when for all solutes (ions) we neglect the solute-
matrix friction, thus we assume 𝑓𝑖-m = 0, i.e., 𝐾f,𝑖 = 1. We do not have to assume that the
solutes are without volume. We can combine Eq. (7.70) with Eq. (8.2), which results in

(1 − 𝜂) 𝜕𝑃
tot

𝜕𝑥
= − 𝑓F-m𝑣F

1 − 𝜂 −
∑︁
𝑖

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥
+ 𝑐𝑖

𝜕𝜇exc,𝑖

𝜕𝑥
+ 𝑐𝑖𝜐𝑖

𝜕𝑃tot

𝜕𝑥

)
(8.8)
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which we can simplify by implementing 𝑃tot = 𝑃h − Π, and by making use of the Gibbs-
Duhem equation for a multicomponent solution, which in this case relates the osmotic
pressure to the sum of ideal and excess contribution of the chemical potential

𝜕Π

𝜕𝑥
=

∑︁
𝑖

𝑐𝑖

{
𝜕𝜇id,𝑖

𝜕𝑥
+
𝜕𝜇exc,𝑖

𝜕𝑥

}
(8.9)

where 𝜇id,𝑖 = ln 𝑐𝑖 .i We sum over all solutes (such as ions) that are dispersed in the fluid.
Note also that 𝜂 =

∑
𝑖 𝜐𝑖𝑐𝑖 , where 𝜐𝑖 is the volume per mole of solutes, such as (hydrated)

ions. Eq. (8.8) then dramatically simplifies, to

𝜕𝑃h

𝜕𝑥
= − 𝑓F-m𝑣F

1 − 𝜂 −
∑︁
𝑖

(
𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
. (8.10)

After multiplying all terms with 𝑅𝑇 , Eq. (8.10) can be rearranged to

𝑣F = − (1 − 𝜂) kF-m

𝑅𝑇

(
𝜕𝑃

h

𝜕𝑥
− 𝜌E

)
(8.11)

where 𝑃
h
= 𝑅𝑇 · 𝑃h is a dimensional pressure with unit Pa. On the very right we have the

charge density due to all mobile species, 𝜌 = 𝐹 ·∑𝑖 𝑧𝑖𝑐𝑖 , while E = −𝑉T · 𝜕𝜙/𝜕𝑥 is the field
strength (in V/m).

These equations are the porous medium version of the Navier Stokes equation including
an electrostatic body force term 𝜌 E that arises in an EDL or for flow through charged porous
media. The permeability kF-m can be multiplied by the fluid viscosity 𝜇F (in Pa.s) and divided
by 𝑅𝑇 , to arrive at an intrinsic permeability 𝑘𝑖 with unit m2, and this factor only depends on
the structure of the porous medium, i.e., 𝑘𝑖/𝜇F = kF-m/𝑅𝑇 . For a porous structure consisting
of tortuous cylindrical pores, 𝑘𝑖 = 𝑝3/2 𝑑2

p / 32 (based on Hagen-Poiseuille), where 𝑑p is the
pore diameter, and where we implemented the Bruggeman equation to relate the tortuosity
factor 𝝉 to porosity, 𝑝, by 𝝉 = 𝑝−½. Using the Bruggeman equation, the factor 𝜀 becomes
𝜀 = 𝑝/𝝉 = 𝑝3/2, while another expression in the membrane literature is 𝜀 = (𝑝/(2 − 𝑝))2.
In this second expression, 𝜀 is predicted to be much lower. For instance, at 𝑝=0.5, 𝜀 is more
than three times lower using the second expression, than when the Bruggeman equation is
used.

iThe osmotic pressure and chemical potential can also have other contributions such as an attraction energy
between solutes, or the electrostatic interaction energy between ions, as discussed on p. 200.



210 Electrokinetics

Expressions for fluid permeability in porous media. For a porous medium, the
Carman-Kozeny (CK) equation is often used which we can represent as 𝑘𝑖/ℎ2

p = 1/5 𝑝,
where ℎp is the volume/area ratio of the pores, ℎp = 𝜎/6 · 𝑝/(1−𝑝), which depends on
the size of the spheres of which the porous medium is constructed, 𝜎, see Eq. (4.12).
(There, 𝜂 is the packing factor, which is replaced here by 1−𝑝, with p the porosity of the
medium.) When we compare with numerical results for the Stokes flow through arrays
of spheres (Zick and Homsy, J. Fluid Mech., 1982) we notice that the CK equation
is about right for a porosity p less than 35%. However, for more open structures the
predicted permeability 𝑘𝑖 is too high. Analysing the numerical results in Zick and
Homsy (1982) for an FCC packing, we find that the ‘5’ in the above CK-equation is best
replaced by 4+1/(1−𝑝). This equation fits numerical results very well up to a porosity
of 93.5 vol% packing. For even more porous structures, we use

𝜕𝑃h

𝜕𝑥
= −18 𝜇F (1 − 𝑝)

𝜎2

(
1 + 𝛼 (1 − 𝑝)2/3

)
𝑣F (8.12)

where 𝛼 = 12.8, and 𝜎 is again the size (diameter) of the spheres of which the porous
medium consists. For a porosity in the limit of 100%, this equation relates to the Stokes
drag force on a single isolated sphere. [In that limit, the pressure gradient is given by
𝜕𝑃h/𝜕𝑥 = −𝑐𝐹 with 𝑐 the concentration of immobile obstacles and 𝐹 the Stokes drag
force, 𝐹 = −3𝜋𝜇F𝜎𝑣S, and with 𝑝 = 1−𝑐𝜐 and 𝜐 = 𝜋/6𝜎3 we indeed get the required
result. (In this very dilute limit 𝑣F is equal to the Stokes velocity of the spheres relative
to the fluid, 𝑣S.)]

Darcy’s law also follows when there are free-flowing inclusions in the fluid.
Interestingly, when there are dispersed particles in the fluid that are uncharged
and do not have friction with the pore walls (and thus 𝐾f,𝑖 = 1), and when solute
concentration gradients are zero, then Eq. (8.11) results in the Darcy equation for
the fluid-plus-solute mixture. And then the term 1−𝜂 ‘disappears’ without having to
assume the dispersed particles are without volume. This can be derived as follows.
Eq. (8.11) describes the superficial velocity of the fluid. If the dispersed entities have
no friction with the porous matrix (𝐾f,𝑖 =1), and there are no diffusional or electrostatic
forces acting on them, then their velocity 𝑣𝑖 is the same as the interstitial velocity of
the fluid, thus 𝑣𝑖 = 𝑣F/(1 − 𝜂), where 𝜂 is the fraction of the pore volume blocked out
by these solutes. The combined, or total, superficial volumetric flow rate of fluid and
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particles together (i.e., their joint superficial velocity as a whole) is 𝑣tot = 𝑣F +
∑
𝑖 𝜐𝑖𝑐𝑖𝑣𝑖

(with 𝜐𝑖 the molar volume of the solutes), and when all solutes have the same velocity
𝑣𝑖 , we have 𝑣tot = 𝑣F + 𝜂𝑣𝑖 = 𝑣F + 𝜂/(1 − 𝜂) 𝑣F = 𝑣F/(1 − 𝜂). Inserting this conversion
in Eq. (8.11) and assuming 𝜌=0, the total volumetric flow rate 𝑣tot is then given by the
Darcy equation

𝑣tot = −
𝑘𝑖

𝜇F

𝜕𝑃
h

𝜕𝑥
. (8.13)

And thus we have the same results when we press pure water through a porous medium
as when in the water there are solutes that just flow along with the water.

[When solutes do have a gradient in volume fraction (thus concentration) across the
porous medium, then the total volume flow is influenced by their flow, and thus depends
on additional factors such as 𝜀 and 𝐷𝑖 , also when they do not interact with the porous
medium directly, so when 𝐾f,𝑖 =1.]

This long analysis leads to the important result that that the (1−𝜂)-term in Eq. (8.11) is
indeed correct there, a term which goes all the way back to the term 𝑓 ′F-m𝑣

′
F in Eq. (8.1)

where we did not add a term 1−𝜂 because the fluid-matrix friction does not depend
on how much of the pore space is blocked out by solutes. That is a correct approach
because it leads ultimately to the Darcy equation for a total fluid flow rate that does
not depend on whether we have ‘phantom’ particles in the fluid that move along with
it. If they are there, they should not influence a Darcy equation for the measurable
total volumetric flow, as described by Eq. (8.13), and correctly, their presence indeed
doesn’t.

When we assume that the ions are volumeless point charges (leading to 𝜂 = 0), we can
simplify Eq. (8.10) to

𝑣F = −kF-m

(
𝜕𝑃h

𝜕𝑥
− 𝑋 𝜕𝜙

𝜕𝑥

)
, 𝑣F = −𝑘F-m

(
𝜕𝑃h

𝜕𝑥
− 𝑋 𝜕𝜙

𝜕𝑥

)
(8.14)

where we also included local charge neutrality,
∑
𝑖 𝑧𝑖𝑐𝑖 + 𝑋 = 0 where X is a membrane

charge density. In Eq. (8.14), kF-m=1/( 𝑓F-m), and the dimensionless thickness is 𝑥 = 𝑥/𝐿m.
Remember that Eq. (8.10) and thus also Eq. (8.14) assume𝐾f,𝑖 =1. This extension of Darcy’s
law is a classical equation in the field of electrokinetics with charged porous media. It can be
found first in a paper in 1955 from R. Schlögl and this equation was called Schlögl’s equation
of motion by Verbrugge and Hill (1990). If 𝑋 is constant, Eq. (8.14) can be integrated across
the layer to arrive at an equation we will discuss further on, Eq. (8.32).
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Thus we saw in Eq. (8.11) that the electrical body force 𝜌E naturally develops from the
general force balance, Eq. (8.1), when combined with the extended NP equation from Ch. 7.
In the next box, we present a similar result for the Navier-Stokes equation in an electrolyte
phase outside of a porous medium.

The electrostatic body force term in the Navier-Stokes equation. If in the derivation
of the Schlögl-equation instead of − 𝑓F-m𝑣F a term −𝜇F∇2vF is used, describing viscous
dissipation of a fluid, then the exact same derivation that led to the Schlögl-equation,
now first leads to

∇𝑃tot − 𝜇F∇2vF = 𝑅𝑇
∑︁
𝑖

𝑐𝑖

𝐷∞,𝑖
(v𝑖 − vF) (8.15)

where we neglect all solute volume effects and we simply describe flow in a ‘free’
electrolyte. If we implement the extended Nernst-Planck equation for the ionic fluxes,
we arrive at the classical Navier-Stokes equation for Stokes flow (low fluid velocities)
including an electric body force term

𝜇F ∇2vF = ∇𝑃h − 𝜌E . (8.16)

When solutes do have volume, there are several complications in this derivation that
require formal solution of a two-phase viscous flow problem with varying volume
fractions. That goes beyond the authors’ expertise.

Thus again, a formulation starting with a total pressure 𝑃tot and friction of the fluid
with all solutes, leads to the classical Navier-Stokes equation based on the hydrostatic
pressure, 𝑃h, and an electrostatic body force term. The electrostatic term arises because
electrical fields pull on ions, and they in turn pull on the water. [Interestingly, the
standard explanation for a term 𝜌E in Eq. (8.16) often found in literature is rather that
it is a force acting on the electrolyte as a whole, see for instance Harned and Owen
(1958), p. 100.]

The above equations are compatible with the fact that at mechanical equilibrium, thus
when all velocities are zero relative to one another, we arrive at 𝜕𝑃tot/𝜕𝑥 = 0, for instance
see Eq. (8.3), and thus 𝜕𝑃h/𝜕𝑥 = 𝜕Π/𝜕𝑥, and thus Δ𝑃h = ΔΠ, which implies that gradients
and thus changes in hydrostatic pressure are the same as those in the osmotic pressure
(Schlögl, 1955; Fair and Osterle, 1971; Anderson and Malone, 1974; Sonin, 1976; Sasidhar
and Ruckenstein, 1981; Peters et al., 2016). This is the case when mechanical equilibrium
can be assumed as is generally the case in an equilibrium EDL structure, such as in the
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Donnan layers at the edges of a membrane, when fluxes of solutes and solvent may not be
zero, relative to one another, but nevertheless very small to the gradient in pressure-term.
Based on Eq. (8.11) we can also derive that at mechanical equilibrium we have 𝜕𝑃

h

𝜕𝑥
= 𝜌E,

a result we can use to study the structure of an EDL and colloidal interactions. These
conditions also hold when there is flow across an interface, as long as the structure is thin,
thus gradients are large. This is a local condition, that holds across any interfacial structure
of a few nm thickness, or without flows also across thicker layers. The macroscopic corollary
is what in the physiology literature is called Starling’s equilibrium condition which is that at
zero flow of water and of solutes, the hydrostatic pressure difference between two sides of a
membrane equals the osmotic pressure difference.

—

An equation such as Eq. 8.14 for the fluid flow through a charged porous structure, such
as a membrane, simplified for the case of ions as point charges and no ion-matrix friction,
on the one hand seems logical, with an pressure term and an electrostatic term, but on the
other hand is also completely mysterious, especially the second part. The first part makes
sense, fluid moves because of a pressure gradient inside the membrane. But where is the
effect of the osmotic pressure gradient, because doesn’t fluid also move because of gradients
in osmotic pressure, and why would fluid respond to the product of a membrane charge and
a potential gradient? The fluid is uncharged by itself after all. The answers are to be found in
the fact that first of all, one of the main driving forces on the fluid is the friction with the ions,
and the ions move because they respond to concentration gradients (Fick’s law), and because
of electrostatic effects (migration). This Fickian driving force on ions exactly cancels the
effect of the osmotic pressure gradient acting on the fluid. Thus, the diffusional forces acting
on ions to make them move one way, exactly cancels the osmotic pressure gradient that
would pull the fluid to higher concentration. What remains then are the electrostatic forces
acting on ions, that via their friction with the fluid effectively pull on the fluid. This results
in the term -X𝜕𝜙/𝜕𝑥 in the fluid force balance. With coions and counterions in a membrane,
and even when their fluxes are the same, irrespective of direction, because there are many
more counterions (at a concentration close to |𝑋 |), the migration term 𝑧𝑖𝑐𝑖𝜕𝜙/𝜕𝑥 mainly acts
on the counterions, which effectively makes it look as if the electrostatic pull on the water
is only due to counterions, even though the flux of counterions may not be much different
from that of coions. Thus this intuitive relationship, between the electrostatic force on the
fluid, and the migration of counterions, may be misleading. For an intuitive relationship,
we should consider Eq. (8.1) (and set 𝜂 = 0 and neglect ’) where we have first the total
driving force on a volume of liquid, next its friction with the membrane matrix, and finally
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friction with ions that move through it. If we want an intuitive ‘physical’ starting point, this
is where to look. And we should not be surprised when an explanation that instead starts
with Eq. (8.14), leads to confusion.

One way to interpret the term −𝑋𝜕𝜙/𝜕𝑥 in a membrane is that it relates to net force on
the membrane to move relative to the fluid, as if the membrane itself is a (very big) molecule
with charge X. At a positive current, 𝜕𝜙/𝜕𝑥 will be negative. Let us assume a CEM, with
𝑋 < 0, that would mean a force acts on this negative molecule that pulls it left relative to
the fluid. [Because a negative charge is drawn to locations of a higher potential, 𝜙.] But
its position is fixed. Thus instead we will have fluid flow to the right. And indeed, in a
derivation that has four times a minus-sign, Eq. (8.14) results in a positive 𝑣F! In this way
we can make some sense of the electro-osmotic term in Eq. (8.14) by relating it to the force
acting on the charged material relative to the fluid that moves through it.

8.2 Flow of fluid across a charged membrane
The above derivation of an expression for fluid velocity in a porous layer started with a
force balance which includes a total pressure gradient balanced by friction with the porous
medium and with the free solutes. And when we can neglect friction between ions and the
porous medium, this balance leads to a final simple expression where a hydrostatic pressure
acts on the fluid as well as an electric body force, 𝑋𝜕𝜙/𝜕𝑥. The derivation demonstrates
that the electric body force acting on the fluid originates in the drag of the electric field on
the ions, and the ions in turn exert a frictional force on the fluid, i.e., they drag along the
fluid. Thus, there is no direct force by the electric field on the solvent. This makes sense,
because how could there be such an effect, as the solvent by itself is uncharged. Instead,
the above derivation shows that the electric body force on a fluid is indirect: it acts on the
charge carriers, which then drag along the fluid.

The exact cancellations in Eq. (8.8) that lead to the elegant Eq. (8.10), where the osmotic
pressure gradient acting on the fluid cancels against the diffusional driving forces that act
on the ions, is of particular interest. It shows that even though an osmotic force always
acts on the fluid, it is the case that when ions are free to move, this force effectively is not
operational. This matches the outcome of an experiment where we bring a high-salt solution
in contact with a volume of pure water with the two liquids only separated by a neutral very
open filter, or separated by nothing at all. Even though the water feels a natural force to
move to the high-salt solution, the ions diffusing away from that region into the pure water
act with an opposing drag force on the water, and that force exactly cancels the osmotic
‘attraction’ of the water to go to the high-salinity side. In effect, the water –as we see in such
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an experiment– does not move to the high-salt side, as correctly predicted by the equations
in this section. In such an experiment it is just the ions that diffuse away from the high-salt
region, through water that is not moving at all. [This analysis is valid when all solutes are
without volume. When they do have volume there is a backflow of water such that the total
volumetric flow rate, 𝑣tot, stays zero, related to an analysis of diffusion on p. 211.]

It is only when a selective layer, i.e., a membrane, is placed between two salt solutions,
i.e., a layer that has a retention for at least one of the ions in the system, that indeed a water
flow develops to the high-osmotic pressure side. The same force (of the water to go to that
side) was already there without this membrane, but only now it actually leads to water flow.
Why it now does lead to water flow is explained in this and the next sections.

Eq. (8.14) shows that a hydrostatic pressure gradient in the membrane can push water
across a layer. But how does a pressure gradient develop? The reason is the pressure drops at
the two membrane-solution interfaces. Across these Donnan layers, the hydrostatic pressure
goes up or down by an amount equal to the difference in osmotic pressure across that same
interface, see Fig. 8.1. Thus, when the osmotic pressure increases from a value outside
the membrane of 2𝑐∞ (for a z:z salt), to 𝑐T,m inside the membrane, the hydrostatic pressure
changes by that same amount.

We can also use Eq. (8.3) to derive this result of the pressure changes across a Donnan
layer. When considering transport over macroscopic distances of a few 𝜇m or more, all
terms in Eq. (8.2) are roughly of the same order of magnitude, because why else consider
them at all, but in the Donnan layer of only a few nm’s thickness, the gradient-term in
pressure on the left is now many orders of magnitude larger than all the other terms. Thus
Eq. (8.3), when applied to the Donnan layer, simplifies to 𝜕𝑃tot/𝜕𝑥 = 0, in which we can
insert 𝑃tot = 𝑃h − Π and thus derive after integration from one end of the Donnan layer to
the other that across the Donnan layer any change in osmotic pressure is exactly the same as
the change in hydrostatic pressure. Yet another derivation of this result is given here. More
details about the equivalence of concentration and osmotic pressure is given here.

Together with these boundary conditions, Eq. (8.14) now explains how it can be that
when between two reservoirs there is a small enough pressure difference, that water flows
from a reservoir with low osmotic pressure (low concentration of solute) to a reservoir
with high osmotic pressure. The explanation is that across the Donnan layers at the two
membrane edges a hydrostatic pressure difference develops, and this hydrostatic pressure will
be different on the two sides. When we have equal values of 𝑃h outside the membrane, and
when these two jumps in 𝑃h on the membrane edges are different, a gradient in hydrostatic
pressure develops in the membrane which pushes the water to one of the two sides, see
Fig. 8.1.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/ro_6
http://www.physicsofelectrochemicalprocesses.com/supp_mat/ro_7
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Fig. 8.1: Profiles of osmotic pressure Π and hydrostatic pressure 𝑃h across a charged porous layer,
such as a membrane, for the case of equal hydrostatic pressures on the two sides. At the edges of the
layer, the change in Π determines the change in 𝑃h (namely, they are the same). The osmotic pressure
Π is a positive function of concentration. The direction of water flow is determined by the gradient
in 𝑃h across the layer (with the water flowing towards lower 𝑃h). (a) The case of neutral solutes and
a membrane with a partition (sieving) coefficient of the solutes of Φ𝑖 < 1. On the high concentration
side the drop in Π is the steepest, and this ultimately leads to the hydrostatic pressure in the membrane
decaying to this side and thus also water flowing to this side. (b) For a charged membrane in contact
with two salt solutions with different concentration, the increase in osmotic pressure is the steepest
on the low-salinity side, and just as for neutral solutes in panel a), the hydrostatic pressure in the
membrane drops towards the high-salinity side, pushing the water in that direction.



Flow of fluid across a charged membrane 217

Fig 8.1A discusses the case of neutral solutes, and a selective layer that has a partition
(sieving) coefficient for the solutes that is less than unity, Φ𝑖 < 1. Thus the solute
concentration in the membrane is lower than outside, and thus the osmotic pressure goes
down when we enter the membrane, and the same is then the case for the hydrostatic pressure.
This leads to a flow of water to the high-concentration reservoir. This effect is the highest
on the high-concentration side of the membrane, see Fig. 8.1A.

We can analyze this situation in general based on Eq. (8.2), and we start first of all with
a 1:1 salt solution and a charged porous medium (such as a membrane) with charge density
𝑋 (which can be positive and negative). We assume that all ions have the same 𝐾f,𝑖 and 𝐷𝑖 .
We neglect ion volume effects, thus set 𝜐𝑖 = 0 for all solutes, and thus 𝜂 = 0 which leads to
Eq. (8.3). We implement Eq. (7.71) in Eq. (8.2) and then obtain

−𝜕𝑃
h

𝜕𝑥
= 𝑓F-m𝑣F +

1
𝜀𝐷𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m𝑣F −

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
− 𝑋𝐾f,𝑖

𝜕𝜙

𝜕𝑥
(8.17)

where 𝑐T,m is a summation over all ion concentrations, i.e., the total concentration. Thus,
Eq. (8.17) describes the pressure changes through a porous medium for a 1:1 salt solution
when all properties of the ions are the same.

When we change to a dimensionless thickness, 𝑥 = 𝑥/𝐿m we can rewrite Eq. (8.17) to

−𝜕𝑃
h

𝜕𝑥
=

{
1
𝑘F-m

+ 1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m

}
𝑣F −

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
− 𝑋𝐾f,𝑖

𝜕𝜙

𝜕𝑥
. (8.18)

The current density, 𝐽ch, can be calculated from the extended Nernst-Planck equation,
Eq. (7.71). For a 1:1 salt, we have 𝐽ch = 𝐼/𝐹 = 𝐽+ − 𝐽− , and with equal 𝐾f,𝑖 and 𝐷𝑖 and a
constant membrane charge density 𝑋 =𝑐m,− − 𝑐m,+, we arrive at

𝐽ch = −𝐾f,𝑖

(
𝑋𝑣F + 𝑘m,𝑖𝑐T,m

𝜕𝜙

𝜕𝑥

)
. (8.19)

For a process where 𝐽ch = 0 (dialysis,ii reverse osmosis), Eq. (8.19) can be implemented in
Eq. (8.18) to replace 𝜕𝜙/𝜕𝑥, and we then arrive at

−𝜕𝑃
h

𝜕𝑥
=

{
1
𝑘F-m

+ 1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m +

𝑋2𝐾f,𝑖

𝑘m,𝑖𝑐T,m

}
𝑣F −

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
(8.20)

which for 𝐾f,𝑖 =1 simplifies to

𝑣F = −
{

1
𝑘F-m

+ 𝑋2

𝑘m,𝑖𝑐T,m

}−1

· 𝜕𝑃
h

𝜕𝑥
. (8.21)

iiDialysis is the process where a membrane is placed between two solutions with different composition and solutes
(often salts) and water are allowed to flow through the membrane without an applied pressure difference or
current. We also call this the osmosis experiment.
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This equation is the same as Eq. (8.14), only that Eq. (8.21) also requires all diffusion
coefficients to be the same, and a zero current density.

If instead we now consider that the porous medium is uncharged, 𝑋 =0, then we replace
𝑐T,m by 2, and obtain from Eq. (8.20)iii{

1
𝑘F-m

+ 1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐

}
𝑣F = −

{
𝜕𝑃h

𝜕𝑥
−

(
1 − 𝐾f,𝑖

) 𝜕𝑐
𝜕𝑥

}
(8.22)

which we can integrate across the membrane to{
1/𝑘F-m +

(
1 − 𝐾f,𝑖

)
⟨𝑐⟩ /𝑘m,𝑖

}
𝑣F = −

{
𝑃h,R − 𝑃h,L −

(
1 − 𝐾f,𝑖

) (
𝑐R − 𝑐L

)}
(8.23)

where an average concentration, ⟨𝑐⟩, is defined as ⟨𝑐⟩ =
∫ 1

0 𝑐 d𝑥.iv In the present model for

neutral solutes, ⟨𝑐⟩ is given by ⟨𝑐⟩ =½
(
𝑐L + 𝑐R)

+
(
𝑐L − 𝑐R) (

½ (tanh (½Pe𝑖))−1 − Pe−1
𝑖

)
,

where Pe𝑖 = 𝑣F/𝑘m,𝑖 is a membrane-based Pe-number, see p. 296. We use notation L and R
for positions just within the porous medium on the left and right side. Next we introduce
an effective permeability 𝑘†F-m given by 1/𝑘†F-m = 1/𝑘F-m +

(
1 − 𝐾f,𝑖

)
⟨𝑐⟩ /𝑘m,𝑖 . Only in the

absence of solutes in the porous layer, or when they have no friction with the porous structure
(then 𝐾f,𝑖 =1), do the two permeabilities (effective and ‘clean water’) coincide. With these
changes, the left side of Eq. (8.23) becomes 𝑣F / 𝑘†F-m.

On the right side of Eq. (8.23) we can implement a partition function describing that the
concentration just in the membrane (or, porous layer in general) 𝑐 is given by 𝑐 = Φ𝑖 𝑐∞
where 𝑐∞ is the concentration of neutral solutes, just on the outside of the membrane. The
pressure just in the membrane, different on either side, 𝑃h, relates to that on the outside, 𝑃h,∞,
by 𝑃h = 𝑃h,∞ + Δ𝑃h. This step change in hydrostatic pressure, as discussed before, equals
the step change in osmotic pressure, ΔΠ, across the same solution-membrane interface.
For ideal solutions this step change in osmotic pressure is simply the difference in solute
concentration, which in case of a single solute is ΔΠ = 𝑐 − 𝑐∞ where c without an index is
that just in the membrane. We can implement the partition function, and we therefore arrive
at Δ𝑃h = ΔΠ = (Φ𝑖 − 1) 𝑐∞, and this result we can apply on both sides of the membrane.
We then obtain

−𝑣F/𝑘†F-m = 𝑃h,R,∞ + (Φ𝑖 − 1) 𝑐∞,R − 𝑃h,L,∞ − (Φ𝑖 − 1) 𝑐∞,L −
(
1 − 𝐾f,𝑖

)
Φ𝑖

(
𝑐∞,R − 𝑐∞,L

)
(8.24)

which we can simplify to

−𝑣F/𝑘†F-m = Δ𝑃h,∞ + (Φ𝑖 − 1) Δ𝑐∞ −
(
1 − 𝐾f,𝑖

)
Φ𝑖Δ𝑐∞ (8.25)

iiiThe total concentration of cations and anions, is now replaced by the concentration of neutral solutes.
ivFurther on, the same definition of an average is used for 𝑐T,m and also an inverted average ⟨𝑐⟩† is defined.
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where we implemented Δ𝑃h,∞ = 𝑃h,R,∞ − 𝑃h,L,∞ and Δ𝑐∞ = 𝑐∞,R − 𝑐∞,L. Eq. (8.25) can be
rearranged to

𝑣F = −𝑘†F-m

(
Δ𝑃h,∞ −

(
1 − 𝐾f,𝑖Φ𝑖

)
Δ𝑐∞

)
. (8.26)

Eq. (8.26) shows how we can have flow of water (osmotic flow) when solutes are excluded
from the membrane (Φ𝑖 < 1), as depicted in Fig. 8.1A, or when they have friction with the
membrane matrix, thus 𝐾f,𝑖 < 1. The osmotic driving force Δ𝑐∞ is not as effective as the
hydrodynamic driving force Δ𝑃h,∞ because it is reduced by a factor 1−𝐾f,𝑖Φ𝑖 . The effective
permeability 𝑘†F-m is a function of the average concentration in the membrane, ⟨𝑐⟩. This
concentration is the average of concentrations just in the membrane on the left and right
sides at low membrane Pe-numbers, and at high Pe-numbers is close to the concentration
just in the membrane on the upstream side, which is the side from where water is pushed
into the membrane.

We can replace Δ𝑐∞ by ΔΠ∞ in Eq. (8.26) and replace 1−𝐾f,𝑖Φ𝑖 by 𝜎𝑖 , a factor called
the reflection coefficient in the reverse osmosis (RO) literature. With these modifications we
obtain a classical expression from the field of RO, which is

𝑣F = −𝑘†F-m

(
Δ𝑃h,∞ − 𝜎𝑖 ΔΠ∞

)
. (8.27)

Osmotic Equilibrium. The phenomenon of osmosis is often discussed in terms of
the hydrostatic pressure that develops between two containers with different solution
concentration, between which is placed a membrane that allows passage for the solvent
but not for the solutes. This hydrostatic pressure is then dubbed ‘the’ osmotic pressure
that has developed. Often the situation is discussed where fluid flow through the
membrane has become zero (mechanical equilibrium). We can use Eq. (8.26) to analyze
this situation. We have 𝑣F =0 at equilibrium, we assume zero solute flow, for instance
because Φ𝑖 =0, and with ΔΠ∞ = Δ𝑐∞ (because throughout this book all pressures are
expressed in units of mol/m3, and can be multiplied by 𝑅𝑇 to obtain a pressure in Pa),
we arrive at

Δ𝑃h,∞ = ΔΠ∞ (8.28)

i.e., the hydrostatic pressure difference across the membrane equals the osmotic pressure
difference. If one solution is pure solvent, not containing solutes, the osmotic pressure
there is zero, and if we set the hydrostatic pressure there to zero as well, then in the
other reservoir we have 𝑃h = Π, i.e., ‘the’ hydrostatic pressure is equal to ‘the’ osmotic
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pressure. So in this particular case indeed the two pressures ‘are the same’, but in
general, with solutes also flowing across the membrane, this is not the case.

There are many papers that philosophically discuss why water flows to a high-
concentration side of the membrane such that ultimately the osmotic and hydrostatic
pressures become the same (Guell and Brenner, 1996). The mechanical, or microscopic,
explanation of this why-question is discussed throughout this chapter, relating to a
pressure gradient developing inside the membrane that pulls water to the side of high
solute concentration.

The other approach to the why of water flow, is the thermodynamic fact that systems
tend to minimize the total energy. We can make such an analysis here as well. When we
have a vertical tube containing solutes and solvent (e.g., water), and at the bottom of the
tube is a selective membrane that only allows passage of water (vertical position ℎ=0).
It is placed in a large container of water without solutes in which the hydrostatic pressure
is constant. In the vertical tube we have an initial height ℎini and initial concentration
of solutes 𝑐ini. Analysis of the total energy in the system only requires us to consider
the tube. (The pressure energy in the surrounding bath is constant and does not have to
be considered.) In the tube, we have gravitational energy ½𝜌L𝑔ℎ

2, while the entropy
of the solutes contributes a term 𝑅𝑇 ℎ 𝑐 ln 𝑐 to the energy. We leave out a multiplier
𝐴 for cross-sectional area in both terms. Concentration 𝑐 is given by 𝑐 · ℎ = 𝑐ini · ℎini.
We implement this, add together the two energy terms, take the derivative with height,
and set this to zero. This is the criterion of mechanical equilibrium, when the energy is
at a minimum. This calculation immediately leads to 𝜌L𝑔ℎ = 𝑐, and with the left part
equal to the hydrostatic pressure and the right part equal to the osmotic pressure, we just
demonstrated that minimization of the total energy in a container connected to another
container by a membrane not permeable to solutes, leads at mechanical equilibrium
to 𝑃h = Π, i.e., the hydrostatic pressure (difference across the membrane) equals the
osmotic pressure (difference across the membrane).

Thus energy minimization leads to mechanical equilibrium, and thus solvent will
flow until across the membrane mechanical equilibrium is reached, Δ𝑃h,∞ =ΔΠ∞. So
solvent flows to minimize the energy of a system.

Interestingly, this equality only holds right at the membrane (and other positions at
that hydrostatic pressure); the higher up we go in the column, the osmotic pressure Π

is still the same, but the hydrostatic pressure 𝑃h drops steadily. Nevertheless, also at
these positions ℎ > 0 we have mechanical equilibrium.
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When there is solute leakage across the membrane, and thus mechanical equilibrium
is not established between the two sides of the membrane, then 𝑃h ≠ Π, so this simple
analysis does not apply. Then the full set of equations from this chapter can be used to
analyze these more realistic situations.

We just discussed the flow of neutral solutes through a neutral membrane, and water
flowing to the high-concentration side. When instead of a neutral system we have two ionic
solutions at different concentrations and a charged membrane, the result is the same, that
again the water flows to the side with high concentration of solutes. But there is a very
distinct difference with the neutral case, that now the solute concentration in the membrane
is higher than outside, not lower, and pressures go up when moving from outside to inside
the membrane, see Fig. 8.1B. But also in this case the changes in osmotic and hydrostatic
pressures are such that we again have a gradient in 𝑃h inside the membrane that pushes
water to the high-salinity side, see Fig. 8.1B. For ionic solutions and a charged membrane,
electrostatic effects, which is the second term in Eq. (8.14), can further modify the amount
and direction of water flow, as we will discuss in detail in the next section.

Mechanical energy from osmosis. In Fig. 8.1 we considered the situation that the
hydrostatic pressure, 𝑃h, is the same on the two sides of the membrane. But Fig 8.1
also suggests that we can set 𝑃h to a somewhat higher value on the high-concentration
side, and still the water will flow to that side. We then have water flowing against a
hydrostatic pressure difference between the two reservoirs. Thus the osmotic pressure
difference between two solutions works as an engine that pumps water from low to high
hydrostatic pressure. This interesting phenomenon is at the basis of a process called
pressure retarded osmosis, by which energy in the form of a concentration difference
(which can be called chemical energy, or osmotic energy) is converted into mechanical
energy. A related process using charged membranes converts the same type of osmotic
energy into electricity, and this process is called reverse electrodialysis.

The sign of pressure change on a membrane interface. Mechanical equilibrium at a
solution-membrane interface leads to the osmotic pressure and hydrostatic pressure
changing in the same direction, when going from outside to inside the membrane.
If the membrane is charged, then a Donnan effect is operative, and then the total ions
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concentration in the membrane is larger than outside, and thus the osmotic pressure goes
up into the membrane, and thus hydrostatic pressure as well. But if the membrane is
uncharged and there is only a non-electrostatic partition effect, Φ𝑖 , then the osmotic and
thus hydrostatic pressure go down going from outside to inside the membrane (Mauro,
Science 149, 867–869, 1965). When a charged membrane also has a non-electrostatic
Φ𝑖-effect, an interesting consequence is that for a given membrane charge density, X,
there is a critical salt concentration above which these two pressures decrease from
outside to inside the membrane, while below this value, they go up. Thus, in reverse
osmosis (RO), where on the upstream side of a membrane the salt concentration is quite
high (for instance at the level of seawater, ∼600 mM) but on the downstream side it can
be 99% lower (e.g., 6 mM), we likely have the two external salt concentrations on either
side of this critical value. As a consequence, on the upstream side of the membrane, the
pressure goes down when we enter the membrane, and on the downstream side it again
goes down, now when we exit the membrane. This sequence of downward steps in the
flow direction is not related to the water flow directly: for other values of X or Φ𝑖 , the
pressure would change in the same way on both sides, for instance going down in both
cases when we go from outside to inside the membrane. That these interfacial pressures
only step downward in the direction of flow, may look like a logical consequence of
the Darcy equation, with fluid flowing in the direction of decreasing pressure, but for
the membrane surfaces this equation does not apply. On a membrane edge we can also
have water flow in the direction of increasing pressure.

Thus, the hydrostatic pressure change upon entering the membrane, is the same as
the osmotic pressure change, and for a 1:1 salt this change is given by

Δ𝑃h = ΔΠ = 𝑐T,m − 2𝑐∞ =

√︃
𝑋2 + (2 𝑐∞Φ𝑖)2 − 2 𝑐∞ (8.29)

where 𝑐T,m is the total ions concentration just inside the membrane, at that interface,
while 𝑐∞ is the salt concentration outside the membrane. The non-electrostatic partition
coefficient, Φ𝑖 , is the geometric mean of the two coefficients for each ion individually,
see Eq. (2.42), Φ𝑖 =

√
Φ+Φ− , and includes all partition effects of affinity or ion

volume, but we do not include the Donnan effect in here which relates to maintaining
electroneutrality in the membrane. If we set the pressure change to zero, we obtain(

𝑋

2 𝑐∞

)2
+Φ2

𝑖 = 1 (8.30)
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which results for the critical salt concentration in

𝑐crit
∞ = ½ · 𝑋/

√︃
1 −Φ2

𝑖
. (8.31)

Thus for a membrane charge density of 𝑋 = 200 mM, and a non-electrostatic partition
coefficient of Φ𝑖 = 0.2, the critical salt concentration is 𝑐crit

∞ ∼ 102 mM. Thus for an
external salt concentration larger than 𝑐crit

∞ the pressure goes down upon entering the
membrane, and for 𝑐 < 𝑐crit

∞ it goes down when we leave the membrane. Actually, for
any value of Φ𝑖 < 0.5, the critical salt concentration is not much above 𝑐crit

∞ ∼ ½|𝑋 |.
Thus, indeed, for an RO membrane, with the aforementioned values of upstream and
downstream salt concentration, for any moderate value of the membrane charge density,
feed and permeate concentrations are on either side of the critical salt concentration
calculated by Eq. (8.31). Thus the pressure goes down when we go into the membrane
on the upstream side, and goes down again on the downstream side when we leave the
membrane, resulting in a profile of pressure that in the direction of water flow each time
‘steps downward’.

Negative pressures inside a membrane lead to cavitation. Another consequence of
the theory discussed in this section, i.e., mechanical equilibrium across a solution-
membrane interface, is that negative hydrostatic pressures can develop in membranes.
This means the liquid is under tension, and there likely is cavitation, i.e., vapour
bubbles form. This occurs when the hydrostatic pressure outside the membrane is low
(for instance atmospheric pressure), the osmotic pressure outside the material is high,
and solute molecules are well excluded from the membrane (Φ𝑖≪1, membrane charge
low). Bubbles have indeed been observed to form in tight desalination membranes,
such as on the side of the draw solution of forward osmosis membranes (refs. i, ii),
while the same topic has also been addressed in the biophysical literature (iii, iv).

i) E.W. Tow, M.M. Rencken, and J.H. Lienhard, “In situ visualization of
organic fouling and cleaning mechanisms in reverse osmosis and forward osmosis,”
Desalination 399, 138–147 (2016). (Fig. 14e,f)

ii) L. Song, M. Heiranian, and M. Elimelech, “True driving force and characteristics
of water transport in osmotic membranes,” Desalination 520, 115360 (2021).

iii) J.L. Anderson and D.M. Malone, “Mechanism of osmotic flow in porous
membranes,” Biophys. J. 14, 957–982 (1974).
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iv) M.A. Zwieniecki, P.J. Melcher, N.M. Holbrook, Science 291, 1059–1062 (2001).
M.T. Tyree, J.S. Sperry, “Vulnerability of xylem to cavitation and embolism,” Annu.
Rev. Ecol. Syst. 40, 19–38 (1989).

8.3 Osmosis and electro-osmosis in charged
membranes

8.3.1 Introduction

In the literature on ion transport through charged membranes, an intuitive understanding
has developed of the concepts of osmosis and electro-osmosis, as two distinct mechanisms
of water flow through membranes, based on two classical experiments. We discuss these
experiments and their analysis. However, as we will explain, they are different, in that
osmosis is a fundamental force acting on a fluid, as discussed in the previous sections,
but electro-osmosis is not such a fundamental force. Instead, it is the phenomenon that
electrolyte flows through a membrane when an electrical current is applied. In the next
sections we first introduce both experiments/phenomena, and later on analyze both in more
detail.

8.3.2 Osmosis

In a study of dialysis, the flow of salts and water across a membrane is measured as function
of an osmotic pressure difference (with equal hydrostatic pressure). v When the membrane
has a high charge density, 𝑋 , there is hardly any transport of ions through the membrane.
This is because transport of the coion is rate-limiting, i.e., it has a very low flux through the
membrane, and because of the zero current condition, the counterion has the same low flux.
It is mainly water that flows through the membrane.

The water that flows is then the ‘free water’, i.e., the water around the hydrated ions,
see Fig. 7.7.vi In this experiment water flows because of only one driving force, which
is the difference in osmotic pressure between the solutions outside the membrane. As we

vThough for the separation of salts, generally the membrane is charged, for solutions of macromolecules such as
proteins, the membrane does not have to be charged, but it only needs to be selective in blocking the protein.
The case of neutral solutes and an uncharged membrane was discussed in §8.2.

viFrom this point onward, we leave out ‘free’ again. By ‘water’ we mean the water flowing around the ions.
Instead, the water molecules bound into the hydrated ion, they are part of the entity we call an ion.
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explained in §8.2, water flows through the membrane due to an internal hydrostatic pressure
gradient that builds up because of the external osmotic pressure difference, see Fig. 8.1.) The
rate of water flow divided by the osmotic pressure difference (m3/m2/s/Pa) is the osmotic
permeability of the membrane.

The osmosis experiment (dialysis) can be done accurately because there is only
one membrane between two containers and we can measure volume changes and salt
concentration changes. Together with an overall volume balance and an overall salt
balance, these data can be checked against one another, and we can accurately determine the
volumetric flow rate through the membrane as well as the flux of salt through the membrane.
These data can be used to validate a membrane transport theory, as we will do in §8.3.5.

8.3.3 Electro-osmosis

In the electro-osmosis experiment the electrolyte flow through a membrane is measured
(again based on volume changes) as function of the current density. The solutions on both
sides have the same salt concentration, and thus the osmotic driving force is zero. Again,
there is no hydrostatic pressure difference between the two solutions. To quantify electro-
osmosis the volume flow through the membrane is divided by the current, and then an
electro-osmotic flow parameter follows that has the unit m3/s/A, thus m3/C. If we implement
the water molecular volume of 55.5 mol/L, we can convert this number to moles of water
‘per C’ transported (mol/C). And if we multiply by Faraday’s number we have the water
transport over charge transport in mol/mol.

In the classical interpretation, electro-osmotic water flow is associated with the water
molecules in the hydration shell of the counterions that go through the membrane to carry
the current. However, in analysing this experiment, we must realize that besides the ions
and their hydration water molecules, also water flows because it is being dragged along with
the ions (repeating ourselves, this is the ‘free’ water around the hydrated ions). The drag on
the free water is likely very significant. So even though this experiment provides an output
that has the unit mol/mol/mol, this should not be taken to mean that only the flow of water
tightly bound to the ions in the hydration shell is measured in this experiment. Because also
the water in between the ions flows. Thus, although in this experiment there are no driving
forces that pull the water through the membrane, there is friction of the water with the ions.
These ions drag the water along when they are pulled through the membrane because of the
applied current.
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8.3.4 What is measured in the osmosis and electro-osmosis
experiments?

We explain in this section in more detail what is exactly measured in an osmosis- and
electro-osmosis experiment.

The osmosis experiment probes the permeability for water flow through a membrane under
the influence of osmosis as a driving force. The water has friction with the membrane and
with the many ions that are in the membrane. The concentration of counterions is high but
they hardly move, while coions are at a much lower concentration. A driving force acts on
the water and we can measure an osmotic permeability. This number can be compared with
the hydraulic permeability measured by applying a pressure difference across the membrane
and observing the flow of water. For a highly charged membrane, the two numbers should be
the same, but when the membrane charge is not so high the osmotic permeability decreases
and the concentration difference across the membrane becomes increasingly ineffective in
generating a volume flow, because it no longer generates a significant internal pressure
difference, see §8.3.5.

The electro-osmosis experiment is more complicated. In this experiment the resulting
volume flow has two contributions. There is the flow of water, and besides that we
have the volumetric flow of the hydrated ions. The water flows because it is dragged
along by the ions that are pulled through the membrane because of the current. Thus
in the electro-osmosis experiment the sum of the volume flow of water and of ions is
measured. If we know the molar volume and flux of ions we can calculate the flow rate
of water. For a further discussion on measuring volume changes in this experiment, see here.

Thus, these two experiments demonstrate that osmotic pressure and current drive fluid
flow. However, what is measured in these experiments is not necessarily one-to-one
convertible to the fundamental driving forces that act on the water (the fluid), or the frictional
forces of the water with ions and the membrane. This is because flow of water in the
membrane results from the interplay of four contributions to the force balance acting on
it, namely: hydrostatic pressure gradients; osmotic pressure gradients; friction with ions
and other solutes; and friction with the membrane. The first three of these forces can
negatively and positively contribute to the actually realized water velocity, while friction
with the membrane matrix always slows down fluid flow. While osmosis is one of these four
fundamental forces, electro-osmosis is not.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/electrokinetics_1
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8.3.5 Mathematical analysis of osmosis and the osmotic
permeability

In this section we explain how the membrane theory used throughout this book (e.g., in
Chs. 11 and 12) also applies to dialysis (the osmosis experiment) and electro-osmosis. We
first discuss dialysis (the osmosis-experiment). Unless noted otherwise, we assume in the
next sections that all ions are volumeless, thus for all ions 𝜐𝑖 = 0, thus the total volume
fraction is zero, 𝜂 = 0, and 𝜇exc,𝑖 = 0. Besides the Donnan equilibrium, also a partition
function, Φ𝑖 , is included for all non-Donnan (non-electrostatic effects. From this point
onward, we assume that we have a 1:1 salt solution, with equal diffusion coefficients of the
two ions in the membrane.

As a first element of the theory we describe the two membrane/solution interfaces where
we have a change in osmotic pressure and hydrostatic pressure when going from outside
to inside the membrane, as illustrated in Fig. 8.1, and described by Eq. (8.29). Without
ion-membrane friction, i.e., for 𝐾f,𝑖 =1, the flow of water through the membrane is given by
Eq. (8.14) integrated across the membrane, which results in

𝑣w = −𝑘F-m

(
Δ𝑃h,m − 𝑋Δ𝜙m

)
(8.32)

where Δ𝑃h,m is the hydrostatic pressure difference between two positions just inside the
membrane, right at the two membrane/solution interfaces (counting right minus left, see
p. 507). The pressures in the membrane at the outer edges follow from Eq. (8.29), with
the hydrostatic pressure outside the membrane the same on both sides. The second term in
Eq. (8.32) is because of friction of water with ions in the membrane. The membrane charge
density 𝑋 can be both positive and negative. Starting with Eq. (8.32), we have changed from
a more general fluid velocity, 𝑣F, to the velocity of water, 𝑣w, which mathematically has the
same meaning.

Eq. (8.19) can be rewritten and then integrated across the thickness of the membrane,
which results in a voltage across the inner region of the membrane of

𝜕𝜙m

𝜕𝑥
= − 1

𝑘m,𝑖𝑐T,m

(
𝐽ch

𝐾f,𝑖
+ 𝑋𝑣w

)
→ Δ𝜙m = − 1

𝑘m,𝑖
〈
𝑐T,m

〉† (
𝐽ch

𝐾f,𝑖
+ 𝑋𝑣w

)
(8.33)

where 1/
〈
𝑐T,m

〉†
=

∫ 1
0 1/𝑐T,m d𝑥.

For a zero current, the voltage difference Δ𝜙m that develops in the membrane speeds up
the coions and slows down the counterions at the same time, to make sure they have equal
fluxes at each position in the membrane, even though there are far more counterions in the
membrane than coions.
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We can combine Eqs. (8.32) and (8.33) and arrive at

𝑣w = −𝑘F-m
𝑘m,𝑖

〈
𝑐T,m

〉†
Δ𝑃h,m + 𝑋𝐽ch/𝐾f,𝑖

𝑘m,𝑖
〈
𝑐T,m

〉† + 𝑘F-m𝑋2
(8.34)

which shows that for 𝐽ch = 0 the water flux through the membrane does not depend of the
sign of the membrane charge, X, but only on its magnitude. (This is different when cations
and anions in the membrane have different diffusion coefficients.)

We continue this section for 𝐽ch = 0 and Φ𝑖 = 1. We define a dimensionless osmotic
permeability Posm as the flow of water 𝑣w divided by the maximum flow of water, i.e.,
Posm = 𝑣w/𝑣w,max, where 𝑣w,max = 𝑘F-m ΔΠ∞ where ΔΠ∞ = 2

(
𝑐salt-high−𝑐salt-low

)
(right

minus left). In Fig. 8.2 we show results of Posm as predicted by Eq. (8.34), as function of
membrane charge density, 𝑋 , and of the ratio of the ion-fluid mass transfer coefficient, 𝑘m,𝑖 ,
over fluid-membrane friction coefficient 𝑘F-m (this ratio has unit mol/m3), and we observe
how Posm first increases with membrane charge and then decreases again. Fig. 8.2 shows
that for 𝑋 = 0 there is no osmosis at all: water does not move, and ions just diffuse from
high to low concentration. Instead, for a hydrostatic pressure gradient to develop inside
the membrane, we need the membrane to be charged (or we need Φ𝑖 < 1). This can be
understood from analysing Eq. (8.29) in the low-𝑋 limit

Δ𝑃h,int =
𝑋2

4𝑐∞
+ O

(
𝑋4

)
(8.35)

which shows that in this limit, there is no hydrostatic pressure building up. In dialysis, with
equal 𝑃h,∞ on the left and right outside the membrane, we have Δ𝑃h,m = Δ𝑃h,int,R −Δ𝑃h,int,L

and thus the water flow in this limit is now obtained from combining Eqs. (8.34) and (8.35),
assuming that the denominator in Eq. (8.34) is close to 1 because X is small, resulting in

𝑣w = −1/4 𝑘F-m 𝑋
2
(
𝑐−1

salt-high − 𝑐
−1
salt-low

)
(8.36)

which is the dashed line on the left in Fig. 8.2.
At high 𝑋 the build-up of hydrostatic pressure is at a maximum, across each interface

given by
Δ𝑃h,int = 𝑋 − 2𝑐∞ (8.37)

and thus the pressure between the leftmost and rightmost positions in the membrane is given
by Δ𝑃h,m=ΔΠ∞.

Despite this constant high value of the internal pressure difference, nevertheless at high 𝑋
the osmotic permeability, Posm, goes down. This is because there is more and more friction
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Fig. 8.2: The osmotic permeability Posm as function of membrane charge 𝑋 (𝑐salt-high = 0.5 M,
𝑐salt-low=0.1 M, for several values of 𝑘m,𝑖/𝑘F-m, unit mM), based on Eq. (8.34).

of the water with the increasing number of (almost stagnant) counterions in the membrane.
At high 𝑋 we can simplify Eq. (8.34) to

𝑣w = −𝑘m |𝑋 |−1 ΔΠ∞ (8.38)

which shows the inverse dependence on the magnitude of the fixed charge density, |𝑋 |, as
indicated by the red dashed line on the right in Fig. 8.2.

What we note is that the osmotic coefficient Posm is far below unity, even at the maximum:
on the one hand the friction of water with the ions in the membrane reduces the flow of
water while at low and moderate 𝑋 the osmotic pressure difference between the two outer
compartments does not translate fully to the same hydrostatic pressure difference inside the
membrane, because the ratio 𝑋/𝑐∞ is not high enough. Note that for the data that we discuss
in the next section, the factor 𝑘m,𝑖/𝑘F-m is much larger (>7,000 mol/m3) and thus the osmotic
coefficient is much larger as well, Posm∼0.6.

What would be the permeability when instead of an osmotic pressure difference, we
apply a hydrostatic pressure difference? With the same salt concentration on both sides,
the osmotic pressure increase across the Donnan layers is the same on both sides, and thus
the jumps in hydrostatic pressure across the Donnan layers on the edges of the membrane
are also the same on both sides. Thus the pressure difference across the inner region of the
membrane is the same as the pressure difference between the two outer compartments, i.e.,
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Δ𝑃h,m = Δ𝑃h,∞. We have the same value of 𝑐T,m at the edges of the membrane, and we
assume this value to be the same at each position inside the membrane. We can now again
use Eq. (8.34) and at high 𝑋 we also obtain Eq. (8.38) but with ΔΠ∞ replaced by Δ𝑃h,∞.
However, at low 𝑋 , Eq. (8.34) no longer has Eq. (8.36) as limit, but instead 𝑣w goes to a
maximum value given by 𝑣w =−𝑘F-mΔ𝑃

h,m. Thus, the hydrostatic pressure is ‘fully used’,
in contrast to the osmotic pressure which in the example above is only used to drive water
across the membrane up to a maximum value of ∼11%.

8.3.6 Mathematical analysis of dialysis with charged membranes

Next we discuss actual dialysis experiments with osmosis of water across a charged cation-
exchange membrane (CEM). Data are presented in Fig. 8.3A for the volume flow and salt
flow across a membrane, at several values of the two reservoir concentrations. For technical
details of the experimental program and data analysis, see here.vii In the experiment there is a
volumetric flow from the diluate side to the concentrate side (squares), and at the same time a
flow of salt in the other direction. We therefore know for sure that in the membrane there must
be water flowing past the salt ions. If we multiply the salt flux by an estimate of the volume
of hydrated ions, and if we assume a fairly large ion volume based on a size of a hydrated ion
of 0.5 nm, the volume flow associated with the salt flux is only 2% of the measured volume
flow. Thus in this experiment –and likely in many other similar experiments– the volume
flow associated with the hydrated ions diffusing through the membrane is not very large, and
as a good starting point we can assume in the transport theories that the ions are volumeless
point charges. This significantly simplifies many equations. And a consequence, we can
equate the measured 𝐽vol to the theoretical property of the flow velocity of the water, 𝑣w

(neglecting a contribution of ions to the measured 𝐽vol).
So, can we fit the equations derived in this chapter, based on the two-fluid model, to these

data for the flow of water and of salt? To find out, we first derive an equation for the salt
flux. This follows from the same extended Nernst-Planck equation that also gave us the
expression for current, Eq. (8.19), but we now we add cation and anion fluxes to obtain the
salt flux, 𝐽salt, according to

2 𝐽salt = 𝐽+ + 𝐽− = 𝐾f,𝑖𝑐T,m𝑣w − 𝐾f,𝑖𝑘m,𝑖

{
𝜕𝑐T,m

𝜕𝑥
− 𝑋 𝜕𝜙

𝜕𝑥

}
. (8.39)

viiWe are not aware of similar data published elsewhere on salt and water flow measured simultaneously in dialysis,
and a fit with a transport theory.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/electrokinetics_2
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We can implement Eq. (8.33) with 𝐽ch = 0, and obtain

𝐽salt =
𝐾f,𝑖

2

(
𝑐T,m𝑣w

(
1 − 𝑋2/𝑐2

T,m

)
− 𝑘m,𝑖

𝜕𝑐T,m

𝜕𝑥

)
. (8.40)

The first term on the right is a combination of convection and electromigration, while the
second term describes diffusion of salt to the diluate side. This entire first term approaches
zero when the membrane is very highly charged. Then only the second term, diffusion,
remains. For the theory fits that we obtain in Fig. 8.3 for a cation-exchange membrane
(CEM), a membrane used in electrodialysis (ED), the first term is about 8% of the second,
diffusion, term.

We can integrate Eq. (8.40) to

𝐽salt =
𝐾f,𝑖

2

{
𝑣w

(〈
𝑐T,m

〉
− 𝑋2〈

𝑐T,m
〉† ) − 𝑘m,𝑖Δ𝑐T,m

}
(8.41)

In this section we will solve Eq. (8.41) by assuming that the concentration 𝑐T,m changes
linearly across the membrane, but an exact integration will be discussed in §11.7. We
find that it is possible to fit the model to the data when we assume 𝐾f,𝑖 = 1. We then use
Eqs. (8.34) and (8.41) together with the solution/membrane boundary conditions, Eq. (8.29),
by tuning the three parameters in the theory (𝑘m,𝑖 , 𝑘F-m, and Φ𝑖; 𝑋 =−5.1 M). A very good
fit is obtained for Φ𝑖 = 0.53. However, based on salt absorption data for ion-exchange
membranes we know that Φ𝑖 is likely somewhat larger, Φ𝑖 ∼ 0.82 (Galama et al., 2013, p.
136, Φ𝑖 = exp (−𝜇∗) with 𝜇∗ = 0.2). We continue with this latter value of Φ𝑖 and make the
analysis once again.

To then fit the model to the data we must include in the transport equations the friction
of ions with the membrane matrix, not just with the water, thus we now use a 𝐾f,𝑖 less than
unity (for both ions we use the same value). Now Eq. (8.29) is still valid, but Eqs. (8.32)
and (8.34) no longer apply. We start at the general fluid transport equation, Eq. (8.3)

−𝜕𝑃
h

𝜕𝑥
+ 𝜕Π
𝜕𝑥
− 1
𝑘F-m

𝑣F = −
∑︁
𝑖

1
𝑘m,𝑖

(
𝐾f,𝑖𝑐𝑖𝑣w − 𝐾f,𝑖𝑘m,𝑖

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
− 𝑐𝑖𝑣F

)
(8.42)

in which we inserted Eq. (7.71). Replacing
∑
𝑖 𝑐𝑖 with 𝑐T,m, we obtain

−𝜕𝑃
h

𝜕𝑥
+ 𝜕Π
𝜕𝑥
− 1
𝑓F-m

𝑣F =
1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m𝑣w + 𝐾f,𝑖

𝜕𝑐T,m

𝜕𝑥
+ 𝐾f,𝑖

∑︁
𝑖

𝑧𝑖𝑐𝑖
𝜕𝜙

𝜕𝑥
(8.43)

in which we can implement local electroneutrality,
∑
𝑖 𝑧𝑖𝑐𝑖 + 𝑋 = 0, and Π = 𝑐T,m, resulting

in

−𝜕𝑃
h

𝜕𝑥
− 1
𝑘F-m

𝑣F =
1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m𝑣w −

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
− 𝐾f,𝑖𝑋

𝜕𝜙

𝜕𝑥
(8.44)



232 Electrokinetics

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

20

40

60

80

100

1 10 100
cd (mM)

–J
sa
lt
(m

m
o
l/
m

2
/h
r)

J v
o
l
(L
/m

2
/h
r)–Jsalt

Jvol

Fig. 8.3: Results of a dialysis experiment. Osmosis of water through a charged cation-exchange
membrane placed between two solutions at different salt concentrations. Data and theory are presented
for the volume flow through the membrane (blue squares), and the salt flux (red circles) in the other
direction, as function of the salt concentration in the diluate solution, 𝑐∞,low. For parameter settings
and values of 𝑐∞,high, see main text.

in which we can implement Eq. (8.33) to arrive at

𝜕𝑃h

𝜕𝑥
+ 1
𝑘F-m

𝑣F = − 1
𝑘m,𝑖

(
1 − 𝐾f,𝑖

)
𝑐T,m𝑣w +

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
−
𝐾f,𝑖𝑋

2𝑣w

𝑘m,𝑖 𝑐T,m
(8.45)

which we can rearrange to

𝜕𝑃h

𝜕𝑥
= −

(
1
𝑘F-m

+
1 − 𝐾f,𝑖

𝑘m,𝑖
𝑐T,m +

𝐾f,𝑖𝑋
2

𝑘m,𝑖 𝑐T,m

)
𝑣w +

(
1 − 𝐾f,𝑖

) 𝜕𝑐T,m

𝜕𝑥
. (8.46)

We can integrate Eq. (8.46) across the membrane (between points at the edges, but just
inside, the membrane), resulting in

Δ𝑃h,m = −
(

1
𝑘F-m

+
(
1 − 𝐾f,𝑖

) 〈
𝑐T,m

〉
𝑘m,𝑖

+
𝐾f,𝑖𝑋

2

𝑘m,𝑖
〈
𝑐T,m

〉† ) 𝑣w +
(
1 − 𝐾f,𝑖

)
Δ𝑐T,m (8.47)

which we can rearrange to

𝑣w = −
𝑘m,𝑖 𝑘F-m

(
Δ𝑃h,m −

(
1 − 𝐾f,𝑖

)
Δ𝑐T,m

)
𝑘m,𝑖 + 𝑘F-m

〈
𝑐T,m

〉 (
1 − 𝐾f,𝑖

)
+ 𝑘F-m𝐾f,𝑖𝑋2/

〈
𝑐T,m

〉† . (8.48)
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Without ion-wall friction we have 𝐾f,𝑖 =1, and we return to Eq. (8.32). To calculate the salt
flux, we again use Eq. (8.41).

Application to reverse osmosis. The above equations apply to a 1:1 salt that transfers
across a membrane without current, such as in dialysis and reverse osmosis (RO). RO
is a water desalination method where water is pushed through a membrane by applying
a pressure difference across a membrane, as will be analysed in detail in Ch. 11. We
can apply Eq. (8.48) to RO, and assuming that 𝑘F−m is much smaller than 𝑘m,𝑖/𝑋 , we
can replace the entire factor in front of the driving forces by the water permeability A,
which leads to

𝑣w = −𝐴
(
Δ𝑃h,m −

(
1 − 𝐾f,𝑖

)
Δ𝑐T,m

)
(8.49)

and we now wish to express the driving forces as those between two positions just
outside the membrane. Across each membrane edge the total pressure, 𝑃h − Π, is
invariant, and thus a total pressure difference between a point in the membrane on one
side, and a point in the membrane on the other side, will also be the same as the total
pressure difference between two points just on the two outsides (referred to with index
‘∞’). Thus

Δ𝑃h,m − Δ𝑐T,m = Δ𝑃tot = Δ𝑃h,∞ − ΔΠ∞ (8.50)

where we use the fact that in the membrane Π equals 𝑐T,m and outside it is equal to
2𝑐 𝑗 where 𝑐 𝑗 is a salt concentration just outside the membrane on either side. All of
this we can implement in Eq. (8.49), and if we assume that on the right side ‘R’ of the
membrane (to which the water flows), the salt concentration is much lower than on the
left ‘L’-side, thus the osmotic pressure there at ‘R’ is negligible to that at position ‘L’,
then we arrive at

𝑣w = −𝐴
(
Δ𝑃h,∞ − 𝜎′ΠL

)
(8.51)

where a modified salt reflection coefficient, 𝜎′, is defined as

1 − 𝜎′
𝑖

1 − 𝜎𝑖
=

√︄(
𝐶

𝑐L

)2
+ 1 − 𝐶

𝑐L
= 1 − 𝐶/𝑐L + O

(
(𝐶/𝑐L)2

)
(8.52)

where𝜎𝑖 is the standard reflection coefficient for neutral solutes and neutral membranes,
𝜎𝑖 = 1−𝐾f,𝑖Φ𝑖 , and C is a charge factor given by𝐶 = |𝑋 |/(2Φ𝑖). The Taylor expansion
at the end of Eq. (8.52) is only valid for low C relative to 𝑐L.

A good fit to the data reported in Fig. 8.3 is obtained with 𝐾f,𝑖 = 0.51, 𝑘F-m =
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87 (mm)4/mol/s, and 𝑘m,𝑖 = 0.62 𝜇m/s. The value of 𝑘F-m together with a membrane
thickness of 𝐿m=120 𝜇m recalculates to a value for the water-membrane friction coefficient
of 𝑓F-m = 96 Tmol.s/m5, which is in between two values reported in Tedesco et al. (2017).
The mass transfer coefficient 𝑘m,𝑖 recalculates to a 𝐷m,𝑖 which we can multiply by 𝐾f,𝑖 and
that group is about 40−50× less than the free diffusion coefficient of ions in solution (which
is ∼1.5−2.0·10−9 m2/s), in line with results in Fig. 7.2.

In conclusion, we can exactly describe data for osmosis through a charged membrane
by the theories explained in this book, with a realistic, non-unity, value of the partition
coefficient Φ𝑖 , and a realistic non-unity ion-membrane friction factor 𝐾f,𝑖 .

8.3.7 Mathematical analysis of electro-osmosis in a nanoporous
medium

Electro-osmosis generally refers to an experiment in the field of electrokinetics using a
thin channel through which a current runs with the EDLs at the sides of the channel not
overlapping (see, e.g., Kortüm (1965), p. 424). Instead, in this section we describe electro-
osmosis for a charged microporous material such as an ion-exchange membrane. Compared
to the description of the dialysis-experiment of the last section we now do not have an osmotic
pressure difference, but instead we apply a current. Because the two external solutions have
the same salt concentration, and are at the same hydrostatic pressure, the hydrostatic pressures
just inside the membrane, 𝑃h,m, are also the same on the two membrane/solution edges, and
the same holds for 𝑐T,m. Though not correct by definition, we now also assume these two
properties do not vary across the membrane, though it is possible they go down, then up
again, or vice-versa. See here for a technical remark about the notation of 𝑐T,m.

We analyse this experiment allowing for the possibility that 𝐾f,𝑖 ≠ 1. Thus based on
Eq. (8.18) together with Eq. (8.39) with 𝜕𝑐T,m/𝜕𝑥=0 and 𝜕𝑃h,m/𝜕𝑥=0, we obtain a perfect
proportionality between 𝑣w and 𝐽 ions (which is the total ions flux, equal to twice the salt flux
𝐽salt)

𝑣w

𝐽 ions
=

1
𝑘m,𝑖/𝑘F-m + 𝑐T,m

(8.53)

which contains the same factors as discussed in the last section. There are several intriguing
aspects to Eq. (8.53). First is that the result is completely independent of membrane thickness
𝐿m and of the factor 𝐾f,𝑖 . In retrospect the independence of 𝐾f,𝑖 makes sense because we
describe here the water flow as function of the total flux of ions, and how much friction
these ions have with the membrane matrix will not influence how strongly they drag on the
water. Second, interestingly, Eq. (8.53) is valid irrespective of the membrane charge. Also

http://www.physicsofelectrochemicalprocesses.com/supp_mat/electrokinetics_3
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at very low charge, we find this proportionality, and because we know that in the limit of a
very low charge (i.e., a non-selective membrane) the ratio of 𝐽 ions over current density 𝐽ch

goes to zero (zero current efficiency, see Eq. (12.8) in Ch. 12), we know that 𝑣w goes to zero
if 𝑋 goes to zero: there is no electro-osmosis for an uncharged membrane.

For a highly charged membrane we know that 𝐽 ions ∼ |𝐽ch | while 𝑐T,m ∼ |𝑋 |, and then
we can rewrite Eq. (8.53) to an expression for the aforementioned ratio of water molecules
transported per charge, which unit ‘mole/mole’. This electro-osmotic coefficient, 𝛼, is given
by

𝛼 =
𝑣w

|𝐽ch | 𝜐w
= 𝜐w

−1
(
𝑘m,𝑖

𝑘F-m
+ |𝑋 |

)−1
(8.54)

where we introduce the water molar volume 𝜐w∼18 mL/mol. The electro-osmotic coefficient
𝛼 is independent of current, and thus the water flow 𝑣w is proportional to current, and this
may then look experimentally as if a certain number of water molecules moves through
the membrane tightly bound to the ions. But actually Eq. (8.54) describes the flow of
water, dragged along because of ion-water friction. We derived that 𝛼 is not some intrinsic
property of water hydration, but depends on membrane charge and on ‘free’ transport
parameters. Inserting the parameters derived in fitting the dialysis-data of the last section
(for the 𝐾f,𝑖 ≠ 1-case), we obtain 𝛼 = 4.5, a very realistic number similar to what has been
measured for electro-osmosis of charged membranes.

To this contribution by the flow of water, we can add the volume flow associated with
the flux of the hydrated ions. This flow is an additional contribution to 𝛼 of for instance
𝛼hyd=2−5 (but only when 𝐽 ions∼ |𝐽ch |, otherwise the contribution is less), typical values for
the hydration number of ions. Clearly, the contribution of water molecules in the hydration
shell of ions cannot be distinguished easily from the free flow of water.

In summary, also in the electro-osmosis experiment there is a significant flow of ‘free’
water, in addition to the water molecules locked in the hydration shell of ions. The electro-
osmosis experiment can be used to measure the ratio 𝑘m,𝑖/𝑘F-m of a membrane, if we have
a means to exactly estimate the hydration number of ions in a charged membrane.viii

viiiNote that the present analysis assumed equal ion diffusion coefficients, equal ion-membrane frictions, absence
of partition effects, absence of diffusion boundary layers, full ion dissociation, ... Also experimentally, the
measurement of volume flow through a single membrane in an experiment with current running between two
electrodes, possibly with gas evolution, can introduce errors. So an accurate determination of frictional factors
based on analysis of an electro-osmosis experiment is a task that is not to be taken lightly ...
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8.3.8 Electrokinetic cross-functions

In the field of electrokinetics, many additional relations and experiments are in use, coupling
applied pressures, currents, voltages, etc. In this section we discuss two such cross-effects.

First, we can run the electro-osmosis experiment described above, but now push the water
back by a pressure difference such that there is no water flow. The relation that we want
to find is the pressure difference as function of current and water flow. First we derive the
extension to Eq. (8.53) including a pressure difference which results in

𝑣w =
𝐽 ions − 𝑘m,𝑖Δ𝑃

h,∞

𝑘m,𝑖/𝑘F-m + 𝑐T,m
. (8.55)

This is the flow of water. At the point that the total volume flow is zero, this water flow and
the volumetric flow of the ions, add up to zero, thus we then have 𝑣w + 𝜐ion𝐽 ions = 0, where
𝜐ion is the volume of the hydrated ions (mL/mol). Inserting this information in Eq. (8.55)
we arrive at

Δ𝑃h,∞

𝐽 ions
=

1
𝑘m,𝑖
+ 𝜐ion

(
1
𝑘F-m

+
𝑐T,m

𝑘m,𝑖

)
(8.56)

and when we assume 𝐽 ions∼ |𝐽ch | and 𝑐T,m∼ |𝑋 |, we obtain for the cross-function describing
the pressure-current ratio at zero water flow

Δ𝑃h,∞

|𝐽ch |
=

1
𝑘m,𝑖
+ 𝜐ion

(
1
𝑘F-m

+ |𝑋 |
𝑘m,𝑖

)
. (8.57)

If we assume the ions to have no volume (𝜐ion=0), Eq. (8.57) simplifies significantly, to

Δ𝑃h,∞

|𝐽ch |
=

1
𝑘m,𝑖

. (8.58)

Eqs. (8.57) and (8.58) suggest that the pressure that must be generated as the consequence
of a current to keep a zero water flow, is a direct measure of the ion-water friction coefficient
(which also includes the membrane thickness), 𝑘m,𝑖 , and the water-membrane friction,
𝑘F-m, but just as in electro-osmosis, is independent of a possible ion-membrane friction as
described by 𝐾f,𝑖 . For 𝜐ion = 0, the result only depends on the ion-water friction, 𝑘m,𝑖 . In
this coupling experiment, the water and the membrane both have a zero velocity, and this
must be why 𝐾f,𝑖 does not play a role.

—

The second cross-effect we consider is the electrical potential across the membrane when
water is pushed through, at zero current. The two external solutions have the same salt
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concentration. Thus inside the membrane we can again assume 𝜕𝑐T,m/𝜕𝑥 = 0 and the
changes in voltage across the Donnan layers are the same on each side, and the same for
the changes in pressure. Thus we aim to establish the relationship between Δ𝜙m=Δ𝜙∞ and
Δ𝑃h,m=Δ𝑃h,∞. This is called the streaming potential.

We again start with Eq. (8.18), and combine with Eq. (8.19). We assume 𝑐T,m ∼ |𝑋 | and
arrive at

Δ𝜙∞

Δ𝑃h,∞ =
1

𝑘m,𝑖/𝑘F-m + |𝑋 |
(8.59)

and this ratio is independent of membrane thickness or 𝐾f,𝑖 . For the parameters derived for
dialysis in §8.3.5, this ratio is about 0.08 M−1. This recalculates to a streaming potential of
∼0.08 mV/bar. This is a very low number which is because the water-membrane friction is
high and the charge density is high. For a more open material with thus a higher 𝑘F-m and a
lower 𝑋 , the streaming potential is much larger.

Water flow in the electrodialysis process. When we have a series of flow channels
containing electrolyte with salt concentration 𝑐∞, separated by alternatingly positively
and negatively charged membranes, called AEMs and CEMs, we can build a membrane
stack for electrodialysis (ED), see Ch. 12. With current directed through this stack, the
salt concentration will go up in the 1st, 3rd, 5th, ... channel (the c-channels), while every
other channel is being desalinated (the d-channels). While ions move to the c-channels,
also water moves there (both through the AEMs and CEMs). The water moves there
because of the higher osmotic pressure in the c-channel relative to the d-channels, and
that difference pulls the water there, and in addition because of the electro-osmotic
effect, which is proportional to 𝑋Δ𝜙m, see e.g. Eq. (8.32). Interestingly, as long as
some current flows, this water flow will continue forever. One way to make it stop is
when there is an increasing hydrostatic pressure pushing back from the c-channels, but
otherwise all the water and salt will go to the c-channels.

8.4 Mechanical forces between colloidal particles and
charged media

There are many pressures in electrochemical systems. In several chapters we discussed (and
will discuss) hydrostatic pressures and osmotic pressures. In Chs. 1 and 5 we discussed the
surface pressure. In the present section we first describe the pressures in ‘free solution’, in
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relation to the structure of the EDL and the electrostatic forces between colloidal particles,
and subsequently the mechanical pressures that develop between two charged porous layers
across which an electrical current is directed.

8.4.1 The electrostatic contribution to the disjoining pressure

In this section we discuss the forces, or pressures, between colloidal particles. These forces
are the hydrostatic and osmotic pressures, while we also discuss the Maxwell pressure.
We explain how these pressures determine the electrostatic contribution to the disjoining
pressure, which is the force or pressure acting on a charged particle when there are other
charged particles nearby, interacting across an electrolyte solution. We consider mechanical
equilibrium, which implies that all velocities, those of the fluid, surfaces, and ions, are all
zero (relative to one another).

Analysis of these forces is of special importance for the interaction between two particles
with overlapping EDLs, leading to an electrostatic repulsion or attraction between the two
materials, see Ch. 6. Thus we focus on the analysis of the pressures inside the gap between
two charged surfaces.

The force on a charged particle because of the presence of other charged particlesix is
given by the disjoining pressure, 𝑃dis, integrated over any surface that encloses this particle,
multiplied by the vector normal to that surface. Thus the total force is F =

∮
𝑆

(
𝑃dis · n

)
d𝑆.

The enclosed area can include some electrolyte phase around the particle, but can also
directly track the particle’s surface. For homo-interaction of two equally-sized spheres,
integration over the symmetry plane between the two particles is the logical choice often
made (and then the integration extends along this surface to infinitely far away).

The disjoining pressure is a sum of the hydrostatic pressure and the Maxwell pressurex

𝑃dis = 𝑃h − 𝜀

2𝑅𝑇
𝐸2 (8.60)

where the hydrostatic pressure is always repulsive (or zero), and the Maxwell pressure always
attractive (or zero). It is probably not surprising that a hydrostatic pressure acts as a force
on a particle. The Maxwell pressure is also familiar because it equals the force acting across
a dielectric region with non-zero field strength E, e.g., between any two oppositely charged
plates, with charge density ±Σ. [The electrical energy in a dielectric layer of thickness d
ixAlso a neutral particle exerts a pressure on a charged particle. This is because the neutral particle, when it

enters the diffuse layer around a charged particle, excludes volume for counterions, i.e., for the ions less space
is available. Thus the electrical potentials in the EDL go up to attract enough counterions to compensate the
loss of volume. This increase in potential leads to a disjoining pressure (acting equally on both particles).

xPressures 𝑃 are in mol/m3, and can be multiplied by 𝑅𝑇 to a dimensional pressure 𝑃 in Pa.
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that separates two regions of charge ±Σ, resulting in a voltage difference V across the layer,
has an electrical energy of ½Σ𝑉 , as can be calculated from a charging process where Σ

is increased from zero, at fixed d. Implementing Gauss’ law (Σ = ±𝜀𝐸) with 𝐸 = ±𝑉/𝑑
(linear decrease in voltage), and for fixed Σ taking minus the derivative of this energy with
d, results in an attractive force (a negative pressure) of −½Σ2/𝜀, or −½ 𝜀 𝐸2, just like the
second term in Eq. (8.60).]

Now, interestingly, the Navier-Stokes equation, Eq. (8.16), predicts that at mechanical
equilibrium we have (Verwey & Overbeek (1948), Eq. (42a) on p. 92)

𝑅𝑇∇𝑃h − 𝜌E = 0 (8.61)

which we can combine with Poisson’s equation. We can integrate this result across a planar
one-dimensional EDL, i.e., across the gap between two charged surfaces. The result is that
there is a property, equal to the right side of Eq. (8.60), which has a constant value, i.e., is
the same wherever we are in this planar gap.

This constant is the disjoining pressure. The invariance of the disjoining pressure with
position in a gap between two parallel planar surfaces, is also the case for the center region
between two curved surfaces that are very close (distance between the surfaces ≪ than
the radius of the spheres). This result, of a constant 𝑃dis, does not generally follow from
Eq. (8.61) when E varies in more than one direction.

Based on Eq. (8.15) we also know that for mechanical equilibrium at each point in an
EDL we have ∇𝑃h=∇Π, i.e., if we set the hydrostatic pressure to zero far from the particles,
then at any point in an EDL, 𝑃h=ΔΠ=Π −Π∞. This is correct whatever is the geometry of
the space that we analyse, i.e., valid between any two points inside and outside an EDL, and
whatever is the exact function we use to describe the osmotic pressure. When we assume
the ions to be ideal point charges, and for a 1:1 salt, we will have 𝑃h=2𝑐∞ (cosh 𝜙 − 1).

We can combine this equality of 𝑃h and Π with Eq. (8.60) that describes the disjoining
pressure inside a planar gap between two surface, and arrive at

𝑃dis

𝑐∞
= 2 (cosh 𝜙 − 1) − 𝜆2

D

(
𝜕𝜙

𝜕𝑥

)2
(8.62)

for a 1:1 salt solution. At the centerpoint along this line between the two surfaces (i.e.,
halfway), it is the case that:
1. For homo-interaction, there is symmetry halfway, thus 𝐸 =0 there, and thus the disjoining
pressure is given by the first term on the right of Eq. (8.62). Thus only the hydrostatic/osmotic
pressure plays a role. This is also the case for asymmetric salt solutions.
2. For hetero-interaction of two exactly oppositely charged surfaces, we have at this center-
position 𝑃h =ΔΠ=0 (the salt concentration here is the same as outside the EDL, and 𝜙=0
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at this centerpoint), and the disjoining pressure is only given by the attractive Maxwell
pressure, 𝑃

dis
=−1/2𝜀𝐸2. (This is only the case for a symmetric salt solution).

Though these two simplified cases are useful, in general we must consider both
contributions to the disjoining pressure, both the osmotic pressure (equal to the hydrostatic
pressure), and the Maxwell pressure. And we can then evaluate the sum of these two terms,
using Eq. (8.62), at any position along a direct line between two planar parallel surfaces,
and it will always give the same outcome, irrespective of what type of EDL model is used
(Langmuir, 1938).

Based on the fact that the disjoining pressure, for instance evaluated by Eq. (8.62), is the
same at any position in a one-dimensional planar EDL, we can calculate the potential profile
using the Poisson-Boltzmann equation (or any modification) across a planar gap. We only
have to solve a single ordinary differential equation (ODE), for instance Eq. (8.62), once we
know the disjoining pressure. If 𝑃dis is positive, the surfaces are repulsive. We then solve
Eq. (8.62) from a position 𝑥=0 where 𝜕𝜙/𝜕𝑥 is zero, and this ODE is then

𝜕𝜙/𝜕𝑥 = 𝜅
√︃

2 (cosh 𝜙 − 1) − 𝑃dis/𝑐∞ (8.63)

with 𝜙|𝑥=0 chosen such that at 𝑥=0 the entire right side is zero. If instead 𝑃dis <0, then we
solve Eq. (8.63) from a position 𝑥=0 where 𝜙=0 (and thus 𝜕𝜙/𝜕𝑥 will not be zero there).

This finalizes our discussion of the various types of pressures of relevance for the study
of the interaction forces between charged particles. The expressions in this section for the
disjoining pressure can also be used to describe the expansive forces inside a porous charged
medium, as briefly mentioned for the Donnan model on p. 41.

8.4.2 Forces between charged porous media when current flows

In the previous section we discussed pressures that develop at mechanical equilibrium. We
next continue with a calculation of pressures that only develop off-equilibrium, i.e., when
current flows. Extremely high (negative) pressures are predicted to develop in the junction of
an anion-exchange layer (AEL) and a cation-exchange layer (CEL) inside a bipolar membrane
(BPM) when a current flows through this BPM. The junction is the interface where AEL
and CEL touch. The description of the junction structure is based on equilibrium, though
the required flow of current running across the BPM makes this a non-equilibrium problem,
because if this current would not be there, the pressures in the junction disappear, becoming
the same as outside the membrane (on either side of the membrane we assume there is the
same pressure).
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For the cations and anions, say Na+ and Cl– , at steady state there is a certain flux across
the BPM, in one direction for the cations, and for the anions in the opposite direction. For a
symmetric system (equal diffusion coefficients, equal |𝑋 | of the two layers, equal thickness,
etc., these two fluxes have exactly the same magnitude. In that regard the BPM is symmetric.
For the water, in this perfectly symmetric case, there is no preferred direction. Thus, there is
no water transport across the BPM. This poses a question, because why does it stop flowing:
each layer by itself is a membrane and current passes it between an outside solution and
the junction region (which is also a kind of outside solution, even though its thickness can
be vanishingly small). Such a membrane by itself would have water flow across it when
there is current. To understand what now happens, we can analyze Eqs. (8.29)-(8.19). We
evaluate the situation that the current I flows as counterions from the junction outward,
so cations flow outward through the CEL, and likewise for the AEL anions flow from the
junction outward. [As coions the same ions arrive via the other layer in the junction. This
is a steady-state process, and thus there is one flux of cations across the BPM, and the same
for the anions. There is no accumulation of salt in the junction.] With current directed in
the way just described, and when current is sufficiently high, we know that the concentration
in the junction goes to extremely low salt concentrations, in the 𝜇M or nM range. While
the osmotic pressure in the membrane is around |X| (times RT, to obtain a pressure with unit
Pa), it is very close to zero in the junction, while in the outside solution it is 2𝑐∞.

If we combine Eq. (8.32) with the relation between Δ𝜙m and 𝐽ch from Eq. (8.33) for
𝑣w=0 and 𝐾f,𝑖 =1, and include mechanical equilibrium at each membrane-solution interface
(including that between a membrane layer and the very thin junction), Eq. (8.27), we arrive
at

𝑃h,jct + 𝑐T,m −
(
𝑃h,∞ + 𝑐T,m − 2𝑐∞

)
+ 𝑋𝐽ch

𝑘m,𝑖𝑐T,m
= 0 (8.64)

and if we assume 𝑐T,m∼ |𝑋 | (constant across a layer), and make the replacement 𝐼 = −𝐹𝐽ch

(current I now defined as directed from junction outward), and we evaluate the function for
the CEL (𝑋 <0) we obtain for the pressure in the junction

𝑃h,jct = 𝑃h,∞ − 2𝑐∞ −
𝑋𝐼

𝐹𝑘m,𝑖
(8.65)

and thus when the current direction is such that cations flow through the CEL from junction
outward (entering the BPM on the AEL-solution interface), and likewise the anions flow
from junction outward through the AEL, then the hydrostatic pressure in the junction will be
much lower than in the outside solution, and can even be negative. The hydrostatic pressure
in the junction pressure, 𝑃h,jct, becomes the more negative the larger the current or the thicker
the membrane (𝑘m,𝑖 is inversely proportional to thickness). While the two layers strongly
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push on each other with their polymer structures, this negative pressure that develops in the
fluid in the junction creates a pressure gradient in the fluid inside the membrane layer, with
the pressure decreasing toward the junction, and that is a force to hold back the fluid against
the forces that try to pull the fluid out of the junction, which is the electro-osmotic effect,
𝑋Δ𝜙m. The effect of the low salt concentration in the junction, which is depleted of salt
already at quite low currents, in combination with mechanical equilibrium at each of the
interfaces of each layer (with the osmotic pressure change equal to the hydrostatic pressure
change), leads to the junction pressure 𝑃

h,jct
being at least 2𝑅𝑇𝑐∞ lower than outside, thus

for a 1 M salt solution, 𝑃h,jct can easily be beyond 50 bar less, and on top of that is the
electro-osmotic effect.

We numerically analyse the junction pressure based on Eqs. (8.29)-(8.19) and compare
with Eq. (8.65) in Fig. 8.4. We see that for sufficiently high currents, indeed Eq. (8.65)
correctly describes the pressure in the junction (a negative value!) as function of the applied
current. The full numerical model shows that at very low currents, when inside the junction
𝑐∞ approaches the value in outside solution, the pressure approaches zero, but already at
quite low currents, salt concentration here drops to values close to zero, and from that point
onward Eq. (8.65) correctly predicts the negative hydrostatic pressure in the junction between
the two layers in a BPM. In both types of calculations we consider a perfectly symmetric
BPM with a cation and anion of equal diffusion coefficient. Detailed calculations (not
reported here) where we also include the H+- and OH– -ions show that beyond 𝐼/𝐼 ref =0.01
these ions are the main carriers of the current when they flow from the junction outward,
i.e., H+ and OH– are formed at the junction. The current carried by the cation and anion
(e.g., Na+ and Cl– ) levels off at 𝐼/𝐼 ref =0.01, with the cation coming through the AEL and
jointly with the H+-ion moving outward through the CEL, while the anion flows does the
exact opposite. The prediction of very negative junction pressures remains the same.

What happens now when the direction of the current is reversed in this BPM? Then
quickly the salt concentration in the junction goes from very low to very high, and the field
strength in each layer reverses sign. The two membranes are no longer in intimate contact,
but a high pressure develops in the junction, and as a consequence the two layers are pushed
apart from the inside. This may lead to delamination that can be avoided by sandwiching
the BPM between outside structures and assembled tightly.

This entire topic of the forces on a charged structure at mechanical equilibrium, or due
to a flow of current, resulting in hydrostatic pressures, and tensions inside the material, is
important besides the study of the forces on fluid and ions. Tensions in a material also
influence the structure (porosity) and thus influence ion and fluid flow. Thus, the expansion
or compression of a material, for instance at high currents, ‘feeds back’ in what are the rates
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Fig. 8.4: The junction pressure 𝑃h in a bipolar membrane (BPM) (relative to outside the membrane),
a negative number, divided by a reference value 𝑃h

ref = −2𝑐∞ (1:1 salt), plotted against current density
𝐼. We analyze a 1:1 salt. The reference current is 𝐼ref =𝐹𝑐∞𝐷m,i/𝛿 where 𝛿 is the thickness of each
membrane layer. Analytical calculation based on Eq. (8.65) compared with numerical calculations
based on Eqs. (8.19)-(8.29). Calculation for a BPM where for each layer |𝑋 | = 4 M, 𝑐∞ = 100 mM,
𝑘m,𝑖 =2.0 𝜇m/s, 𝐼ref =19.3 A/m2.

of fluid and ion transport across a porous material.





9
Heating and cooling in electrochemical systems

In electrolychemical systems, electron-conducting and ion-conducting phases (metallic
wires, and electrolyte) heat up when current passes, because of an electronic or ionic
resistance. On top of that, electrical double layers (EDLs) strongly heat up or cool down
dependent on the direction of the current through the EDL. This effect is well-known in solid
state physics (Peltier effect) while the same phenomenon also takes place at the junction
between aqueous phases generally encountered in electrochemical processes, such as on the
outer surface of ion-exchange membranes.



246 Heating and cooling in electrochemical systems

9.1 Introduction

Heating and cooling are very important effects in electrochemical systems. These effects
take place in bulk solution (electrolyte), in electron-conducting phases (metals), and at the
interface between different phases, where EDLs form.

Heating will be ‘irreversible’ in a bulk electrolyte: whichever direction the current goes,
there will be heating, often described by Ohm’s law and then called Joule Heating. In an
EDL the situation is very different, and heating and cooling are ‘reversible’: for a certain
EDL potential, Δ𝑉EDL, current 𝐼 in one direction leads to heat production given by 𝐼 ·Δ𝑉EDL

(unit W/m2), and when the current direction is reversed, we have cooling, with the same
magnitude as the earlier heating, just with the sign reversed.

At the interface between two electron-conducting materials, this reversible cooling and
heating in the EDL is called the Peltier effect, with the materials optimized in chemical
composition to give both materials a fixed high charge, opposite in sign (one material having
positive fixed charges, the other negative). In this way the EDL voltage is maximized and
thus the heating and cooling during current flow is maximized as well.

This reversible heating and cooling in the EDL also takes place when two different metals
are brought in contact with current passing across the junction between them. This is because
in any pair of two metals electrons re-distribute because of differences in electron affinity
of the metals. Thus an EDL is formed with two regions of opposite charge. In one region
in the EDL there is an excess of electrons, while there is an excess of positive electronic
charge in the other region of the EDL. These two charged regions create the EDL and a
voltage difference develops across the interface. The EDL voltage at the junction between
two randomly chosen metals will not be as pronounced as for designed materials with high
fixed charges, but nevertheless there is reversible heating and cooling when current flows
through this junction.

In the next sections we do not discuss metal junctions, but focus on cooling and heating
in electrolyte phases. This can be an electrolyte in contact with a metal, thereby forming
an electrode, or the interface between two electrolytes, one of which can be a charged
porous medium such as an ion-exchange membrane or both are as in the bipolar membranes
discussed in §8.4.2. At all interfaces where an EDL is formed reversible heating and cooling
are possible.
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9.2 The heat balance

Heating and cooling in an electrolyte is described by the heat balance given by

𝜌L𝑐p
𝜕𝑇

𝜕𝑡
= 𝜆

𝜕2𝑇

𝜕𝑥2 − 𝑣tot𝜌L𝑐p
𝜕𝑇

𝜕𝑥
+ I · E −

∑︁
𝑖

𝑅𝑖ℎ𝑖 +𝑄 (9.1)

which we set up for a one-dimensional planar geometry (see footnote on p. 198). In Eq. (9.1),
we assume that irrespective of the ionic composition, the heat capacity per unit volume of
electrolyte is 𝜌L𝑐p (unit of this entire term J/(m3.K)). We include a diffusive heat flow based
on Fourier’s law, 𝐽F = −𝜆 𝜕𝑇/𝜕𝑥, with 𝜆 the coefficient for heat conduction in W/(m.K), and
include convective heat transport, assuming a fixed value of the velocity of the electrolyte
phase (solvent plus ions), 𝑣tot. In Eq. (9.1), I is the current density (here a vector with
unit A/m2) and E is the field strength, i.e., minus the voltage gradient (also a vector, with
unit V/m). The penultimate term describes heat production due to chemical reactions, as a
sum over all components 𝑖 of their formation rate, 𝑅𝑖 (unit mol/(m3.s)), times their molar
enthalpies, ℎ𝑖 . When reactions lead to products with a lower enthalpy than the reactants,
this will result in the production of heat (i.e., it is an exothermic reaction). The last term,
𝑄, describes heating or cooling by a Peltier element or other heating/cooling device or
mechanism, and also includes the heating due to stirring of a solution (viscous dissipation).
The electrical term I ·E is the inner product of two vectors, and this quantity can be negative
or positive, as we will analyze below.

Another term, just as I ·E the inner product of two vectors, must also be added to Eq. (9.1)
for fluid flow through a restrictive (porous) medium, and is given by −vtot · ∇𝑃h, which is
minus the inner product of fluid flow velocity and hydrostatic pressure gradient. When this
entire term (including the minus-sign) is positive, the fluid will heat up, a general effect
in fluid flow, described as viscous dissipation, i.e., the heating of a fluid due to pumping.
However, the reverse is also possible, i.e., flow-based cooling, which occurs when a fluid
flows towards higher hydrostatic pressures, an effect that for instance occurs in the EDL at
one of the edges of a membrane in the forward osmosis process.

The heat balance presented by Eq. (9.1) can be solved over part of a volume of solution
phase. But it is also possible to apply this heat balance across an EDL, for instance on
the outside of an ion-exchange membrane. To describe heating and cooling in a such an
EDL, we integrate the heat balance over the EDL, thus integrate from one to the other side
of the EDL. The EDL in this case is a very thin layer and thus the accumulation of heat,
represented by the left side of Eq. (9.1), can be neglected. Across the EDL there is no
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change in temperature, only a change in temperature gradient.i Because the temperature is
continuous (i.e., does not change across the EDL), the convective term in the heat balance is
zero. Integration of Eq. (9.1) following a coordinate 𝑥 across the thickness of the EDL leads
to

𝜆 ·
(
𝜕𝑇

𝜕𝑥

����
R
− 𝜕𝑇

𝜕𝑥

����
L

)
− 𝐼 Δ𝑉EDL −

∑︁
𝑖

𝑟𝑖ℎ𝑖 = 0 (9.2)

where we use a surface-based reaction rate, 𝑟𝑖 (in mol/(m2.s)), and define the two sides of
the EDL either by ‘L’ for left, or ‘R’ for right. The EDL voltage in Eq. (9.2) is defined ‘right
minus left’, see p. 507. Heat production in the EDL is described by the product of I and
Δ𝑉EDL, has unit W/m2 and can be negative and positive. This expression for a reversible
heat production –not the consequence of a resistance– was first put forward by Le Roux in
1866, see Langmuir in 1916, when discussing the case of current flow through a metal-metal
junction.

9.3 The current density in an electrolyte bulk phase and
membrane

One important element in Eqs. (9.1) and (9.2) is heat production due to a current. In bulk
electrolyte this results in an Ohmic-like relationship based on a resistance to current, and
then always heat is produced, while at interfaces (in the EDLs), heating and cooling are
reversible, and both are possible.

In bulk solution, away from any interfaces, current 𝐼 and field strength 𝐸 = −𝜕𝑉/𝜕𝑥
(writing all properties now as function of only one coordinate 𝑥), generally are in the same
direction (have the same sign), thus their inner product is positive which leads to heating
(i.e., a positive contribution to the heat balance). In addition, they are often proportional as
well, and then an ionic conductivity 𝜎 can be defined, such that

𝐼 = −𝜎 · 𝜕𝑉/𝜕𝑥 (9.3)

where 𝜎 has the unit of S/m (S for Siemens) or (Ω.m)−1, where S=1/Ω=A/V. Often Ω is
called (and written as) ‘Ohm’, see also Eqs. (7.18) and (7.19). A volumetric resistance can
be defined as 𝜌=1/𝜎 of which the unit is Ω.m.

iThis is analogous to the situation with Gauss’s law of electrostatics for a charged (infinitely thin) interface, which
predicts that there is a difference in the gradient in potential between the two sides of the charged interface,
while the potential itself stays the same when crossing the interface.
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In §7.2 current density was described as function of ionic fluxes by Eq. (7.18). Based
on this equation, we can quickly see that in two situations we arrive in bulk electrolyte
at a proportionality between current and voltage gradient. The first situation is when
concentration gradients can be neglected, for instance because (up to the moment of
measurement) there has been enough mixing for concentration gradients to be small or
absent, and for this reason the diffusion term on the right side of Eq. (7.18) disappears. The
other option is that all ions have the same diffusion coefficient. Then, irrespective of the
valencies of the ions, and also in the presence of concentration gradients, because of local
electroneutrality, the diffusion term disappears. Thus, in both these situations we arrive
at Eq. (9.3) for the relation between current density and voltage in bulk electrolyte. If we
integrate over a certain layer of thickness 𝐿, and we introduce a voltage change, Δ𝑉 , defined
‘right minus left’ (with the 𝑥-coordinate pointing to the right), Eq. (9.3) can be rewritten to

𝐼 = −𝑅−1Δ𝑉 (9.4)

where 𝑅 = 𝐿/𝜎 is an ionic resistance with unit Ω.m2, dependent on layer thickness, but not
on the perpendicular area through which the current runs.

If we now multiply each side of Eq. (9.4) by the area 𝐴 through which the current runs,
we obtain the current 𝐼sys with unit A, and a resistance 𝑅sys with unit Ω (Ohm),

𝐼sys = −𝑅−1
sysΔ𝑉. (9.5)

Each of the last three equations can be called Ohm’s law, describing a proportionality between
ionic current and gradients, or differences, in the voltage in an electrolyte phase. In many
cases, Ohm’s law will be reasonably valid for current transport across an electrolyte phase.
If there is a spacer mesh or other porous medium that blocks out part of the available volume
for electrolyte, with porosity p remaining as open fraction, then conductivity 𝜎 is reduced
because there is less cross-sectional area to flow through, and because of the tortuosity of
the pathways for ion transport (and fluid flow) that are not straight across a material and that
reduces the ion fluxes (thus current) along these pathways for a given driving force across
the material. Thus the resistance will depend on a factor 𝜀 = 𝑝/𝝉. Based on a measured 𝜎
or 𝑅, the factor 𝜀 can be derived. In a nanoporous medium, in addition we have 𝐾f,𝑖≠1, and
thus the measured 𝜎∗m is 𝜎∗m = 𝐾f,𝑖𝜀𝜎∞, see a box on p. 166.

When Ohm’s law applies, we can easily calculate the heating in an electrolyte phase.
Based on Eq. (9.1) we know that electrostatic heating, described by the heat production rate,
HPR, is given by HPR = 𝐼 · 𝐸 (we assume that all transport is only along one coordinate).
Combining with Eq. (9.4), we arrive at

HPR = 𝜌 · 𝐼2 (9.6)
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which shows that HPR is always positive. This heating in a bulk phase, which is a quadratic
function of current, is called ‘Joule heating’.

—

Inside a porous medium (such as an ion-exchange membrane), Eq. (7.18) can still be
used, but now the convective contribution to current is no longer zero. From evaluation of
𝐼 =𝐹

∑
𝑖 𝑧𝑖𝐽𝑖 and Eq. (7.71), we can express current density in a membrane as

𝐼 = 𝐹𝑣w
∑︁
𝑖

𝐾f,𝑖𝑧𝑖𝑐𝑖 − 𝐹
∑︁
𝑖

{
𝐷∗m,𝑖𝑧𝑖

𝜕𝑐𝑖

𝜕𝑥

}
− 𝜎∗m

𝜕𝑉

𝜕𝑥
(9.7)

where 𝐷∗m,𝑖 = 𝐾f,𝑖𝜀𝐷𝑖 , and where 𝜎∗m is the ionic conductivity in the membrane,
𝜎∗m = 𝐾f,𝑖𝜀𝜎∞, see p. 166, where conductivity in solution,𝜎∞, is defined by Eq. (7.19). When
for all ions 𝐾f,𝑖 is the same and we implement local electroneutrality,

∑
𝑖 𝑧𝑖𝑐𝑖 + 𝑋 = 0, then

the first term becomes −𝐹𝐾f,𝑖𝑋𝑣w. Eq. (9.7) shows that in a membrane we generally have
a complicated relationship between current, conductivity, and the voltage gradient. If the
convection term can be neglected, and likewise the diffusion term (because all diffusion
coefficients are the same or all concentration gradients small), then 𝐼 and 𝜕𝑉/𝜕𝑥 are
proportional to one another. In that case Ohm’s law relates current and voltage across
(the inner coordinate of) the membrane, such as Eq. (9.3), and we can measure a membrane
conductivity or resistance experimentally. To do that, the measured voltage between the
solution phases outside the membrane is corrected for the Donnan voltages at the membrane
outer surfaces. Then a voltage gradient inside the membrane can be reliably estimated and
a membrane resistance derived. Reliable methods to measure a membrane resistance are
discussed in the box on p. 166.

In the inner structure of a membrane, generally current will flow in the direction of lower
voltage, thus we can expect irreversible heating, perhaps not of the ‘Joule type’, Eq. (9.6),
but heating nonetheless. However, Eq. (9.7) demonstrates that exceptions are possible.

9.4 Heat production due to current in a steady-state EDL

Heating and cooling in an EDL is relatively straightforward to model when this EDL is part
of a steady state process. Then the EDL does not change in time while current flows across
it. This will generally be the case for the EDLs on the outsides of a membrane structure
in water, as in electrodialysis. Then there is an established Donnan potential, Δ𝑉EDL, and
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dependent on the current direction there is either heating or cooling, with a magnitude linear
in the rate of current.ii

As an example, with a negatively charged membrane (cation-exchange membrane) thus
where cations easily move across the membrane, on the upfront side (where cations enter,
thus where the current is positive into the membrane), the Donnan potential drop is negative,
see Fig. 9.1. There the product of current and Donnan potential is negative and locally
this membrane interface will heat up. On the other side of the membrane we have the
same current, now leaving the membrane, but in this direction (out of the membrane) the
voltage goes up when crossing the EDL, and thus this membrane interface cools down. In
effect, such an ion exchange membrane combines two Peltier junctions at a short distance
from one another, where at the same time one heats up and the other cools down. In an
actual experiment, these two reversible effects are combined with Joule heating that goes
on in the bulk electrolyte phases and in the membrane interior. Results of an experiment
with a cation exchange membrane where the current direction is reversed every 60 s, are
shown in Fig. 9.1B (Porada et al. (2019)). It must be noted that detailed comparison
of theory and data was not quite satisfactory, with experimental changes in temperatures
after a current reversal much slower than predicted by the full theory (Porada et al., 2019).
This discrepancy was unexpected because the model included a dynamic differential heat
balance and included all details of ion transport towards and in the membrane. One possible
cause for the difference is that also water flows through the membrane, in the direction of
counterion flow, and upon current reversal, the water flow rate is also reversed. Water flow
has an impact on temperatures because of convection of heat, because water flow leads to
friction thus heating, and because at the edges of the membranes (EDLs) there is mechanical
equilibrium, resulting in sudden changes in hydrostatic pressure, the value of which depends
on the salt concentration just outside the membrane, see Ch. 8. The product of this pressure
change and water flow rate in the EDLs is also a source term in the heat balance at the
membrane interfaces, Eq. (9.2). These effects were not yet implemented.

9.5 Heat production in a capacitive electrode

The EDL at a flat, smooth electrode surface, or inside the pores of a porous electrode,
will also be subject to electrostatic heating and cooling, with the EDL heating up when
the electrode is charged (i.e., when the diffuse layer of ions is building up, thus with an

iiBecause ion concentrations near the EDL depend on current, and Δ𝑉EDL therefore as well, a perfect
proportionality between heat production and current will only be observed experimentally at low currents.
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Time (s)

Fig. 9.1: Electrostatic heating and cooling when a current is directed through an ion-exchange
membrane. In this case, with a cation exchange membrane, we have heating where current flows
into the membrane, and cooling on the other side. In an experiment where the current direction is
reversed every 60 s, the temperature difference between the two sides of the membrane flips sign after
each current reversal. The two measured temperatures (either side of the membrane) are shown as
black and red traces in panel on right. Because of Joule heating in the bulk phases, the temperature
gradually increases over many cycles (𝑐∞=0.5 M KCl).
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increasing concentration of ions in the diffuse layer), and vice-versa, when the electrode
discharges, the EDL cools down.

Also in this problem, the term I · E exactly describes the local heating. For the diffuse
layer of a GCS model, it is important to realize that I is the local ionic current, and is not
the total current. The total current is the ionic current outside the EDL, which is also equal
to the electronic current. However, in a capacitive electrode, and without any electrode
reaction, then inside a diffuse layer the ionic current slowly drops from the bulk value to a
value of zero at the Stern plane (where the diffuse layer ends). This decrease is compensated
by the Maxwell current (which relates to the local change of the field strength in time), but
Maxwell current is not part of the ionic current I that enters the heat balance. Thus, with
the ionic current decreasing towards the surface, the local heating rate also goes down. The
heating rate is zero at locations without any ionic (or electronic) current. This implies that
when neither ions nor electrons cross the Stern layer, it does not contribute to electrostatic
heating or cooling of an EDL.

Next we discuss heating and cooling during EDL formation in more detail. We start with
the ideal Donnan model that can be used for small (micro-)pores, e.g., in porous electrodes.
In the Donnan model, all ions in the diffuse layer experience the same electrical potential.
This potential is equal to the potential outside the pore plus the Donnan potential, 𝜙D. Thus,
when ions move from outside the pore to inside, they all experience a potential change equal
to the Donnan potential.iii Thus the heat production rate is equal to the product of ionic
current running from the outer-pore region into the pores, 𝐼 ion, times the Donnan potential
𝜙D, times the thermal voltage, 𝑉T. This ionic current will be equal and opposite to the local
electronic current going into the same micropores. If we know this current 𝐼el per unit total
electrode volume (e.g., per 1 mm3 total electrode), the heat production rate, HPR, in W/m3

electrode, will be

HPR = 𝐼el𝑉T𝜙D . (9.8)

The heat production rate, HPR, of Eq. (9.8) can replace the term I · E in the heat balance,
Eq. (9.1), and must be supplemented with an expression for the Donnan potential, 𝜙D.
Eq. (2.7) in Ch. 2 provides such an expression for a 1:1 salt, 𝜙D = sinh−1 (𝜎w/2𝑐∞), where
𝜎w is the electronic charge density located in the pore walls (charge expressed in moles
per unit pore volume), and where 𝑐∞ is the salt concentration just outside the pore. For a

iiiThus, in the Donnan model there is (at each time) one value of the ionic current, independent of position in the
EDL. This is different from a more detailed diffuse layer model as just discussed above, where the ionic current
decays towards the Stern plane. Effectively in the Donnan model the Maxwell current is set to zero.
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capacitive process, the stored charge 𝜎w depends on current 𝐼el according to

𝑝mi
𝜕𝜎w

𝜕𝑡
= + 𝐼el

𝐹
(9.9)

where 𝑝mi is the microporosity of the electrode (fraction of total electrode volume that
contains micropores). If an electrode is charged with a constant current 𝐼e, starting at zero
charge, 𝜎w = 0, then 𝜎w = 𝐼el𝑡/𝑝mi𝐹 which we combine with Eq. (2.7), and then Eq. (9.8)
leads to

HPR = 𝐼el𝑉T sinh−1
(

𝐼el𝑡

2𝐹𝑝mi𝑐∞

)
(9.10)

which at early times simplifies to

HPR|early time = 𝐼
2
el 𝑡

𝑅𝑇

2𝐹2𝑝mi𝑐∞
(9.11)

which shows that early on, after start of charging, the heat production in an EDL, HPR,
increases linearly with time and depends quadratically on current. At longer times, the
dependency of HPR on time 𝑡 and current 𝐼el is more convoluted, but in any case is (much)
larger than at shorter times. Thus to continue to charge an already highly charged EDL
requires more energy and will generate more heat than an electrode that was uncharged. The
total heat production, HP (unit J/m3) for charging from zero to a final value 𝜎w is

HP =

∫ 𝑡

0
HPRd𝑡 =

∫ 𝑡

0
𝐼el𝑉T𝜙Dd𝑡 = 𝑝mi𝑅𝑇

∫ 𝑡

0
𝜙D

𝜕𝜎w

𝜕𝑡
d𝑡 = 𝑝mi𝑅𝑇

∫ 𝜎w

0
𝜙D d𝜎w

(9.12)
in which we can insert Eq. (2.7) and derive

HP = 𝑝mi𝑅𝑇

∫ 𝜎w

0
sinh−1 𝜎w

2𝑐∞
d𝜎w = 𝑝mi𝑅𝑇

(
𝜎w · 𝜙D −

(
𝑐T − 𝑐0

T

))
(9.13)

where the total ions concentration in the pores, 𝑐T is given by

𝑐T = 2𝑐∞ cosh 𝜙D =

√︃
𝜎2

w + (2𝑐∞)2

and the initial total ions concentration is 𝑐0
T = 2𝑐∞. Thus, the heat production, HP, by

Eq. (9.13), can be completely written as a function of 𝜎w or 𝜙D.
In a micropore which is being positively charged, i.e., 𝐼el>0, then to keep electroneutrality

and to attract the required anions, starting from zero the Donnan potential 𝜙D increases more
and more. Thus the product of 𝐼el and 𝜙D is positive at all times and this means that heat is
produced, thus HPR and HP are positive, as indeed Eqs. (9.8)–(9.13) show.
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But what during discharge? Then the current 𝐼el changes sign and 𝜙D changes sign as
well. Thus, we still have a positive HP(R), i.e., heating during discharge? However, this is
not the case, and the statement just made contains one significant error: the current 𝐼el may
change sign, but the Donnan potential does not. During charging the Donnan potential 𝜙D

was positive and was steadily increasing, and now that we start to discharge, 𝜙D will start
to decrease but at first remains positive. It is only down to zero again when the electrode
has discharged completely.iv Indeed, to push out the stored anions it is not necessary to
make the Donnan potential negative, but just make it a bit less positive, such that there are
‘too many’ anions for the (decreasing) Donnan potential.v Thus, during discharge 𝜙D is still
positive but now 𝐼el is negative. The total ‘cooling power’ will be exactly the opposite of HP
given by Eqs. (9.12) and (9.13), but Eqs. (9.10) and (9.11) no longer apply. Instead, during
discharge Eq. (9.11) becomes

HPR = 𝐼el𝑉T sinh−1
(
𝐹𝜎∗w + 𝐼el (𝑡 − 𝑡∗)

2𝐹𝑝mi𝑐∞

)
(9.14)

where 𝐼el is now a negative quantity, and the electronic charge (a positive quantity) that is
stored at the start of the discharge step is 𝜎∗w. The discharge step starts at time 𝑡∗. Initially the
numerator of the fraction stays positive, and thus HPR is negative, we have cooling. After a
time 𝑡 = 𝑡∗ − 𝐹𝜎∗w/𝐼el the numerator turns negative, and HPR turns positive. This is when
the electronic charge in the micropores goes through zero to negative, and the micropore
EDL is again charging up.vi

As previously discussed, if a Stern layer is part of the EDL model, it does not participate
in heating or cooling if no current runs across it. Thus also charging of a perfect dielectric
capacitor does not lead to any heat effect: it can be charged and discharged, but it will not
heat up or cool down in this process.

This finalizes the discussion of heating and cooling in a Donnan model, and we continue
with a discussion of heating and cooling in the diffuse layer according to the Gouy-Chapman(-
Stern) model, where the structure of the diffuse layer (we do not need to consider the Stern
ivThis is a general topic in the cyclic charging of (porous) electrodes, that a reversal of current direction does not

imply a reversal of (electrode, or cell) voltage. This reversal of voltage only occurs for the bulk solution where
a version of Ohm’s law may apply. But in a capacitive electrode, this is different. In such an EDL a change of
current direction leads to a reversal in the change of EDL voltage in time, but does not imply an instantaneous
change in the sign of the EDL voltage itself.

vFor each Donnan potential at equilibrium there is one corresponding amount of anions in the micropores: if the
Donnan potential (still positive) starts to decrease, the attraction to anions goes down, and the concentration of
them in the micropores must decrease because there are now too many, i.e., some of them will flow out of the
electrode, and thus there is a negative ionic current in the direction out of the micropores, which also implies a
negative electronic current into the electrode, i.e., during this discharge step, 𝐼el is negative.

viIn this context, ‘charging’ means: to increase the magnitude of charge, whichever is the sign.
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layer) is governed by the Poisson-Boltzmann equation. We consider a flat surface and a
1:1 salt, and neglect ion volume effects. In this case, the heat production of charging an
electrode, HP, is (starting from zero charge)

HP = 𝑉TΣ𝜙D − 24 𝑐∞ 𝑅𝑇 𝜆D sinh2 (1/4 𝜙D) = 𝑉TΣ (3 − 3 cosh (𝜙D/2) + 𝜙D sinh (𝜙D/2)) (9.15)

where Σ is the surface charge in C/m2, and 𝜙D the diffuse layer potential (potential at the
Stern plane, relative to a position outside the diffuse layer). The heat production rate, HPR,
of the entire EDL, which is the term that enters a heat balance, is

HPR = 𝑉T 𝐼

(
1

sinh 𝜙D
+ 𝜙D −

1
tanh 𝜙D

)
= 𝑉T 𝐼

(
1/2𝜙D + 1/24𝜙3

D + ...
)

(9.16)

where 𝐼 is the electronic current density into the electrode (unit A/m2). For a positive 𝐼, the
electronic charge goes up, 𝜙D goes up (starting at zero), thus is positive, and thus we produce
heat. If we would start at an uncharged electrode, and if the current 𝐼 were negative, then the
electrode would be charged negatively, thus 𝜙D would be negative, and again HPR according
to Eq. (9.16) is positive, and also in this case there is heating. Thus for the electrode to be
heating up (HPR to be positive), the sign of charging does not matter, only that we charge
‘further’, i.e., increase (or decrease) the magnitude of the charge.

Next we can consider what happens upon current reversal. When an electrode was charged
positively to some degree (say positively charged electronically), then 𝜙D is positive. If we
now switch the sign of the current 𝐼, then 𝜙D will initially stay positive, and then Eq. (9.16)
shows that HPR is now negative, i.e., the EDL cools down. This is the same as in the
previous discussion for the Donnan model.

How to include the expressions for HPR in a heat balance? For the Donnan model, with
volumetric currents, and HP in W/m3, HPR can be directly included in a volumetric heat
balance such as Eq. (9.1), replacing the term I · E. Also the HPR for a flat surface, given
by Eq. (9.16), can be included in such a volumetric heat balance when we multiply by an
area-over-volume ratio of the electrode surface, i.e., multiply HPR by a specific area, 𝑎.

But let us at this point insert the Gouy-Chapman expression for the heat production rate
into the surface-based heat balance of Eq. (9.2), and thus use HPR of Eq. (9.16) to replace
the term −𝐼Δ𝑉EDL in Eq. (9.2). We neglect chemical reactions and we assume heat can only
flow away ‘to the right’ (on the left side of this electrode we assume an insulating material),
resulting in the boundary condition

𝑉T 𝐼

(
1

sinh 𝜙D
+ 𝜙D −

1
tanh 𝜙D

)
= −𝜆 𝜕𝑇

𝜕𝑥

����
𝑥=0

(9.17)
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that we can use in a dynamic calculation of temperature profiles in the region to the right
of this (dis-)charging electrode, with temperature developments in this region described
by Eq. (9.1).vii For a constant current 𝐼, this boundary condition, Eq. (9.17), shows that
heat production starts at zero (when 𝜙D is still zero) and in time steadily increases. As a
consequence, the gradient in temperature at this interface (𝑥 = 0), which started off at zero,
becomes steeper and steeper over time. With the fluid heating up because of Joule heating,
the surface temperature increases faster than the bulk fluid, and does so in a non-linear
fashion.

When the current direction is reversed at some moment (which will lead to Σ and 𝜙D

decreasing, but both staying positive for a while), the temperature gradient at the surface
immediately changes sign, and this interface starts to cool relative to the region next to the
electrode. The reversal of current does not influence the Joule heating in the bulk of the
electrolyte which simply continues as before. The temperature gradient at the surface is at
its steepest right after reversing the current direction and this slope decreases (in magnitude)
over time, until the electrode is discharged again, at which point the slope 𝜕𝑇/𝜕𝑥 becomes
zero.

Did we now heat up the layer as a whole? Yes we did. The EDL heating and cooling
process was reversible, so the HPR by the EDL, Eq. (9.16), averaged over the entire cycle,
was zero and thus the charging and discharge of the EDL does not lead to overall heating
or cooling,viii but Joule heating in the electrolyte bulk is not reversible. On the contrary, in
this layer heat is produced all the time, at all positions, irrespective of current direction. If
here we assume Ohm’s law and a conductivity 𝜎, and if there was no heat flow out of this
layer (the electrolyte layer is thermally insulated on all sides) then after one cycle the average
temperature change is Δ𝑇 = 𝜎−1 |𝐼 |2 𝑡tot

(
𝜌L𝑐p

)−1 where 𝑡tot is the cycle time.ix

viiIn Eq. (9.17), 𝜙D is the diffuse layer potential, thus the potential difference only over the nanoscopic diffuse layer.
It is calculated from the Gouy-Chapman equation, Eq. (3.15), where charge Σ is obtained from 𝜕Σ/𝜕𝑡 = 𝐼 .

viiiNote that this is only true when the composition of the solution just outside the EDL, for a 1:1 salt described
by 𝑐∞, stays the same during the cycle. When it does change, for instance during charging 𝑐∞ is on average
lower, while higher during discharge (this would be an expected scenario), then there is a net effect, with in this
example the heating during charging larger than the cooling during discharge.

ixHere we assume that the magnitude of the current |𝐼 | is the same during charge and discharge.
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9.6 The relation between the heat production rate and
the free energy of an EDL

There are multiple ways to subdivide the various contributions to the (free) energy of an EDL
structure. In Ch. 5 a distinction was made between an electrical and chemical contribution,
as well as a distinction between a surface and diffuse contribution. For an electrode that is
externally charged, chemical effects are absent, and the total energy is electrical. This is the
term 𝐹EDL of Eq. (5.9) (to which a Stern layer energy ½𝐶−1

St Σ
2 can be added). This electrical

work can be further split out in a term related to the field energy, and one due to ideal entropy
of the ions, and in models that include ion volume, a third term due to volume effects.

Now, it turns out that the heat production, HP, in charging an electrode, calculated from
the term I · E integrated over the thickness of the ‘growing’ diffuse layer, and integrated
over time, exactly corresponds to the ideal entropy term (and if volume effects are included,
these also contribute), but the field energy term does not contribute. Instead this field energy
relates exactly to the Maxwell current (integrated over time and place) and we already
addressed that this current does not contribute to heating or cooling. For the GC(S) model
these two contributions are

𝐹 ion entropy = 𝑉TΣ𝜙D − 24𝑐∞𝑅𝑇𝜆D sinh2 (𝜙D/4) , (9.18)

𝐹field energy = 8𝑐∞𝑅𝑇𝜆D sinh2 (𝜙D/4) . (9.19)

Together these two terms are exactly the total energy 𝐹EDL = 𝐹D + 𝐹S for an electrode
as was described in Ch. 5. Note how the ion entropy contribution to the energy, Eq. (9.18),
is identical to the heat production in the GC(S) model, Eq. (9.15). At low electrode charge
(potential), field energy and ion entropy are exactly 50/50, but this ratio rapidly changes when
charge goes up. For a salt concentration of 10 mM, at a charge of 1 C/m2, the contribution
to the energy by the field energy is around 10%, and the remainder, 90%, is then ion entropy.
However, with volume effects included (e.g., in a calculation including ion volume using
Carnahan-Starling with all ions having a radius of 0.33 nm), the contribution of field energy
only decreases to ∼30% of the total at 0.1 C/m2 charge, to increase again to a contribution
of 60% at 1 C/m2 charge.

For the surface pressure that an EDL exerts in the direction along a surface, as was
analyzed in Ch. 5, we can also split the total surface pressure, which was given by Eq. (5.13),
into contributions of ion entropy and field energy. These two terms are

𝑃surf,ion entropy/(4𝑐∞𝑅𝑇𝜆D) = −𝛽A + 3 B (9.20)
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𝑃surf,field energy/(4𝑐∞𝑅𝑇𝜆D) = +𝛽A − B (9.21)

where A = 1/
√︁

1 + 1/𝛽2, B =
√︁

1 + 𝛽2 − 1, and 𝛽 = Σ/(4𝐹𝑐∞𝜆D).
Also these two pressures start off at 50/50 at low charge, but their relative contribution

to the total surface pressure rapidly changes at higher charge. Without volume effects, the
contribution of field energy rapidly disappears, to contribute only 1% at 1 C/m2 charge, but
when ions do have volume, the situation is again completely different, with the contribution
of field energy decreasing to a minimum of approx. 20% at 60 mC/m2, and after that it
increases again to a 80% contribution of the total pressure at 1 C/m2 charge.

Though volume effects (in this example calculated with Carnahan-Starling for spheres of
0.33 nm radius and 𝑐∞ =10 mM) make all the difference to the relative importance of each
contribution to the energy, volume effects themselves never contribute more than ∼25% to
the total energy or pressure.

It is interesting to analyze the heating and cooling during EDL formation in an
intercalation material, see Ch. 1, but we must leave that exercise for a later time.

The theory of heat effects in reactive systems is important. This can be in bulk, to
describe for instance heating when acid and base react, or for any other protonation or
deprotonation reaction. The effect of reactions on heat production is also important
at surfaces, to describe the heat effects of adsorption, but also to understand the heat
effects of electrode reactions. These important topics are left for another time.





10
Combined mass transport and chemical reactions

In electrochemical processes, while ions and other solutes are transported through electrolyte
solutions and (charged) porous media, they can also react with one another forming other
species. Examples are acid-base reactions, ion pair formation, and solution-based redox
reactions. We summarize four methods of how to include chemical reactions during
ion transport in electrochemical processes, and explain why the assumption of local
equilibrium (instantaneous reactions) is such a useful approach that immensely simplifies
the mathematical analysis. We illustrate the theory with an example calculation of CO2-
adsorption in water and MEA solutions, and an example how protons are transported across
an anion-exchange layer by a combination of two acid-base shuttles.
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10.1 Introduction

In the previous chapters we discussed in detail the transport of ions through electrolyte
solutions and through porous media, towards interfaces such as electrodes, and in all cases
we made the assumption that the ions are inert, i.e., while they move through solution or
through a porous layer they do not react with one another. Only when arriving in an electrode
they can react away.

To describe ion transport in electrochemical processes we generally use the Nernst-Planck
(NP) equation, or extensions thereof, see Ch. 7. The NP equation describes ion velocities as
function of fluid flow rates, concentration gradients, and the electrical field strength. These
flux equations are combined with differential mass balances for each ionic species, and are
supplemented with a statement of local electroneutrality, or inside an EDL we use Poisson’s
equation. For inert ions, which do not undergo chemical reactions, this framework suffices
to tackle many problems as laid out in many chapters in this book, including for water
desalination in Chs. 11 and 12.

However, in many electrochemical processes, some or all of the ions present in the
electrolyte phases also undergo chemical reactions with one another. An important type of
reaction involves as one of the participating species the hydronium ion, H3O+, or hydroxyl
ion, OH– , and they change the protonation degree of ions such as the bicarbonate ion.

There are three main types of such chemical reactions in water:
I. Acid-base reactions. Omnipresent in water are acid-base reactions that involve on the

one hand H3O+ and OH– , and on the other ions such as from the group of carbonic acid,
which are H2CO3, HCO –

3 and CO 2–
3 . These ions are generally present in water equilibrated

with air. Another example of a group of such reactive ions is the phosphate group, H3PO4,
H2PO –

4 , HPO 2–
4 , and PO 3–

4 , which are found in many environmental systems. Also
ammonia and ammonium are examples of ions participating in acid-base reactions.

II. Ion pair formation. A very common reactions is when at high salt concentrations for
instance Na+ reacts with Cl– to a neutral ion pair NaCl. But we can also have Mg2+ reacting
with one Cl– -ion to the ion pair MgCl+. A next step is when these ion pairs combine into
larger (nano-)particles and eventually form larger solid deposits, for instance leading to scale
formation, but these latter situations are not considered in the theory of this chapter.

III. Redox reactions. This class of reactions involves at least four groups of species. An
electron is taken away from group A, which therefore becomes a group B. The electrons
is taken up by a group C which thereby reacts to group D. The reaction of A to B is an
oxidation, of C to D a reduction. At equilibrium concentrations of (one component of) each
group relate to those of the other groups by the Nernst equation. This reaction is likely best
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modelled with a finite rate, not as infinitely fast.

As we discuss below, it is possible that locally these reactions are at chemical equilibrium
(i.e., it is a ‘very fast’ or instantaneous reaction), or the reaction is slower. In a complex
situation with many reactions, likely some are fast and others are slow.

In this chapter we focus on acid-base reactions, which is the first case discussed above.
Acid-base reactions critically depend on local pH. When pH changes, the ratio of the
concentrations of the species involved in the reaction also changes. For instance when
pH changes, the distribution between the neutral ammonia ion and the positively charged
ammonium ion changes.

Various types of transport models are possible that include these chemical reactions in
more or less detail. Here we briefly summarize four different types of ion transport models
that incorporate chemical reactions:

I. In the simplest approach all ion types that form a common group (e.g., NH3, NH +
4 ) are

taken together and described as one uncharged species, such as NH3. In these models Fick’s
law is used to model ion transport, only subject to diffusional forces. These models do not
incorporate acid-base equilibria, and therefore do not describe for instance the effect of pH
on adsorption and transport.

II. In a more detailed model all of the ions are separately considered, and acid-base
reactions are included. But still Fick’s law is used, describing diffusional transport of the
ions, but neglecting the migration of ions due to the electrical field. However, such an
electrical field always develops and influences ion transport. And importantly, this model is
inconsistent, because when transport of all ions is described using Fick’s law, the calculation
outcome will not comply with local electroneutrality (EN). To avoid this, one can omit
solving the transport equations for one of the ions (thus the diffusion coefficient of that
ion does not participate in the mathematical model), and have the concentration of this ion
determined by EN. But this is just not correct.

III. A better model is when electromigration is included as a transport mechanism for all
charged species. Then the problems associated with the Type II model are resolved. In this
approach acid-base reactions are described by rate equations similar to reaction modelling
common in chemical engineering. For instance the acid-base reactions are described by a
rate equation such as 𝑟 = 𝑘f · [HCO −3 ] − 𝑘b · [CO 2−

3 ] · [H
+], for the example of the reaction

between bicarbonate ions and carbonate ions. Here, 𝑘f and 𝑘b are forward and backward
rate constants. Unfortunately, there are many problems with this approach. We identify
five of these problems here. The first is that the acid-base reactions are often very fast
compared to diffusion and migration, and thus, when this model is solved numerically as
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function of time, the set of equations is ‘stiff’, which leads to a very slow calculation with
potentially inaccurate results. Second, values for 𝑘f and 𝑘b must be known, and not just
the equilibrium constant of the reaction. Related, as a third problem, we must assume the
reaction has a certain structure, for instance the one described above where all reactions
are linear in concentration. And that is an assumption. A very fundamental problem is the
fourth one. These reactions involve the hydronium ion, such as in the example above with the
bicarbonate ions. But they are also possible with the hydroxyl ion as reactant or product, and
the involvement of water. This additional option implies that another two kinetic constants
are required. And we then have these two reactions operating in parallel, one more important
at high pH, the other at low pH, and in some intermediate pH region both are important. This
is making things quite complicated; do we really know the values of all of these forward and
backward reaction rates, that depend on H+ or OH– ? A fifth problem is encountered near
reactive interfaces, and this relates to the question which ions participate in the electrode
reactions there. For example, when acetate is converted into CO2 in bio-electrochemical
systems (Ch. 17), we need to know whether it is the acetate anion (Ac– ) that reacts away, or
the acetic acid (HAc) molecule. And this is often not known (and probably both molecules
are reactive). Thus here again a choice must be made, and again it must be decided whether
H+ is involved or OH– . All in all, a long list of problems are associated with this approach.

IV. In the fourth approach, all of the problems outlined above, disappear as if by magic.
We therefore strongly suggest to use this approach. Key to this approach is to assume that
all acid-base reactions in solution are infinitely fast. This method is so advantageous that
even when there is evidence that some reactions are not so fast, we advise to nevertheless
first solve the model that makes this assumption. In this approach, mass balances of the
individual species are combined in such a way that chemical reaction rates Γ𝑖 disappear from
these combined balances. Into these balances of ‘groups’ of ions we insert the acid-base
equilibria. As a result, the model does not require assumptions on the structure of the rate
equations, and neither requires values of the many rate constants, 𝑘f and 𝑘b, which are often
unknown, but the only inputs are the pK-values of each of the acid-base equilibria, and these
values are readily available. We do not need to provide as input in the calculation information
of whether H+ or OH– is involved, or in what ratio. Instead, the calculation will tell us as
output which ion was involved. The calculation is also numerically less challenging (we
have less unknowns in the calculation) because per group (such as the group of the three
carbonate species), only the concentration of one of the ions is ‘tracked’ throughout the
calculation. [Properties of all other ions in a group are still part of the calculation scheme,
such as diffusion coefficients.] After the calculation is finished, we can back-calculate all
(place- and time-dependent) reaction rates and concentrations and fluxes of all ions that
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constitute a group. They are not neglected, we just don’t need to track all ions in the core
calculation. The assumption of infinitely fast acid-base rates in solution, still allows for
reaction rates at domain boundaries (such as electrodes) to have finite rates.

In the next section we further explain Method IV for the modelling of ion transport and
acid-base reactions in electrolyte phases and charged porous media, and thereafter apply it
in an example calculation for the absorption of CO2 from air into water, with and without
molecules that can bind CO2. In this last example we extend the model by including ion
pair formation as well. Subsequently we present results of a calculation where two acid-base
groups shuttle protons across an AEM, ‘handing over’ the proton half-way in the membrane.

10.2 Theory of ion transport and acid-base reactions

When we describe transport of ions and other solutes that participate in chemical reactions,
then the models that we presented in earlier chapters must be extended slightly. Interestingly,
this modification is not on the level of the ion fluxes, which remain unchanged in their
mathematical formulation, but chemical reactions are included in solute mass balances.
This clearly shows that chemical reactions are not a driving force acting on ions in the
way that diffusion and electromigration are. Instead, chemical reactions are described in a
completely different way.

Thus, the molar flux of reactive species is the same as for inert (non-reactive) solutes and
ions, described by the Nernst-Planck equation, Eq. (7.2) in Ch. 7. For each type of ion,
reactive and unreactive, we set up and solve mass balances. The balances for the reactive
ions are the same as for inert ions, only extended with a reaction term, Γ𝑖 , which describes
the rate by which ions are formed or react away, and thus

𝜕𝑐𝑖

𝜕𝑡
= −𝜕𝐽𝑖

𝜕𝑥
+ Γ𝑖 (10.1)

where Γ𝑖 is the formation rate of species 𝑖 (mol m-3 s-1). For unreactive solutes, Γ𝑖 = 0.
These are volumetric mass balances and include reactions between ions in solution. A
reaction at a surface, such as at an electrode, is not part of such a balance, but will enter
the calculation as a boundary condition. [This is different in a macroscopic ‘stirred tank’
mass balance over an entire phase, then surface reactions and other fluxes at boundaries of
a domain are part of a macroscopic balance. An example is Eq. (17.9) in Ch. 17.]

How do we incorporate acid-base reactions in these equations? Let us illustrate our
approach using the group that consists of the ammonium and ammonia species. The
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acid-base reaction that involves ammonia and ammonium can take place everywhere (in
an electrolyte phase, charged membrane, porous electrode, etc.) and it can go in either
direction. The key step is to use the fact that the production of the one ion, say ammonia,
ΓNH3

, equals the consumption of the other ion, in this case the ammonium ions, ΓNH +4 . And
thus we have ΓNH3

+ΓNH +4 = 0. We use this equality when we add together the mass balances
of these two species, and then the Γ-terms disappear. Note that this addition also works in
a dynamic situation, where 𝜕𝑐𝑖/𝜕𝑡 is not zero. [Note also that this specific step does not
yet assume anything about the kinetic equations, fast or slow.] The same approach works
equally well for a group that consists of two ions, as for a group with more ions, such as the
group consisting of the carbonate ion, bicarbonate ion, and carbonic acid. In this case we
have ΓCO 2−

3
+ ΓHCO −

3
+ ΓH2CO3

= 0. For the protons and hydroxyl ions, we do not set up
such a mass balance for a group. This is unnecessary and it is not very intuitive how to do
it. As will become evident in this chapter, no group needs to be established for these water
ions, but neverthelss their concentrations and fluxes follow naturally from the overall model.

An interesting question is, what to do when a species is formed which is a member of
various groups? An example of such a reaction between ions of different groups is the
formation of the carbamate ion from the reaction HCO –

3 + NH3 ⇌ NH2CO –
2 + H2O. The

carbamate complex is part of the ammonia-group of ions, and of the carbonate ions. To
deal with such complexes, or ion pairs, the first option is to describe this reaction by a rate
equation with a finite rate, such as by method III. That works. But we can also use method
IV with all reactions infinitely fast. We simply add this ‘combined’ species to all groups of
which it is part. In this case, we add the carbamate ion to the group of carbonate species,
and we add it to the group of ammonia species. Thus for instance the summation of the Γ𝑖’s
for the ammonia-group becomes ΓNH3

+ΓNH +
4
+ΓNH2CO −

2
= 0, and for the carbonate-species

we go from three terms in the summation of Γ𝑖’s, to four terms.
Thus we can readily include an ‘inter-group’ reaction when we use Method IV. The

methodolgy that we used in the example above of how to include the carbamate ion, is the
same as when we would include formation of ion pairs, such as NaCl or MgCl+. An ion pair
NaCl becomes part of the ‘Na-group’ as well as of the ‘Cl-group’. Thus we add a Γ-term to
the mass balance for Na+, and to the mass balance of NaCl, and then use ΓNa++ΓNaCl = 0 when
we add up the two balances. We then have a combined balance for the group of Na++NaCl.
And by the same approach we will have a an overall mass balance for Cl– +NaCl. Thus, with
or without ion pair formation or other inter-group reactions, we can sum Eq. (10.1) over the
different ionic species in a group (where a group would for instance be the NH3- and NH +

4 -
ions in the ammonia-group, possibly extended with carbamate ions), and then the Γ𝑖-terms
completely cancel out. The resulting group-level mass balance describes accumulation



Theory of ion transport and acid-base reactions 267

and transport of the two species NH3 and NH +
4 together, as function of gradients in the

concentrations of the individual components, in this case NH3 and NH +
4 , and as function of

the gradient in potential 𝜙.
In this method we arrive at one balance for each group (such as one for all carbonate

species combined; or for all ammonia species, etc.), and in addition we have balances for
each inert ion. We also set up a balance in charge density, 𝜕𝜌/𝜕𝑡 = ..., and this balance is
zero, i.e., the divergence of current is zero. This is generally correct at any position in a flow
channel filled with electrolyte, or in membrane,i and the charge balance can then be written
as

𝜕

𝜕𝑥

∑︁
𝑖

𝑧𝑖𝐽𝑖 = 0 . (10.2)

In this balance we sum over all species, including H+ and OH– . It is only in this balance
that the diffusion coefficients and valencies of H+ and OH– show up. We advise for the
use of this charge balance, and not one of several alternative balances, such as a balance
in ‘water charge’ (based on the hydronium ions and hydroxyl ions), or a balance based on
the vague concept of ‘alkalinity’. Those other balances are more complicated to set up and
interpret and check. Note that Eq. (10.2) is not equivalent to the local electroneutrality
(EN) condition. Instead, EN is a constraint, an equation, that is solved in addition to the
aforementioned balances, at all positions x in the calculation domain.

We can solve all these balances jointly, together with acid-base equilibria, of which two
examples areii

𝐾a,NH [NH +4 ] = [NH3] [H
+] , 𝐾w = [OH−] [H+] (10.3)

and together with local electroneutrality, and this works fine. The various problems related
to method III (based on kinetic rate equations with finite rates) are resolved when we use
method IV. And as an additional advantage compared to method III, we can now reduce the
total number of equations significantly, when we implement the acid-base equilibria into
these balances, and not retain them as separate equations.

In some cases an analytical model can be derived but often the problem must be solved
numerically. In setting up a robust numerical model, it is highly preferable to not insert the
acid-base equilibria directly in the differential mass balances.iii It is better to first discretize
the balances (one balance for each group, one balance for each inert ion, and a charge

iBut not in a porous electrode, see Ch. 15, or inside a changing EDL structure (overall, an EDL is nevertheless
charge-neutral).

iiAs shown here, we use in this book both the notation [..] and the symbol 𝑐 to describe concentrations.
iiiBecause if the acid-base reactions are inserted here, many partial differentiations must be worked through and

implemented correctly which is bothersome and one easily makes an error.
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balance) at a predefined number of gridpoints, or nodes, by employing the finite difference
method, see Ch. 21. And only after this discretization do we implement the equilibrium
relations, thereby ‘removing’ from the numerical code as free parameter the concentrations
of all species in a group except for one –arbitrarily chosen– species per group, the ‘master
species’. The EN equation can be solved jointly with all other equations, as an algebraic
equation to be solved on each gridpoint, or we use EN to remove one more concentration
from the calculation scheme, further reducing the number of unknowns per gridpoint.

Both in the analytical and numerical approaches, we then arrive at a situation that from
each group of ions, only one ‘master species’ or ‘key species’ remains that is tracked in
the calculation. In addition we must track the concentration of the hydroxide ion, OH– , or
hydronium ion, H3O+. The latter is often simply called a proton, and written alternatingly
as H3O+ or simply as H+. These notations have the same meaning. That we track the
concentration of either of these ions, of which H+ is the more common choice, does not
mean we have to set up a balance in this species, the proton, or in the charge of water, or
in something such as ‘alkalinity’. This is not the case, the number of balances (equations),
already equals the number of unknowns. Our model is already complete and all internal
variables are considered. We do not track the bulk flow or concentration of water, nor do we
need to.

Until this point we described (acid-base) reactions in bulk solution. Next we address
reactions and transport at interfaces, and why method IV is so advantageous. At interfaces,
for instance the G/L interface, or at a reactive electrode, the advantages of assuming
equilibrium in solution become apparent and are manifold. Note that at the interfaces,
the (electrode) reactions occurring here can have a finite rate.

How to discuss transport and reactions at an interface? For instance, in transport across
the G/L interface, we have evaporation or adsorption of some neutral gaseous molecule.
We have physical equilibrium at the G/L interface, of a gas phase molecule with a neutral
species from a group of ions, such as carbonic acid, or ammonia. Repeating this point, a
physical equilibrium relation such as Henry’s equation relates the gas phase concentration
to only the concentration of the same neutral entity in solution, for instance NH3, not to the
concentration of the entire ammonia-group (NH3 plus NH +

4 ) as a whole.
Next we must consider the molecular fluxes at this interface. Thus, there will be an

‘incoming’ flux of for instance NH3 from the gas phase, adsorbing at the G/L interface. Now
one might intuitively think that this flux equals the flux in the aqueous phase of the same
ammonia species, and then further away NH3 reacts to NH +

4 . However, the situation is more
interesting than that. What was just suggested would be correct when the reaction in solution
between NH3 and NH +

4 would have a finite reaction rate. But in our model with infinitely
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fast reactions in solution, the gas phase flux of ammonia ‘arriving at the G/L interface’ is not
equal to the flux of aqueous ammonia there, but is equal to the sum of the fluxes of ammonia
and ammonium in the water. Thus it can be that a large part of the ammonia that arrives at
the G/L interface from the gas phase, leaves the interface and enters the electrolyte phase in
the form of an ammonium ion.

Thus at an interface we relate the flux of a group of ions as a whole one one side to the
same sum of fluxes on the other side of the interface. In the examples with carbonate and
ammonia and a water/air interface, on one side (the gas phase) only one species from a group
exists (ammonia, carbonic acid) and only that species needs to be considered on that side of
the flux equation, but to evaluate the flux for the other side (water), all incoming fluxes of
all species in a group must be added up. For a group of ions of which none of the species
evaporates or reacts, the summed flux of the group is zero at such an interface. Thus for
instance, for a group consisting of Na+ and NaCl, it is the sum of fluxes of the two species
together at the G/L interface that is zero. It is not the case that each separate species has a zero
flux at the G/L interface. Or for ammonia that does not participate in an electrode reaction,
at a planar electrode the sum of fluxes of NH3 and NH +

4 is zero, thus 𝐽NH3
+ 𝐽NH +

4
= 0 in

that case. There may be a flux of NH3 into the electrode, that ‘returns’ from the surface as
NH +

4 . These two fluxes are then equal in magnitude, opposite in direction. And what to do
here with the H+ and OH– -species? The answer is, just as for the mass balances in solution,
away from interfaces, also at boundaries no relations need to be set up for H+ and OH– . This
is a very interesting outcome and it dramatically simplifies the calculation. For instance in
an electrode reaction involving H2 or acetate, we do not need to decide upfront how many
H+-ions or OH– -ions are involved in the reaction. Nothing needs to be prescribed about
H+- or OH– -fluxes. This is a tremendous advantage because this knowledge is not available
upfront anyway. It is actually the case that the calculation will tell us afterwards the fluxes
of H+- and OH– ions towards or away from the interface. The only relation we still need is a
(boundary) condition in current density, such as zero current density at a G/L interface (and
thus zero current everywhere in a 1D calculation). Or not a direct statement of a prescribed
current, but of an applied voltage difference between for instance two electrodes. Indeed,
in a typical calculation current is either prescribed as an input of the calculation, or it is a
free parameter, and for instance the cell voltage (the voltage across an entire electrochemical
cell) is set, which indirectly results in a certain current density.

If the interface is reactive, such as for certain electrodes, method IV is again advantageous.
For instance we have the acetate molecule, which can be neutral or charged. Which of these
two forms reacts away? In method III these questions must be answered before rate-based
boundary conditions can be set up. However, in the approach of method IV we do not have
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to know, but instead the model will tell us. It is even the case that if we would attempt to
implement this kind of information, the model becomes over-specified, and thus unphysical.
[The same for an attempt to decide how many H+-ions are involved in an electrode reaction
or how many OH– -ions. It will lead to an unphysical model if we used method IV to describe
reactions in solution.] Instead of having to specify which species reacts (which we can’t
specify upfront), the model uses the two fluxes of the two acetate species added together in
a flux expression. And what about the product of the reaction, which are carbonate ions, do
we have to decide upfront which type of carbonate ions is formed? Again, we do not have to
decide, but the model will decide. The calculation will tell us which types of species form
and diffuse away, and this will depend on pH at the surface (which is also an output of the
model). Thus, we do not have to provide information about which species reacts away or is
formed. In contrast, the model will provide this information as output.

To describe the electrode reaction stoichiometry, we use available chemical information.
In the example just discussed of a reaction between carbonate and acetate, we know that
always two molecules from the carbonate group are formed for each acetate ion (whichever
one it is) that reacts away (or vice-versa, one acetate ion forms from two carbonate ions). In
addition, we also know that the formation of one acetate molecule involves eight electrons,
and in this way the acetate flux and carbonate flux are coupled to the current density. Thus the
theoretical model states that the sum of fluxes of the two acetate species, is to be multiplied
by two, and then is equal (with a minus sign) to the flux of the three carbonate species
combined (and with the carbamate ion also considered, this ion is also included in this
addition-of-fluxes).

Then remains the question, at such a reactive electrode: how many protons are involved,
and how many OH– -ions? Are protons formed, or are OH– -ions serving as reactant and is
water formed? How do we know? Well, we are fortunatebecause the model does not ask for
this information. Instead, it will tell us the answer after the calculation ran successfully. And
the answer is likely a fractional number, such as that at the surface there was a net incoming
flux of H+ that was 2.3412× the flux of the group of carbonate ions.

Another point of concern is whether or not we need a different model at low pH and at
high pH. Don’t we need to set up reaction equations that specifically depend on participation
of H+ at low pH, and similar equations for participation of OH– for high pH? Because we
know that at low pH the former reaction is important, and vice-versa at high pH. As you
may have anticipated, the answer is: no, we do not have to do this. One and the same
(simple) model suffices. Analysis afterwards will tell us that at high pH mainly OH– -ions
were involved, and mainly H+ if the near-surface region was at low pH. Irrespective of pH,
the model structure, including acid-base equilibria such as Eq. (17.6)A, can always be based
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on H+, also at high pH.
So what about electrons in this reaction? Again, chemistry tells us that for each acetate

molecule reacting away (irrespective of which species it is from the group; and irrespective
of what ion from the carbonate group is the product), a number of 8 electrons are liberated.
And in the electrode this electronic current is equal to the ionic current, one of the boundary
conditions in the calculation. All of this is of course very elegant. It is so elegant that
if we have an electrode reaction involving only ‘water charges’, for instance when H+-ions
react to H2-gas, no boundary condition needs to be formulated at all about which ions react
away. The model has no need for it, and would not even know how to incorporate it. The
only boundary condition is that the electronic current equals the ionic current, and that the
various inert ions, and groups of ions, have zero flux at this electrode.

Until now we discussed relations between different fluxes at interfaces, including the
relation to the current (charge flux). But doesn’t this need to be supplemented with
information on the rate of the reaction, how fast it is? Actually, in many instances we
do not need to do this. If we use a fixed current (in the calculation) then we can run the
calculation as described above, and this is done for instance in Ch. 17. But doesn’t the
rate have any importance? For instance, when we use the Butler-Volmer (BV) equation
for electrode kinetics, how does that equation, and the parameters in there, influence the
calculation? The answer is that this equation, when we know the current density, provides
us with information of the electrode potential, i.e., the voltage change between solution and
metal. The resulting electrode potential does not feed back into the model in the calculation
above, if the current is fixed. Thus the kinetic expression for the electrode, see also Ch. 14 for
many details on electrode kinetics, is not required for us to make a calculation of all the fluxes
and concentration profiles in the electrolyte, if current density is an input value. Instead, in
an experiment with a certain applied cell voltage, then we have a different situation, and we
do need to consider the BV-equation and the electrode potential as elements of the model.
The same holds for a calculation where along the electrode there are changes in solution
properties, and thus the total applied current is not necessarily equally distributed, and thus
not known. Then we also need to evaluate the BV equation as function of position along the
electrode.

In using such a BV-like equation, one can take this rate as infinitely fast, and we then
end up with the Nernst equation, relating the electrode potential to the concentrations of the
participating ions near the electrode, or we can use a rate equation with finite rate constants.
The expression for the electrode reaction rate can have any shape or form, and can use the
total concentration of reactants and products, or the concentration of just one member of a
group of ions. Neither choice impacts the fact that they can be combined with the infinitely
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Fig. 10.1: Schematic picture of CO2 adsorption in an aqueous solution containing MEA, an amine
molecule that buffers the pH of water. At the gas-liquid interface, the CO2 gas pressure relates to the
concentration of H2CO3 in the water using Henry’s law. Bicarbonate ions and MEA diffuse across the
transport film and a pH profile is established.

fast reaction scheme that we use in bulk solution which we just discussed. Many elements
of this general explanation are used in the example calculation that we present in the next
section.

10.3 Example calculation: chemical adsorption of CO2
in water with MEA

In this section, we make an example calculation for a very relevant electrochemical process,
the absorption of CO2 in water, water that can also contain MEA, a well-known amine-like
molecule that buffers the pH of the water, and also binds CO2 directly.

Next to the interface of air and water, we assume a film layer, see §7.1.1, through which
all molecules must diffuse from the G/L interface to the bulk solution. In bulk solution pH,
total carbonate content, and total MEA content are fixed. There is no added salt, but only
some Na+ or some Cl– , as if some NaOH or HCl was added, to adjust bulk pH to a set value.

We use the equations explained in the previous section. Interestingly, in this calculation
using a standard film layer the transport of the inert ion, Na+ or Cl– , is zero, because they
cannot enter or leave through the G/L interface, and thus we can use the Boltzmann equation
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for these ions to describe their concentration profile across the film. The summation of
the fluxes of the two MEA-related species (one neutral, the other positively charged) is
also zero. The adsorption rate of CO2 from the gas phase equals the sum of fluxes of the
three carbonate species. When also the CO2-MEA complex (similar to the carbamate ion
discussed in the last section) is considered, the group of CO2-related molecules is extended
with this carbamate ion, and also the MEA group incorporates this species. In steady-state, at
each position in the film the sum of fluxes of all species in the carbonate group (including the
carbamate ion) equals the adsorption flux of CO2 from the gas phase. For the MEA group,
now including carbamate as a third species, in steady-state, the sum of fluxes of the species
in this group is zero at each position in the film. The concentration of the carbonic acid,
H2CO3, in the water at the interface, relates to the gas phase CO2 concentration according to
the Henry equation, [H2CO3] = 𝐾H · 𝑝CO2

, where the Henry’s constant is 𝐾H∼33.5 mM/bar
at room temperature. Important to notice is how the gas phase CO2-concentration relates to
the concentration of the neutral H2CO3-species from the group of carbonate molecules, and
is not directly related to the total concentration of the group as a whole.

—

We can simplify this problem significantly when we assume that all ions have the
same diffusion coefficient. Because of the constraint of zero current in this problem, the
consequence is that the potential gradient (field strength) is now zero throughout the film, see
Eq. (9.4). This also implies that adding more or less NaCl will not influence the calculation
outcome because all inert species just have flat concentration profiles in this case. We first
neglect the possible formation of the carbamate ion. Thus in the carbonate group we have the
three species H2CO3, HCO –

3 , and CO 2–
3 . In the MEA-group, we have MEA and MEA+.

The combined flux over the three species in the carbonate group is constant, and this flux
expression can then be integrated to

𝐽c/𝑘L = Δ[H2CO3] + Δ[HCO −
3 ] + Δ[CO 2−

3 ] (10.4)

and for the combined set of species in theMEA-group we have

𝐽m/𝑘L = 0 = Δ[MEA] + Δ[MEA+] . (10.5)

In these equations, fluxes are defined in the direction from interface into bulk, and Δ’s are
defined as concentrations at the interface minus bulk. A similar relation also holds for the
current (where we can leave out Na+ and Cl– because they do not flow anyway)

0 = −Δ[HCO −
3 ] − 2Δ[CO 2−

3 ] − Δ[OH−] + Δ[H+] + Δ[MEA+] . (10.6)
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We relate the flux of the CO2-species to the gas-phase flux of CO2 by

𝐽c = 𝑘G

(
𝑝CO2 ,∞ − 𝐾H [H2CO3]int

)
(10.7)

in which we implemented the Henry equation. We can make a calculation where the bulk
concentrations are known. After implementing the various equilibrium relations for the acid-
base reactions, this results in four equations in the four unknowns Δ[HCO −

3 ], Δ[MEA+],
Δ[H+], and CO2 adsorption rate 𝐽c.

Thus, we have presented here an analytical model –which can be built into a larger scale
engineering model for a CO2 absorption tower– that relates the rate of CO2 adsorption to
bulk concentrations (incl. pH) and two mass transfer coefficients. The only assumption is
that all diffusion coefficients are the same; and we made use of the standard film model. The
ion pair binding between CO2 and MEA is not yet included.

Ion pair binding between CO2 and MEA. In the theory outlined above, we did not yet
include the ion pair binding between CO2 and MEA. This ion pair (or complex) can be
included in the theory when we consider the chemical equilibrium between bicarbonate,
uncharged MEA, and a negatively charged MEA-CO2 complex, HCO –

3 +MEA −−−→←−−−
MEACO –

2 . We evaluate Eq. (10.1) for MEACO –
2 , which includes a production term,

Γ𝑖 , for this species, and we can remove this term when we set up the following two mass
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balances, in the MEA-group of ions, and the carbonate group,

𝜕

𝜕𝑥

(
𝐽MEAH+ + 𝐽MEA + 𝐽MEACO −

2

)
= 0 (10.8)

𝜕

𝜕𝑥

(
𝐽H2CO3

+ 𝐽HCO −
3
+ 𝐽CO 2−

3
+ 𝐽MEACO −

2

)
= 0 . (10.9)

With these two balances evaluated at each position in the transport film, the CO2-
MEA complex is included in the theory. The flux of carbamate is also included in the
expression for the rate of adsorption of CO2, Eq. (10.4).

In Fig. 10.2 we present results for the rate of CO2 adsorption vs. pH for the
case without MEA in the system and with MEA. In this second case, we neglect the
CO2-MEA complex formation. We show results of a numerical calculation based on
Eqs. (17.1), (10.1), (17.5), (10.2), and (17.6), and we compare with the simple model
discussed above which is based on the assumption of equal diffusion coefficients of the
carbonate ions and of the MEA ions. Details of parameter settings are provided «HERE».
The calculation results show how pH and MEA concentration strongly influence the rate of
CO2 adsorption. For instance at pH 9.5 we can have a high CO2 adsorption in the presence
of MEA but CO2 adsorption is close to zero without MEA. The semi-analytical model
we present above makes predictions that are very close to the full numerical model. This
simplified model can be useful for a larger scale calculation. We also find that calculations
including the CO2-MEA carbamate complex do not predict a much enhanced CO2-adsorption
rate for the concentrations of total MEA that we chose. Thus, these results suggest that
regulation of pH is the most important effect of MEA addition, not a direct binding with
CO2.

In summary, this example calculation illustrates how the theory of this chapter can be used
quite easily to describe CO2 adsorption and the influence of MEA-addition and pH on the
rate of CO2 adsorption from air, while including all acid-base equilibria in a mass transport
film layer. A model along these lines, which can also easily incorporate electrode reactions
such as the example of acetate and carbonate that was discussed, can be quite easily set up
and solved. It is really impressive how much information is obtained based on only very
limited input.
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10.4 Example calculation: ion transport with multiple
pairs of ionizable ions

We next analyze a second example, which further highlights the many unexpected results that
can be encountered when we have ions that can (de-)protonate, that is are part of acid-base
reactions. In one highly intriguing example (Dykstra et al., 2021) we analyze ion transport
in an anion-exchange membrane (AEM) between two solutions at different pH (left pH 2.0;
right pH 4.35) with different concentrations of sulphate ions and acetate ions. With also
Na+ and Cl– present we have 8 ions in this system in total (we neglect H2SO4). Below we
present one particular calculation result, based on the Nernst-Planck equation solved in the
membrane together with the familiar equations for the Donnan equilibrium at the membrane
edges, local electroneutrality in the membrane, etc.

The particular result that we present here uses values for reaction equilibria 𝐾 𝑗 and
ion diffusion coefficients 𝐷𝑖 given in Dykstra et al. (2021). The ionic current density is
𝐼 =5 A/m2, membrane thickness is 100 𝜇m, ‘free’ diffusion coefficients are divided by 100
to apply to membrane transport, and the membrane charge density is 𝑋 = 4 M. On the left
we have in solution [Na+]=52 mM, [HAc]=300 mM, [HSO −

4 ]=12 mM, and on the right
[Na+] =62 mM, [HAc] =60 mM, [HSO −

4 ] =0.04 mM. Concentrations of Cl– follow from
electroneutrality.

Calculation results are made for steady state transport. Across the membrane the profiles
in concentrations and pH change monotonously (for instance, within the membrane pH
changes from pH 3 on the left to pH 5.5 on the right), but nevertheless the profiles in ion
flux and reaction rates are quite intriguing, see Fig. 10.3.

First of all, in this calculation, there is hardly any flux of the inert Na+ or Cl– , and neither
of the sulphate ‘s’ group, or acetate ‘a’ group as a whole. The flux of the acetate group
(HAc plus Ac– ) to the left is around 7% of the current (when we convert current in A/m2 to
mol/m2/s), but all other fluxes are negligible, for instance the total sulphate flux (flux of the
s-group) is less than 0.5% of the current. Nevertheless, when we calculate the fluxes of the
species forming a group (e.g., HSO –

4 and SO 2–
4 ), we find that these individual fluxes are

very high in some part of the membrane, with for instance HSO –
4 flowing right and SO 2–

4
flowing left in the left half of the membrane, while these two fluxes are close to zero in the
right half of the membrane. But it is hard to interpret these as ‘real’ fluxes. Because as a
group, the sulphate molecule hardly moves. Each molecule switches infinitely fast between
a protonated and a deprotonated state. And when in the one form, it has a tendency to move
left, and in the other form, it has a tendency to move right. But once on the move, right
away it already reacts to the other form and then moves in the other direction again, thus
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effectively it is not moving much at all. And this is the averaged behavior. If we would
follow a certain sulphate ion, it will just randomly diffuse left and right, sometimes in the
protonated form, sometimes deprotonated.

Thus, it is hard to state there is a certain flux of HSO –
4 and of SO 2–

4 . However, there
is another type of flux, that more clearly ‘flows’ in a certain direction. This is the flux of
protonic charge associated with the two sulphate ions. Protonic charge flows to the right as
part of the HSO –

4 -ion. On its way it will hop from sulphate to sulphate ion and effectively
diffuse to the right, due to the diffusion and electromigration of the sulphate ions. It is the
small steps of HSO –

4 ions to the right that transport the proton in this direction, and then
the proton might jump to another sulphate ion, making another move to the right. The ion
it leaves behind (which becomes SO 2–

4 ) moves left again. Effectively we have the group of
sulphate ions not moving much at all, and simultaneously a quite significant flux of protons
moving to the right.

Is there also some transport of protonic charge ‘on its own’? Yes, in the left half of the
membrane, it also flows by itself. Here, it has a transport number up to ∼ 5%. However,
once we reach the right half of the membrane, this mechanism disappears.

Indeed, from around halfway in the membrane, the acetate group ‘takes over’ the transport
of protons. It accepts the proton from the sulphate shuttle system and continues to transport
it to the right, out of the membrane. Now the proton is piggy-backing on the HAc molecule.
Similar to the sulphate molecules in the left half, also in this half the net flux of the acetate
group is very low (slightly moving as a whole to the left) while the flux of protonic charge
enabled by the acetate group is about 15× larger in magnitude than that.

Thus, which species carries the current? It is not correct to say that sulphate carries the
current. As just pointed out, the sulphate ions hardly move as a group. And the same is
the case for the acetate ions. Instead, the current is carried by protons, which move across
a ‘sea’ of sulphate ions in the left half of the membrane, and move across the membrane
together with the acetate ions in the right half of the membrane. Indeed, the total flux of
protons, by the three routes, one, as free protons, two, with the sulphate, and three, with the
acetate, is a constant flux, and it is 93% of the current. Thus, proton flow carries the current
for 93%. We must admit, we find it difficult to say what then exactly is the other 7%.

To quantify how the proton is transported by the sulphate group and by the acetate
group, we can define a ‘proton shuttle number’ (PSN) for each of these groups, which is
its contribution to proton transport, presented in Fig. 10.3. Clearly, in the left half of the
membrane, the proton is transported by the sulphate group, and in the right half by acetate. In
the center region the proton is handed over from one group to the other. This does not mean
that the sulphate group is not present in the right half of the membrane. On the contrary,



278 Combined mass transport and chemical reactions

also there sulphate ions are the majority species, mainly SO 2–
4 at a concentration of ∼1.8 M

(while Cl– is at 0.2 M and Ac– at 0.3 M). But both SO 2–
4 and HSO –

4 now have an almost
zero flux in this right half of the membrane. That sulphate is the majority route for proton
transport in the left half, and acetate in the right half, relates to the pH profile, which starts
at 3.0 on the left, and increases to 5.5 on the right side. On the left pH is closer to pK of
sulphate (1.92) and on the right closer to pK of the acetate group (4.76). It seems that such
a group (which we will call ‘acid-base couple’ from now on) will only transfer a protonic
charge when it has buffer functionality, i.e., when the local pH is around the pK-value of
the group. If that is the case, it is because pH increases to the right, that at some point the
proton is transferred from one to the other acid-base couple, in this case from the sulphate
transport system to the acetate system. Fig. 10.3B quantifies this ‘proton transfer rate’, PTR,
which is the transfer rate of protons to go from the sulphate group to the acetate group, in
moles per time per volume.

Thus we can conclude, the transport of charge across the AEM is mostly in the form of
protons, which are by and large transported by the movement of individual species that are
part of acid-base couples, which themselves, as a group, do not necessarily move at all, or
only very slightly. Thus, these results describe an example with two acid-base couples, the
sulphate-group and the acetate-group, where each functions as a shuttle, a carrier, for proton
transport, and these two groups together transport most of the charge across the membrane in
the form of protons, handing over the proton about half-way into the membrane. In Dykstra
et al. (2021) another example is provided with not two but three groups of ions working
together to shuttle protons across the membrane.

This analysis suggests that we need at least two acid-base couples, each active on one side
of the membrane as a proton shuttle. Some calculations were attempted to find conditions
that a single acid-base group transports protons across the membrane but as a whole would
have a very low flux, but no conditions could be found were this was the case. Thus it may be
that we indeed need at least two such couples. However, Dykstra et al. (2021) also discuss
an transport in a bipolar membrane with an anion-exchange layer (AEL) that on one side is
in contact with a cation-exchange layer (CEL), and through the CEL only free protons move.
In that case a single acid-base couple suffices in the AEL to shuttle protons from solution
to the CEL. Thus, also in this case protons are the main charge carrier in an AEL when an
acid-base couple is present. Because of the CEL, a single acid-base couple seems to be
enough for this mechanism to function.
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Part III

Membrane Processes for Water
Desalination
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One of the key topics in electrochemical engineering is the desalination of water. Sources
of water that must be desalinated can have a salt concentration as high as in seawater
(approx. 30 g/L of salts) but other water sources that are too salty for human consumption
or agriculture must also be desalinated. This broad category is called brackish water, and
ranges from water that is just above suitable for use, from approx. 20 mM salt concentration
and higher, up to seawater. Other water sources are in principle potable or suitable for
agriculture if it were not for a contamination with certain specific ions. These could be
divalent cations that lead to scaling and system malfunction, though at certain levels these
ions are also beneficial for water quality. Other ions may lead to undesired colour, taste
or odour or excessive biological growth, for instance related to ions such as iron, ammonia
and phosphate. Other ions are harmful or toxic such as arsene (for human consumption) or
boron (for agriculture). But metal ions can also be valuable and their harvesting from water
an economically viable activity, such as potentially one day the recovery of lithium, gold, or
uranium from seawater. Not only natural water sources can be treated but industrial effluent
streams as well. Most notably, mining effluents are high in complex salt solutions and often
contain toxic metals, for instance mercury, but also have high concentrations of valuable
metal ions.

For all of these reasons, here summarized very briefly, water desalination is of key
importance to protect the environment and important for modern day society. In this
part of our book we address membrane-based water desalination by pressure-driven
methods such as reverse osmosis (RO), and by electricity-driven processes such as
electrodialysis (ED). We focus on the theoretical aspects of treating water streams for an
ideal situation where we have fully dissociated, symmetric, and monovalent salt solutions.
Other simplifying assumptions are to assume equal ion diffusion coefficients, equal non-
electrostatic partitioning coefficients, and in ED an equal magnitude of the membrane charge
density of the two membranes.

—

In general, water can be desalinated by one of five methods, see Fig. III-1:

• By using ion exchange resin material, we can exchange cations for protons, and anions
for hydroxyl ions, and in this way desalinate water. The ion exchange material must be
regenerated which makes this method different from the next four methods where salt
is separated from one stream and concentrated in another, without the requirement of
absorbent material to be regenerated somewhere else.
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Water desalination 
method

Key component Driving force cyclic or 
steady state

Regeneration
elsewhere?

Ion exchange Ion-exchange (resin) particles Ion affinity cyclic Yes

Capacitive Deionization Capacitive electrodes Electricity cyclic No

Reverse Osmosis and 
Nanofiltration

Charged nanoporous membranes Pressure steady state No

Electrodialysis Ion-exchange membranes Electricity steady state No

Distillation Heaters and condensers Heat steady state No

Fig. III-1: Overview of the five main methods of water desalination.

• We can use capacitive electrodes to remove ions from water, with cations going
into one electrode (to compensate negative electronic charge), and anions going
into another electrode. This method is called Capacitive Deionization (CDI). It
has similarities to the use of ion-exchange material in also being cyclic (after a
salt adsorption step comes a salt release step) but is different because the electrode
adsorbent is regenerated within the device. That makes CDI more similar to the next
methods listed here.

• We can use pressure and push water through a membrane with very small pores. This
method used to be called hyperfiltration but nowadays has the name reverse osmosis
(RO). Nanofiltration (NF) is similar to RO but the pores are slightly larger, i.e., the
membrane structure is more ‘loose.’ Both methods are discussed in Ch. 11. A general
difference between RO and NF is that RO retains most of the ions in a stream, while NF
removes divalent ions very well but monovalent ions have a low rejection. However,
the distinction is not very strong: also in RO ions have different rejections (selectivity),
while in NF all ions have at least some rejection. Thus there is not a fundamental
difference between RO and NF.iv

• We can use pairs of (oppositely charged) ion-exchange membranes and a constant
electrical current to desalinate water. This method is called Electrodialysis (ED) and
is explained in Ch. 12.v

• Finally, by using heat, we can distill the water, condense the vapour, and in this way
obtain highly deionized water as the distillate.

ivForward Osmosis is a related method using a ‘draw solution’ on the permeate side.
vA related method only uses membranes of one charge sign and is called shock electrodialysis.
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—

Despite the differences between these methods, one general topic goes beyond the specifics
of any particular desalination method. This is the definition of setpoints, and the minimum
energy cost of desalination and how that depends on these setpoints. The analysis of setpoints
and energy uses the fact that in water desalination we always separate one feed stream into
two exit streams. In reverse osmosis and nanofiltration (RO and NF) these two streams
are called retentate and permeate, while in electrodialysis (ED) the terminology of diluate
and concentrate is used. Other terminology is freshwater for the dilute stream, and brine
or ‘reject’ for the concentrate stream. In the present section we use the terms diluate and
concentrate (d and c).

Two setpoints define any water desalination process. These are the water recovery, WR
(also often written as 𝛼, sometimes called ‘water recovery ratio’), and desalination, ⟨Δ𝑐𝑖⟩.

Water recovery, WR, is the volume flow of diluate (freshwater), 𝜙v,diluate, relative to the
volume flow of feedwater, 𝜙v,feed, thus

WR = 𝛼 =
𝜙v,diluate

𝜙v,feed
. (III-1)

Even though this seems simple enough, there are practical issues that can complicate this
definition. One topic is that we can define WR in different ways, either as all the water
produced of a certain quality, for instance of a concentration less than a certain value, or
we simply decide we will operate at a certain WR and if necessary do not treat part of the
feed and send it directly to the freshwater collection tank (bypass). Then of course the salt
concentration of the freshwater will increase. Especially for cyclic processes such as CDI
these technical issues require attention. More discussion on this topic is here.

The other setpoint is the desalination, ⟨Δ𝑐𝑖⟩, which is the absolute change in concentration
of an ion 𝑖, or of the total salt content, between the feed stream and the diluate (permeate,
or product water). The calculation of desalination, ⟨Δ𝑐𝑖⟩, must be based on concentrations
in the same product stream that determines water recovery, WR. For a steady-state process
such as ED, RO and NF, the desalination ⟨Δ𝑐𝑖⟩ will be relatively unvarying in time and can
easily be established by comparing the unchanging concentration of an ion 𝑖 in the feed and
permeate. However, for a cyclic process such as CDI, we must find the ‘mixed cup’ salt
concentration of all the freshwater produced, i.e., the concentration in the collection tank for
freshwater (allowing for at least a few cycles, to make sure the concentration in here starts
to average out).

Especially in RO and NF, instead of using ‘desalination’ as a setpoint as described above
(as a change in salt concentration between feed and permeate), instead rejection (also called

http://www.physicsofelectrochemicalprocesses.com/supp_mat/pre_des_1/
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retention) can be used as a setpoint, defined according to

𝑅𝑖 = 1 −
𝑐p,𝑖

𝑐f,𝑖
. (III-2)

A related setpoint is (salt) passage, 𝑃𝑖 , or (salt) transmission, which relates to rejection
according to 𝑃𝑖 = 1 − 𝑅𝑖 .

—

Having discussed these two setpoints, of water recovery, WR, and desalination, ⟨Δ𝑐𝑖⟩,
we can continue with a thermodynamic analysis. The minimum energy input in water
desalination can be easily calculated based on the entropy content of the three water streams
(feed, diluate, concentrate). The first part of this calculation uses the assumption of ideal
thermodynamics, because this is a very good approximation for most water streams, even
seawater.vi Note that in a determination of ion entropy, we simply count the concentrations
of all ions, and do not have to consider the charge of each species. We do have to assume in
the simplified calculation that all salts are fully dissociated (or when ion pairs are formed,
their total number flowing into the system is the same as leaving the system, i.e., we do
not consider acid-base reactions or ion pair formation, and all species in the system are
considered to be inert (unreactive).vii

In any desalination process we have the following balances relating feed (f), concentrate
(c), and diluate (d) streams. These balances assume steady-state operation. First we have
the volumetric flow balance

𝜙v,f = 𝜙v,d + 𝜙v,c (III-3)

and for each ion or other solute we have conservation of mass

𝑐f,𝑖𝜙v,f = 𝑐d,𝑖𝜙v,d + 𝑐c,𝑖𝜙v,c (III-4)

in which we can implement the definition of water recovery, to arrive at

𝑐f,𝑖 = WR 𝑐d,𝑖 + (1 −WR) 𝑐c,𝑖 . (III-5)

To calculate the minimum energy consumption, we calculate for each of the three streams,
𝑗 , the entropy, 𝑆 𝑗 ,

𝑆 𝑗 = −𝜙v, 𝑗𝑅
∑︁
𝑖

𝑐𝑖, 𝑗 ln 𝑐𝑖, 𝑗 . (III-6)

viIn these thermodynamic calculations, neglecting effects beyond ideal entropy leads to errors in energy never
much more than 15%, and often much less.

viiIf we do include these reactions, the analysis must be extended with reaction enthalpies.
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The minimum energy (consumption), ECmin, that we need to invest to run the desalination
process, is equal to the increase in the free energy of the streams, from feed stream to
exit streams, Δ𝐺, which in turn is equal to minus the entropy change of the streams times
temperature T

ECmin = Δ𝐺 = −𝑇 (𝑆d + 𝑆c − 𝑆f) (III-7)

an expression into which the above equations can be inserted. Eq. (III-7) can be used to
calculate the minimum energy for a desalination process with unit J/s=W. Often, ECmin

is divided by the volume of freshwater produced, i.e., divided by 𝜙v,d, and the resulting
specific energy consumption, SECmin, then has unit J/m3. Often SECmin is expressed in
kWh/m3 by making use of the fact that 1 kWh= 3.6 MJ. Note that both anions and cations
must be considered in a calculation. For a symmetric salt solution both have the same
concentration 𝑐 in all streams. This leads to the factors ‘2’ in the equations below where 𝑐
is salt concentration.

A very elegant expression for SECmin, thus for the minimum energy input per volume of
freshwater produced, for a symmetric salt solution, is

SECmin = 2𝑅𝑇
(
𝑐f

WR
ln
𝑐c

𝑐f
− 𝑐d ln

𝑐c

𝑐d

)
(III-8)

where concentration 𝑐 𝑗 is the salt concentration (not total ions concentration).
For (close to) complete desalination, when (almost) all salts end up in the concentrate

stream, Eq. (III-8) simplifies to
SECmin

2 𝑅𝑇 𝑐f
= −WR−1 · ln (1 −WR) = 1 + 1

2
WR + 1

3
WR2 + . . . (III-9)

which in the limit of low water recovery simplifies to

SECmin = Πf = 2 𝑅𝑇 𝑐f . (III-10)

Thus in this limit of producing a small amount of completely desalinated freshwater, the
minimum energy that is required (per volume of freshwater) equals the osmotic pressure
of the feedwater, Πf . Note that when we are not in this limit (that both WR and 𝑐d go to
zero) the prediction of SECmin by Eq. (III-10) deviates strongly from the correct prediction
given by Eq. (III-8), with both much higher and much lower predicted values for the energy
possible.

The other limiting situation is that we go to WR → 0, but the diluate, freshwater,
concentration is not going to zero, thus 𝑐d > 0. Then Eq. (III-10) does not apply, and cannot
simply be modified to ‘𝑐f − 𝑐d’! Instead, in this limit we have

SECmin = 2 𝑅𝑇 (𝑐f − 𝑐d (1 + ln (𝑐f/𝑐d))) . (III-11)
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A typical result of Eq. (III-8) is that complete desalination of artificial seawater of 𝑐f =

525 mM salt concentration (thus 1050 mM total ions concentration), at a water recovery of
WR = 50%, results in a minimum specific energy consumption of SECmin = 1.0 kWh/m3

(𝑇 =298 K).
The minimum energy consumption can always be easily calculated for a certain

desalination performance, and when we know the energy input that was required in an
actual process, SECact, which in RO and NF relates to pressures applied times volume flow
rates, and in ED and CDI mainly relates to the product of electrical current and cell voltage,
then we can calculate an efficiency of the desalination process by

𝜂 =
SECmin

SECact
. (III-12)

The energy efficiency, 𝜂, describes how efficient energy is used to desalinate water in a
particular process. When different processes are compared in terms of 𝜂, it is essential that
all relevant metrics such as water recovery and desalination ⟨Δ𝑐𝑖⟩ are the same, to compare
in an appropriate way. If we invert Eq. (III-12), the result is a metric that will have a value >1
that describes how many times an actual process is beyond operation at the thermodynamic
minimum.

—

We can extend this analysis of the minimum energy for desalination by including in
Eq. (III-6) ion volume effects, for instance described by Eq. (4.4) (when all ions have the
same hydrated size and can be approximated as spheres), and an effect of ion-ion Coulombic
interactions, described by Eq. (4.26) for a salt solution where all ions are monovalent. We
now obtain for the free energy of each stream, 𝐺 𝑗 , for a monovalent salt solution, with 𝑐𝑖 the
concentration of an individual ion in mol/m3, and 𝑐∞ = ½

∑
𝑖 𝑐𝑖 the total salt concentration,

𝐺 𝑗 = 𝜙v, 𝑗 · 𝑅𝑇 ·
(∑︁
𝑖

𝑐𝑖, 𝑗 ln 𝑐𝑖, 𝑗 +
𝜂2
𝑗

𝜈ion

4 − 3𝜂 𝑗(
1 − 𝜂 𝑗

)2 − 3/2𝛼 𝜆B
3
√︁
𝑁av𝑐∞, 𝑗 𝑐∞

)
(III-13)

where 𝛼=1, and 𝜂 𝑗 is the volume fraction of all ions together, given by 𝜂 𝑗 = 2𝜈ion𝑐∞ where
𝑣ion is the hydrated molar volume of the ions in m3/mole (we assume the same 𝜈ion for all
ions).viii

viiiFormally, in Eq. (III-13),the first entropy term is not just 𝑐𝑖, 𝑗 ln 𝑐𝑖, 𝑗 but it is 𝑐𝑖, 𝑗
(
ln

(
𝑐𝑖, 𝑗/𝑐ref

)
− 1

)
, but these

additional terms cancel when the total inflow of ions is the same as the total outflow (conservation of moles of
salt).
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Contribution to energy by volume effects and Coulombic interaction. How did we
arrive at the second and third term in Eq. (III-13)? They are free energy contributions
due to a volume (excess) term, and due to an ion-ion Coulombic interaction, of which
the expressions for their contribution to an ion’s chemical potential are given in Ch. 4
respectively as Eq. (4.4) when all ions are of the same size and and spherical, according to
the Carnahan-Starling (CS) equation of state, and as Eq. (4.26), in case of a monovalent
salt solution. The related free energy densities, i.e., per unit volume, are given by

𝑓exc,𝑖 = 2 𝑅𝑇
∫

𝜇excd𝑐∞ =𝑅𝑇
𝜂2
𝑗

𝑣ion

4 − 3𝜂 𝑗(
1 − 𝜂 𝑗

)2

𝑓i.i.c.i.,𝑖 = 2 𝑅𝑇
∫

𝜇ed𝑐∞ = − 3/2𝛼 𝑅𝑇 𝜆B
3
√︁
𝑁av𝑐∞, 𝑗 𝑐∞

(III-14)

where the factors ‘2’ in both integrations are because there are equal numbers of cations
and anions in a salt solution.

Making now the same calculation as just before, with feedwater of 525 mM salt
concentration from which we produce fully desalinated water at a water recovery of 50%,
we now calculate an energy consumption of 0.864 kWh/m3 if we only include the ion-
ion Coulombic interaction, i.e., it now becomes less energy-consuming, and when we
additionally include ion volume effects, then when we assume hydrated ions of a size of
0.41 nm, we are back at 1.0 kWh/m3, while with ions that have a size of 0.50 nm, ECmin

increases to approx. 1.14 kWh/m3. Thus ion-ion Coulombic interaction, and ion volume
exclusion, both have a marked effect on the calculated minimum energy for desalination.
Effects of (de-)protonation reactions, the formation of ion pairs, or neutral salt aggregates,
related to the chemical energy of their associations, can also play a significant role in further
modifying these numbers.





11
Reverse Osmosis and Nanofiltration

Pressure-driven membrane separation is one of the most relevant processes in
electrochemical technology. It is used for water desalination and the removal of
micropollutants from water, with reverse osmosis (RO) and nanofiltration (NF) the two
main technologies. They are very similar, only with NF membranes having slightly larger
pores which leads to lower required pressures, but certain solutes such as monovalent ions
are now retained less. For RO and NF we discuss theories for ion and water transport
in the direction across the membrane, i.e., the transmembrane direction, and also extend
to theory for a full module, which also includes modeling transport along the membrane.
Because of the larger pores, theories for NF sometimes also include a detailed description
of concentration profiles across the cross-section of a pore (space charge theory) but that
extension is unnecessary for membranes for water desalination and will not be discussed.
Instead, we discuss in detail the effects of ion-matrix and ion-ion friction on transport and
salt rejection.
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11.1 Introduction

In this chapter we describe desalination of water by applying pressure to push water through
the pores in polymer or ceramic membranes. Solutes, such as salt ions and organic
micropollutants (OMPs), are retained by these membranes to a very large degree by a
combination of mechanisms such as an energy penalty for ions to enter, which can be
due to the small pore size or low solubility, and they are retained because membranes
are charged, and because they have friction with the membrane structure while they flow
through the membrane. In this chapter we do not distinguish between reverse osmosis (RO)
and nanofiltration (NF). These are the two main methods of water treatment with membranes
where water is pushed through the membrane by applying a pressure. In NF the pore structure
is more open and thus rejection is lower (especially of monovalent ions) and because of the
lower rejection, and the more open membrane structure, the necessary pressure is less, or
for the same pressure, the water flow through the membrane is higher. In practical RO and
NF membranes, the selective layer is often a very thin ‘toplayer’ (less than 1 𝜇m thickness)
with pores less than 1 or 2 nm in size, which is positioned on top of a support structure that
has much larger pores and these pores do not have selective properties. This support layer
is important because it provides mechanical strength to the entire structure. This layout is
called a ‘thin film composite’ (TFC) membrane. When we write ‘membrane’ in this chapter,
we refer to the sub-micron selective toplayer only.

In practice, in RO and NF water flows into a module containing a large membrane sheet
that is rolled up in a ‘spiral wound’ geometry and fitted inside a cylindrical housing. Feed
water flows into this module on one side of the membrane, the upstream side. Water and
solutes that do not pass the membrane, leave the module again on the same side of the
membrane. This is the concentrate or retentate stream. Water and solutes that do pass
the membrane, i.e., water and solutes that travel across the membrane (trans-membrane
transport) go to the permeate side. This is the downstream side. On this side, after having
passed the membrane, salt and water will also flow for some distance along the membrane
and then leave the module as the permeate or product water. [Of course dependent on
application, it may be that the retentate is the ‘real product’ but in this chapter we assume
that the permeate, of low solute concentration, is the desired stream, i.e., is the product
stream.]

In this chapter we first explain theory for an experiment where on the feed side the
concentration 𝑐f is the same at each position along the membrane surface. This theory
applies to an experiment with a full module if the experiment is performed at low water
recovery. And it also applies to a batch experiment where a certain volume of feedwater has
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an equalized concentration (because of stirring) and is pressurized in a closed-off container
and flows through a piece of (often flat) membrane, sometimes called a ‘coupon’. This is
then an experiment that only requires a one-dimensional (1D) model. The permeate (the
water flowing through the membrane) is collected and its solute composition measured. In
a batchwise experiment, because the membrane retains solutes, solute concentrations on the
high-pressure side increase in time, and the permeate composition will then also change
over time. Nevertheless, at each moment in time, we can model the process as if in steady
state (the changes of concentration in the batch volume are gradual). In § 11.3 we discuss
a complete 2D module calculation. In that case differential mass balances for solutes and
water are solved on both sides of the membrane as function of position z along the membrane.

11.2 One-dimensional model of pressure-driven
membrane separation for neutral solutes

We start this chapter with theory for pressure-driven membrane separation for the transport
of solutes (molecules, ions) through a membrane, often in combination with a diffusion
boundary layer (DBL) located on the upstream side of the membrane. The upstream side, or
feed side, is where the membrane module is fed with the water to be treated, see Fig. 11.1.
Other terminologies used for the DBL are: (mass) transport film, stagnant diffusion layer
(SDL), and concentration polarization (CP) layer. A DBL is typically neglected on the
downstream side of the membrane. In this chapter the fluid or solvent is water, but for other
solvents the theory is the same. Solutes are the dispersed or dissolved species, thus ions or
other charged or uncharged molecules; all of these terms are used.

Inside the membrane, we assume solutes diffuse while they have friction with solvent and
the membrane structure. In this initial part of the chapter we leave out electromigration and
volume effects, and thus we can use Eq. (7.71) to arrive at

𝐽𝑖 = 𝐾f,𝑖𝑐m,𝑖𝑣w − 𝐾f,𝑖𝐷m,𝑖
𝜕𝑐m,𝑖

𝜕𝑥
(11.1)

where we use the membrane diffusion coefficient 𝐷m,𝑖 = 𝜀𝐷𝑖 , with index ‘m’ referring to
inside the membrane. Diffusion in the membrane, described by 𝐷∗m,𝑖 = 𝐾f,𝑖𝐷m,𝑖 , is much
slower than in solution due to the porosity 𝑝m and tortuosity 𝜏m of a membrane that enter
the parameter 𝜀, as well as ion-matrix friction which leads to a low 𝐾f,𝑖 . Eq. (11.1) explains
how transport is driven simultaneously by diffusion and by convection. If we include charge
and volume effects, we start the analysis with Eq. (7.70).
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Fig. 11.1: Basic layout of a separation process where water is pushed through a membrane that retains
ions and other molecules. Water flows across the membrane from the upstream high pressure feed side
(left) to the downstream low pressure permeate side (right). The transmembrane water velocity is 𝑣w.
A diffusion boundary layer (DBL) can be included in the theory, and because solutes cannot pass the
membrane freely, in the DBL their concentration increases. At the two edges of the membrane, the
ratio between the solute concentration inside the membrane relative to that on the outside, 𝑐m,𝑖/𝑐o,𝑖 ,
has electrostatic and non-electrostatic contributions. Here is depicted one cross-section or ‘slice’ out
of a full 2D module. In a full module there is also solution flow along the membrane in the z-direction.

Solute partitioning and the permeate equation. As discussed before, at membrane-
solution boundaries (the two outsides of the membrane), the solute concentration just
in the membrane is related to that just outside by a partition function that follows from
chemical equilibrium of a species i between locations just within and just outside the
membrane (i.e., across the interface), resulting for neutral solutes in

Φ𝑖 = 𝑆𝑖 =
𝑐m,𝑖, 𝑗

𝑐o,𝑖, 𝑗
(11.2)

where concentrations with subscript ‘o’ refer to a position just outside the membrane,
and where j refers to either of the two sides of the membrane. For ions, an additional
Donnan effect arises to retain electroneutrality in the membrane, which in this book
we treat separately, i.e., do not include in 𝑆𝑖 or Φ𝑖 . The non-electrostatic partition
coefficient, Φ𝑖 , describes the solubility of a species in a material, 𝑆𝑖 , and can be due
to all kinds of energy barriers for entry in the membrane. This term is for instance
due to the chemical affinity of a solute with a certain phase (medium) relative to its
affinity with another phase, but also other effects of solute-membrane interaction can
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be absorbed in Φ𝑖 such as a volume exclusion effect. In RO with neutral solutes, we
always have Φ𝑖 <1 or 𝐾f,𝑖 <1, and ideally both are significantly less than unity.

A further element in RO modeling is the ‘permeate equation’, an equation essential
to describe RO in a one-dimensional (1D) geometry, valid when there is no flow along
the membrane on the permeate side. This equation is

𝑐p,𝑖 =
𝐽𝑖

𝑣w
(11.3)

which looks simple but is an intriguing result. It states that the concentration of
solutes on the permeate side is a direct function of the ratio of solute flux through the
membrane over the permeate water flux, 𝑣w (this is a volumetric flow rate expressed
in m3/m2/s = m/s). This condition holds for steady state, thus when conditions on the
upstream side do not vary too much over time. The equation is also valid when on
the upstream side conditions do change in time, but the permeate is regularly removed.
Then the water that permeated the membrane at earlier moments does not mix up
with fresh permeate. It is also valid in a calculation where along the membrane, in
z-direction, conditions change in the feed channel, as long as the permeate flows through
the membrane at each position z are assumed to not mix up with flows that pass the
membrane at other z-positions. In a full module, Eq. (11.3) also applies for the exit
permeate concentration when 𝐽𝑖 is the average solute flux in the entire module, and 𝑣w

likewise the average water flux.

If we assume steady state, and one-dimensional flow, solute flux 𝐽𝑖 is the same at each
x-position in the membrane, and we can integrate Eq. (11.1) across the membrane, noting
that the volumetric water flux, 𝑣w, is always the same at each x-position (this is also the case
if we do not have steady state). We introduce a dimensionless position in the membrane,
𝑥 = 𝑥/𝐿m, with 𝐿m the membrane thickness. We furthermore use a membrane Péclet-number
given by Pe𝑖 = 𝑣w/𝑘m,𝑖 with 𝑘m,𝑖 a mass transfer coefficient given by 𝑘m,𝑖 = 𝜀𝐷𝑖/𝐿m, and
finally a characteristic concentration 𝑐∗ given by 𝑐∗ = 𝐽𝑖/

(
𝐾f,𝑖𝑣w

)
. In the integration, this

concentration 𝑐∗ is a constant factor. The first step is to rewrite Eq. (11.1) to

1
𝑐m,𝑖 − 𝑐∗

𝜕𝑐m,𝑖

𝜕𝑥
= Pe𝑖 (11.4)

which can be integrated to an explicit expression for the concentration of solutes in the
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membrane as function of position 𝑥

𝑐m,𝑖 (𝑥) = 𝑐m,𝑖,L −
(
𝑐∗ − 𝑐m,𝑖,L

) (
𝑒Pe𝑖 𝑥 − 1

)
(11.5)

where subscript L is introduced which refers to the left side of the membrane, at a position just
inside the membrane. Below we will also use R for the right side of the membrane, also just
inside the membrane. We associate ‘left’ with the upstream, high-pressure, feed/retentate
side, for which we use the symbol ‘f’ in this section, and we associate ‘right’ with the
downstream, low-pressure, permeate side (freshwater, diluate), for which we use subscript
‘p’. Eq. (11.5) shows that the concentration in the membrane first decreases slowly and then
faster and faster.

We can evaluate Eq. (11.5) across the complete membrane layer from position L to R,
which then leads to the Hertz equation (Bresler, 1981)

𝐽𝑖

𝐾f,𝑖𝑣w
= 𝑐∗ =

𝑐m,𝑖,L − 𝑐m,𝑖,RF
1 − F

(11.6)

where we introduce F = exp (−Pe𝑖).

Average concentration in the membrane. We can integrate Eq. (11.5) across the
membrane and implement Eq. (11.6), to arrive at an expression for the average
concentration in the membrane that is

⟨𝑐⟩ = ½
(
𝑐L + 𝑐R

)
+

(
𝑐L − 𝑐R

) (
1

2 tanh (½Pe𝑖)
− 1

Pe𝑖

)
(11.7)

which predicts that at low Pe𝑖 the average concentration is the average of the two
concentrations on the two sides, but with increasing Pe-number, it approaches the
concentration on the upstream side. The exact expression above, can be simplified to

⟨𝑐⟩ ∼ ½
(
𝑐L + 𝑐R

)
+½

(
𝑐L − 𝑐R

)
tanh (Pe𝑖/6) (11.8)

which has the correct limits for Pe𝑖 → 0 and Pe𝑖 → ∞, and in a Taylor expansion is
correct in the term linear in Pe𝑖 , as well as that in Pe2

𝑖 (namely that the quadratic term is
absent), and only starts to deviate in Pe3

𝑖 . These expressions for average concentration
are required in a calculation of the friction between a fluid and solutes in a porous
medium, see p. 218.

The theory just outlined for RO is the solution-friction (SF) model and combines two
causes of solute rejection, namely a non-unity partition coefficient (or, solubility), Φ𝑖 < 1,
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and a non-unity solute-membrane friction coefficient, 𝐾f,𝑖 < 1. This model is similar to
the friction models by Spiegler and Kedem from the 1950s and 1960s, though there are
differences in the derivation. Next we implement in Eq. (11.6) the partition function,
Eq. (11.2), and rewrite to

𝐽𝑖 = 𝑣w (1 − 𝜎𝑖)
𝑐int,𝑖 − 𝑐p,𝑖F

1 − F
(11.9)

where we introduce the concentration 𝑐int,𝑖 which is directly on the outside of the membrane,
on the upstream side (between DBL and membrane), i.e., at the membrane/solution interface.
In the absence of a DBL, 𝑐int,𝑖 equals the concentration further away in the channel, and if
this upstream side is well-stirred, with low water recovery, we can replace it by 𝑐f,𝑖 . We also
introduce the sieving coefficient, 𝜎𝑖 , given by

𝜎𝑖 = 1 − 𝐾f,𝑖Φ𝑖 . (11.10)

Eq. (11.9) can also be written as (Perl, 1973)

𝐽𝑖 = 𝑣w (1 − 𝜎𝑖) (Δ𝑐/(2 · tanh (Pe𝑖/2)) + ⟨𝑐⟩) (11.11)

where Δ𝑐 = 𝑐int,𝑖 −𝑐p,𝑖 and ⟨𝑐⟩ = ½
(
𝑐int,𝑖 + 𝑐p,𝑖

)
. For low water velocities 𝑣w (low Pe-

number), Eq. (11.11) simplifies to

𝐽𝑖 = (1 − 𝜎𝑖)
(
𝑘m,𝑖Δ𝑐 + ⟨𝑐⟩ 𝑣w

)
(11.12)

which is called the arithmetic mean expression (Bresler, 1981). In the RO literature
Eq. (11.12) is often presented as the general solution but with ⟨𝑐⟩ replaced by 𝑐 given
by 𝑐 = Δ𝑐/ln

(
𝑐int,𝑖/𝑐p,𝑖

)
, but this is not exact at all.

And if Pe𝑖 =𝑣w/𝑘m,𝑖 is really low, solute flux is just related to the concentration difference
across the membrane

𝐽𝑖 = 𝐵
(
𝑐int,𝑖 − 𝑐p,𝑖

)
(11.13)

where the salt permeability is 𝐵= 𝑘m,𝑖𝐾f,𝑖Φ𝑖 . Eq. (11.13) is also used in the solution-diffusion
(SD) model (but based on a very different derivation), a model that will be discussed further
on.

In the other limit, of a high transmembrane water flux, 𝑣w, Eq. (11.11) simplifies to

𝐽𝑖 = (1 − 𝜎𝑖) 𝑐int,𝑖 𝑣w (11.14)

and thus in this limit solute flux is only due to convection, and the only concentration that
enters the expression is that on the upstream side.
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Next we combine Eq. (11.9) with the expression for rejection, 𝑅𝑖 , Eq. (III-2), which results
in

𝑅𝑖 =
(1 − F) 𝜎𝑖
1 − 𝜎𝑖 F

(11.15)

which shows that for 𝜎 → 1 (perfect reflection) we have perfect rejection irrespective of
the water transmembrane flux 𝑣w, and likewise, for 𝜎𝑖 → 0 (zero reflection) we have no
rejection. In the limit that water flux goes to zero, irrespective of 𝜎𝑖 , we approach zero
rejection, i.e., 𝑅𝑖 = 0. All these predictions make much sense.

In the high Pe-limit, rejection is described by

𝑅𝑖 = 𝜎𝑖 = 1 − 𝐾f,𝑖Φ𝑖 (11.16)

and this expression clearly shows how any RO membrane has a natural limit in what rejection
it can achieve, determined by the extent to which solutes are excluded from the membrane
(which implies a value of Φ𝑖 < 1), and by the extent of solute-membrane friction (the more
the better, which leads to lower and lower values of 𝐾f,𝑖). If a membrane does not do either,
i.e., it does not exclude solutes, i.e., Φ𝑖 = 1, and it does not impose a frictional force on
solutes at all, i.e., 𝐾f,𝑖 =1, then the three equations above correctly predict that rejection will
be zero at all values of 𝑣w. So, for a neutral membrane to block neutral solutes, either there
must be some solute-membrane friction leading to 𝐾f,𝑖 < 1, or a degree of partitioning (Φ𝑖 ,
𝑆𝑖 <1).

Next we include the effect of mass transfer in the diffusion boundary layer (DBL, or CP
layer) that is on the upstream side of the membrane, and which can play a role in the transport
process. We use the standard film model of a certain thickness. Solutes are convected across
the DBL by the flow of water, but a large part of the solutes is retained, and thus must diffuse
back, resulting in the solute concentration going up towards the membrane (as depicted on
the left in Fig. 11.1).i Solute flux through the DBL towards the membrane is described by
Eq. (11.1) where we remove index m and set 𝐾f,𝑖 =1. We then have

𝐽𝑖 = 𝑐𝑖𝑣w − 𝜀𝐷𝑖
𝜕𝑐𝑖

𝜕𝑥
(11.17)

where 𝑣w is the same water velocity as in the membrane, and 𝜀 is now a property of the
spacer mesh in front of the membrane. In the absence thereof, 𝜀 = 1. Just as we did in the

iIt is actually not correct to state that solutes ‘diffuse back’. Correct is that solutes are convected towards the
membrane, and because solutes are retained concentrations go up at the surface and a diffusional term develops
that slows down the further movement of solutes towards the surface. The velocity of solutes towards the
surface remains positive.
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membrane calculation, because of steady state we can integrate Eq. (11.17) across the DBL,
to arrive at

𝐽𝑖

𝑣w
=
𝑐f,𝑖 − 𝑐int,𝑖 exp

(
−Pedbl,𝑖

)
1 − exp

(
−Pedbl,𝑖

) = 𝛼 · Δ𝑐dbl,𝑖 +
〈
𝑐dbl,𝑖

〉
(11.18)

where 𝛼 = 1/
(
2 · tanh

(
Pedbl,𝑖/2

) )
, Δ𝑐dbl,𝑖 = 𝑐f,𝑖 − 𝑐int,𝑖 and

〈
𝑐dbl,𝑖

〉
= ½

(
𝑐f,𝑖 + 𝑐int,𝑖

)
, and

where the DBL Péclet-number for species 𝑖 is given by Pedbl,𝑖 = 𝑣w/𝑘dbl,𝑖 where the mass
transfer coefficient in the DBL, 𝑘dbl,𝑖 , is the diffusion coefficient in free solution, 𝐷𝑖 , times
𝜀, divided by the DBL thickness. Eq. (11.18) can be rewritten to an explicit expression for
the interfacial concentration 𝑐int,𝑖 given by

𝑐int,𝑖 = 𝑐f,𝑖 exp
(
Pedbl,𝑖

)
−

(
exp

(
Pedbl,𝑖

)
− 1

) 𝐽𝑖
𝑣w

(11.19)

which correctly predicts that ‘in the absence of a DBL,’ i.e., when 𝑘dbl,𝑖 →∞, that there are
no concentration changes across the DBL: 𝑐int,𝑖 = 𝑐f,𝑖 . In the other limit, when 𝐽𝑖 ≪ 𝑣w𝑐f

(and thus automatically also 𝐽𝑖 ≪ 𝑣w𝑐int because 𝑐f < 𝑐int), then Eq. (11.19) simplifies to

𝑐int,𝑖 = 𝑐f,𝑖 exp
(
Pedbl,𝑖

)
. (11.20)

In a dead-end experiment we can use Eq. (11.3), and then Eq. (11.19) simplifies to

𝑐int,𝑖 = 𝑐f,𝑖𝑒
𝑣w/𝑘dbl,𝑖 − 𝑐p,𝑖

(
𝑒𝑣w/𝑘dbl,𝑖 − 1

)
𝑒𝑣w/𝑘dbl,𝑖 = 𝑐p,𝑖 +

(
𝑐f,𝑖 − 𝑐p,𝑖

)
𝑒𝑣w/𝑘dbl,𝑖 . (11.21)

Interestingly, this equation not only applies to neutral solutes but also to any binary salt
solution, by replacing 𝐷𝑖 with the harmonic diffusion coefficient, 𝐷hm, given by Eq. (7.30),
which then changes 𝑘dbl,𝑖 and thus Pedbl,𝑖 .

When the total concentration, 𝑐tot, is (assumed to be) proportional to osmotic pressure,
i.e., Π = 𝑐tot𝑅𝑇 , and 𝑘dbl,𝑖 is the same for all solutes, then Eq. (11.21) can be rewritten to
the elegant

Πint − Πp

Πf − Πp
= exp

(
𝑣w

𝑘dbl

)
. (11.22)

If we combine Eq. (11.13) with Eq. (11.21), and implement the definition equation for
rejection, we obtain

𝐽𝑖 = 𝐵 𝑐f,𝑖 𝑅𝑖 𝑒
𝑣w/𝑘dbl,𝑖 . (11.23)

We can combine Eq. (11.9) (where we replace 𝑐f,𝑖 with 𝑐int,𝑖) with the flux expression for
the DBL, Eq. (11.18), and obtain the generalized RO solute flux equation that includes the
effect of the DBL, thus including concentration polarization

𝐽𝑖 =
𝑐f,𝑖 𝑣w

1 + 𝛾 , 𝛾 =
1 − F

exp
(
Pedbl,𝑖

) · 𝜎𝑖

1 − 𝜎𝑖
(11.24)
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where 𝛾 is a parameter that we use to simplify notation. It must be stressed that Eq. (11.24)
is valid also in a 2D model where Eq. (11.3) does not apply. If we do include Eq. (11.3),
valid for a 1D experiment, as well as (III-2), then Eq. (11.24) results for rejection in

𝑅𝑖 = 𝛾/(1 + 𝛾) . (11.25)

This expression is equivalent to Eq. (13) in Starov and Churaev (1993) and Eq. (32) in
Biesheuvel et al. (2022). When the mass transfer coefficient of the DBL, 𝑘dbl,𝑖 , is large
enough, for instance because of sufficient stirring, then Eq. (11.25) simplifies to Eq. (11.15).
But the general case based on Eq. (11.25) can also be easily solved in commercial spreadsheet
software. In this procedure we take the permeate water flux, 𝑣w, as input, then calculate
rejection with Eq. (11.25), and from that we can easily calculate 𝑐p,𝑖 and solute flux 𝐽𝑖 .
Then, Eq. (11.21) can be used to calculate the solute concentration at position ‘int’, i.e., just
outside the membrane. Concentrations on either side just in the membrane follow from 𝑐int,𝑖

and 𝑐p,𝑖 by multiplying with Φ𝑖 . Some calculation results are presented in Fig. 11.2.
A different approach used in RO is the solution-diffusion (SD) model which neglects

convection of solutes (and only considers neutral solutes), and thus solute flux is based on
Eq. (11.13). According to the SD model rejection is given by

𝑅𝑖 =
𝑣w

𝑣w + 𝐵 exp
(
𝑣w/𝑘dbl,𝑖

) (11.26)

which predicts that without a DBL there can be 100% rejection at high enough water flux,
even when the product of 𝐾f,𝑖 and Φ𝑖 is unity (thus 𝜎𝑖 =0). It does not predict the limiting
rejection of Eq. (11.16).

Sometimes in RO, an intrinsic membrane rejection, 𝑅int is calculated on the basis of
the observed rejection, 𝑅obs with 𝑅obs the rejection as defined in all of the above text,
namely 𝑅obs = 1 − 𝑐p/𝑐f , and the intrinsic rejection being more representative of the actual
performance of the membrane because the DBL is corrected for. If we define 𝑅int as
𝑅int = 1 − 𝑐p/𝑐int, then we can combine these definitions with Eq. (11.21) and arrive at

𝑅int =
𝑅obs exp

(
𝑣w/𝑘dbl,𝑖

)
1 + 𝑅obs

(
exp

(
𝑣w/𝑘dbl,𝑖

)
− 1

) (11.27)

which predicts that in all cases 𝑅int>𝑅obs. This equation can only be used if we know 𝑘dbl,𝑖 ,
and for conditions that the dead-end equation can be used (for a stirred cell, or a module at
low water recovery). It is also based on the assumption that the convection-plus-diffusion
approach for the DBL, on which Eq. (11.21) is based, is valid.
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Alternative CP model. We set up an alternative model for the DBL that includes
convection and diffusion, but does not assume a DBL of fixed thickness. Instead,
similar to Eq. (7.15) in §7.1.4 we include solute refreshment, with the refreshment rate
proportional to the distance from the membrane. The water velocity, which is directed
to the membrane, 𝑣w, is constant, an assumption that in more accurate 2D calculations
can be relaxed, see Elimelech and Bhattacharjee, J. Membr. Sci. 145 223–241 (1998).
This model is described by the one-dimensional differential equation

𝑦′′ − 𝜉 𝑦 + 𝛼 Pedbl 𝑦
′ = 0 (11.28)

where derivatives make use of a dimensionless coordinate 𝜉 that points from the
membrane into solution. Explanation of this coordinate 𝜉, concentration y, the constant
𝛼, and the definition of 𝑘dbl as function of diffusion coefficient and refreshment rate are
all provided in §7.1.4. We make numerical calculations where we evaluate 𝑦′ at the
membrane surface where 𝜉 = 0, while 𝑦′ = 𝑦 = 0 for 𝜉→∞. Even up to Pedbl = 2.5,
which implies an upconcentration at the membrane by a factor of ∼ 12, we do not
find a difference between the outcome of this new approach and the standard DBL
model, Eq. (11.18). Most probably they are mathematically equivalent also at higher
Pe-numbers, but in any case we can conclude that for all practical purposes, Eq. (11.18)
is an accurate 1D steady state model for the CP layer.

Next we discuss the water flow through the membrane as function of pressure, or vice-
versa, we discuss the question what pressure is required to arrive at a certain transmembrane
water flux, 𝑣w. We assume there is only one type of solute (or more types but their properties
are all the same) so we can use Eq. (8.27) from Ch. 8 that we modify slightly

𝑣w = −𝑘†F-m

(
Δ𝑃h,∞ − 𝜎𝑖ΔΠ∞

)
where 𝑘†F-m is a effective permeability for water flow through the membrane, influenced
by solute-membrane frictions, i.e., it describes the permeability for water to flow through
a porous membrane that also contains solutes that partly flow along with the water but
are also obstacles that generate more resistance for flow of water. This factor is given by
1/𝑘†F-m = 1/𝑘F-m +

(
1 − 𝐾f,𝑖

)
· ⟨𝑐⟩ /𝑘m,𝑖 where ⟨𝑐⟩ is the average solute concentration in

the membrane for which an analytical solution was provided in Ch. 8. The two pressure
differences, Δ𝑃h,∞ and ΔΠ∞, are those across the full membrane (between locations just
outside the membrane). When there is a DBL, this pressure counts from a position on the
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Fig. 11.2: Theory for the removal of neutral solutes by RO membranes based on the solution-friction
model including concentration polarization, i.e., a diffusion boundary layer on the upstream side,
and solute partitioning. A) Solute rejection, 𝑅𝑖 , as function of trans-membrane water velocity, 𝑣w,
for various values of 𝑘dbl/(𝑘m (𝜎𝑖 = 0.9). B) Water velocity, 𝑣w, as function of applied hydrostatic
pressure for two values of 𝜎𝑖 (𝑘dbl/𝑘m=5, 𝑘†F-m= 𝑘m,𝑖/𝑐f).

upstream side between DBL and membrane (called ‘int’), to the permeate. The hydrostatic
pressure at position ‘int’ is the same pressure as further away from the membrane, on the bulk
side of the DBL, because across the DBL the hydrostatic pressure does not change. However,
the osmotic pressure certainly changes through the DBL, in the same way that concentration
changes. If solutes have no friction with the membrane, then 𝐾f,𝑖 = 1, and the effective
permeability 𝑘†F-m simplifies to 𝑘F-m which is the membrane clean water permeability.

Fig. 11.2 illustrates the theory explained above, for solute rejection as function of water
flux (expressed as a membrane Pe-number), and as function of the mass transfer coefficient
of the DBL, 𝑘dbl. For each value of 𝑘dbl there is a maximum rejection at a certain membrane
Pe-number (which is a measure of transmembrane water flux). Beyond that point rejection
drops again because of the increasing solute concentration directly near the membrane (at
position ‘int’), leading to more leakage of solutes through the membrane. In the limiting
situation that the DBL plays no role, then for sufficiently high water fluxes we arrive at the
maximum rejection given by Eq. (11.16). The relation between pressure and water flux is
also illustrated in Fig. 11.2. The calculation shows that also at very low pressures there is
some flow of water through the membrane. It is not the case that there is some minimum
pressure below which there is no water flow at all. However, for low enough Φ𝑖 (or for low
enough 𝐾c,𝑖) there is a clear transition at a pressure equal to the osmotic pressure of the feed.
Below that pressure, water fluxes are very low, and above, they quickly increase. Not shown
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is a graph of solute flux versus pressure. Results are that solute flux increase quite linearly
with pressure (starting at zero, at zero pressure).

11.3 RO module calculation for neutral solutes
In the previous section we considered RO for a mixture of neutral solutes from a large batch
of water of constant composition, as if it is a module that is operated in the limit of a very
low water recovery. The upstream concentration is at a constant value, 𝑐f . We now continue
and describe a more realistic RO module where on the upstream side between inlet (feed)
and exit (retentate) the composition gradually changes along the membrane (z-direction).
We first describe general balances, where transport along the membrane is in plug flow,
i.e., there is one water velocity in z-direction and one z-dependent solution concentration.
The CP layer is included as part of the membrane flux equations, i.e., it is included as a
boundary condition. Thus, we extend the one-dimensional model for RO to a more realistic
two-dimensional (2D) model for an RO module. Previous models were one-dimensional,
only considering the 𝑥-direction straight towards and through the membrane. We now also
include the z-direction along the membrane, from module inlet (feed) to outlet (retentate).
Thus we now also consider transport along the membrane, which is transport through flow
channels (also called spacer channels), which are the thin and long channels placed next to
the membranes. Transport through these channels (i.e., in the direction from entrance to exit)
is modelled by convection: solute is taken with the water that passes along the membrane.
Thus, in this direction diffusion is neglected.

In these flow channels there is typically a spacer material material, or ‘mesh’, such that only
an open fraction 𝑝s remains through which the water flows. This spacer material enhances
mixing and provides structural integrity to the module. The channel has a thickness between
200 𝜇m and 1 mm (this is the height, ℎch, in 𝑥-direction in Fig. 11.1). The channel can
have a path length between inlet and outlet of the module (i.e., in the z-direction along the
membrane) of typically between 10 and 100 cm.

Next we first analyze a model based on the plug flow-assumption, which implies that water
velocity 𝑣𝑧 and solute concentration 𝑐𝑖 change with z-coordinate, but not with x-coordinate
(i.e., at any z-position, across the channel we have the same values of 𝑣𝑧 and 𝑐𝑖 . (In other
models, ‘plug flow’ refers to a flat velocity profile, with concentration profiles allowed to
develop.) We first describe how to set up a model that uses the most detailed models for 𝑣𝑧
and 𝐽𝑖 from the last section (e.g., including the DBL), while adding transport in 𝑧-direction
along the membrane. The equations of the previous section for the flux of water and solutes
through DBL and membrane, which are Eqs. (8.27) and (11.24) respectively, are used in
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this calculation. In Eq. (11.24) we must replace concentration 𝑐f,𝑖 by 𝑐𝑖 , the z-dependent
concentration in the upstream channel. To evaluate ΔΠ∞ in Eq. (8.27) we use Eq. (11.18)
to find 𝑐int,𝑖 (not Eq. (11.21)!), and after multiplying 𝑐int,𝑖 and 𝑐p,𝑖 with Φ𝑖 we have the
concentrations 𝑐L and 𝑐R in the membrane which we need in Eq. (11.7) to calculate ⟨𝑐⟩
which we need in the calculation of 𝑘†F-m, see an in-line equation on p. 218.

To solve the model we set up differential balances in the upstream channel. A differential
volume balance (to be solved at each 𝑧-position) is

𝜕𝑣𝑧

𝜕𝑧
= − 𝑣w

ℎch
(11.29)

where 𝑣w is the transmembrane water velocity directed from the upstream side to the permeate
side.ii There is no accumulation term in Eq. (11.29) because volume cannot accumulate. In
Eq. (11.29) both 𝑣𝑧 and 𝑣w depend on position 𝑧.

Next we set up a mass balance for each of the solute components in the upstream channel

𝑝s
𝜕𝑐𝑖

𝜕𝑡
= − 𝜕

𝜕𝑧
𝑐𝑖𝑣𝑧 −

𝐽𝑖

ℎch
(11.30)

where in the 𝑧-direction we assume that the solutes are only convected with the water,
and thus we neglect diffusion and electromigration in this direction. This is valid because
compared to the width (height) of the channel, the channel is very long, and therefore in that
direction convection is by far the most important transport mechanism.

On the permeate side we can also solve the above volume and mass balances as well, with
a flipped sign for 𝑣w and 𝐽𝑖 . However, because of overall volume and mass balance, we do
not have to solve these differential balances on the permeate side, but can add up each type
of balance, and arrive at ∑︁

𝑘

{
ℎ𝑘 ·

(
𝑣𝑧,𝑘 (𝑧) − 𝑣𝑧,𝑘

��
𝑧=0

)}
= 0 (11.31)

and (for steady state, no accumulation)∑︁
𝑘

{
ℎ𝑘 ·

(
𝑐𝑘,𝑖 (𝑧)𝑣𝑧,𝑘 (𝑧) − 𝑐𝑘,𝑖𝑣𝑧,𝑘

��
𝑧=0

)}
= 0 (11.32)

where counter 𝑘 refers either to the upstream channel, or to the downstream, permeate,
channel. At 𝑧=0, the velocity 𝑣𝑧 in the permeate channel is zero.

iiNote that water velocities in the channel, 𝑣𝑧 , is a superficial velocity, or ‘empty tube’, velocity, i.e., it is a volume
flow rate in m3/s, divided by a total cross-sectional area. The same holds for 𝑣𝑥 that will be discussed in the
next section. Concentrations are defined per open volume.
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Now we only need to find the difference in hydrostatic pressure across the membrane at
each 𝑧-position. This is the most intricate part, because on the upstream side the pressure
goes down with 𝑧, because water must be pushed through the flow channel (Darcy’s law),
but the rate of decrease slows down towards the end of the channel because 𝑣𝑧 goes down
(more and more water has already passed the membrane to the other side), while on the
permeate side the pressure decrease ‘starts off slowly’ but then increases faster and faster
with 𝑧, because the accumulated flow of water through the membrane increases.

A typical calculation input is the pressure at the feed inlet minus in the permeate exit.
This means that the calculation cannot simply run ‘from start to finish’ but either the entire
module is ‘discretized’ and solved all at once, see Ch. 21, or we start at position 𝑧 = 0
with an estimated pressure on the permeate side, run the calculation to 𝑧 = ℓ and repeat
this calculation until the exit permeate pressure is as required. Thus we need an iterative
calculation.

Therefore, to simplify this calculation, one can assume on the permeate side a constant
pressure (independent of z-position), which is a valid assumption when pressure changes
in the permeate channel remain much less than on the upstream side. Thus only on the
upstream side we need to calculate the profile of hydrostatic pressure in 𝑧-direction, and this
will decrease with 𝑧, starting from a certain inlet value, according to Darcy’s law

𝜕𝑃h

𝜕𝑧
= − 1
ks
𝑣𝑧 (11.33)

where ks is the spacer permeability, a function of viscosity (thus temperature), spacer
porosity, tortuosity and mesh size. There is no influence of thickness of the channel, ℎf ,
here, but note that for a given fluid flow 𝜙v,f (in m3/s), the velocity 𝑣𝑧 is higher when the
channels are thinner, and as a result the pressure gradient in 𝑧-direction will be higher.

This completes the outline of a general plugflow model for a full module. With a feed
concentration, 𝑐f , and upstream hydraulic pressure, 𝑃h,∞, set to certain values at 𝑧 = 0
(relative to the pressure on the permeate side), we can run the calculation for a membrane
module with transport across the membrane described by expressions for 𝑣w and 𝐽𝑖 described
above (but not implementing Eq. (11.3) because this equation only applies to the earlier 1D
models). Thus in this general model the DBL is included as well as the gradual decrease
in pressure in 𝑧-direction through the upstream channel. This calculation predicts the total
amount of water flow through the membrane, thus water recovery, and calculates the retentate
and permeate concentrations and thus the solute rejection in the module.
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11.4 1D RO module calculation in convection-only limit
The general plug flow model of the previous section for RO with neutral solutes, can be
solved numerically without too much trouble. But nevertheless, it is interesting and relevant
to develop some simplifications. We first discuss a simplification that leads to a very elegant
result. We analyze Eqs. (11.29) and (11.30) in the steady state for the upstream channel and
combine the two, resulting in

−ℎch 𝑣𝑧
𝜕𝑐

𝜕𝑧
= 𝐽𝑖 − 𝑐 𝑣w . (11.34)

leaving out index i for the concentration of a certain solute. Now, an elegant result is obtained
when we use the high Pe-limit of the membrane model, i.e., the ‘convection-only’ limit, and
when also the DBL is neglected. This is Eq. (11.14), and when we implement it we obtain

ℎch 𝑣𝑧
𝜕 ln 𝑐
𝜕𝑧

= 𝜎𝑖 𝑣w (11.35)

and when we insert Eq. (11.29) we have

𝜕 ln 𝑐
𝜕𝑧

= −𝜎𝑖
𝜕 ln 𝑣𝑧
𝜕𝑧

(11.36)

which we can rewrite to
𝜕 ln 𝑐 = −𝜎𝑖𝜕 ln 𝑣𝑧 . (11.37)

We integrate Eq. (11.37) from the inlet of the upstream channel to any position further on,
which leads to

ln
𝑐

𝑐f
= −𝜎𝑖 ln

𝑣𝑧

𝑣𝑧,f
. (11.38)

Now we introduce a factor f which is the flowrate, 𝜙v, at some position in the upstream
channel, relative to the inlet value, 𝜙v,f . The ratio of flowrates is the same as the ratio of
velocities 𝑣𝑧 , thus 𝑓 = 𝑣𝑧/𝑣𝑧,f. This factor f starts off at 𝑓 = 1 at the inlet, and decreases to
a value 𝑓 = 1 −WR at the retentate side (outlet of upstream channel). We implement this
factor and arrive at

ln
𝑐

𝑐f
= ln 𝑓 −𝜎𝑖 (11.39)

which can be rewritten to
𝑐

𝑐f
=

(
1
𝑓

)𝜎𝑖

. (11.40)

In Eq. (11.40) we can implement that at the outlet of the upstream channel we have 𝑓 =1−WR,
and the resulting 𝑐 is now the retentate concentration, 𝑐r. Then an overall mass balance
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results in the permeate exit concentration and thus solute rejection of this module. Indeed,
combining Eqs. (III-2), (III-5), and (11.40), results in

𝑅𝑖 = 1 − 1 − (1 −WR)1−𝜎𝑖

WR
(11.41)

which shows how rejection depends solely on the reflection coefficient, 𝜎𝑖 , and water
recovery, WR. It is interesting to compare this equation for rejection in a module in the
convection-only limit, with a similar expression for the batch experiment, which is equivalent
to a module operating at very low WR, Eq. (11.16). To this end, we expand Eq. (11.41)
around low WR, resulting in

𝑅𝑖 = 𝜎𝑖 −
1
2
· 𝜎𝑖 · (1 − 𝜎𝑖) ·WR + . . . (11.42)

which shows again that in the limit of WR → 0 in the convection-only limit we have a
rejection of 𝑅𝑖 = 𝜎𝑖 , see also Eq. (11.16). But Eq. (11.42) also shows that when WR
increases, rejection drops. So a high water recovery, which in general will be relevant to
produce more freshwater, always goes at the expense of rejection (i.e., rejection goes down).
This is because of the increasing concentration on the upstream side towards the retentate
exit, and thus the solute concentration of the water that flows through the membrane further
down the module is higher than earlier on, which reduces rejection in a module.

—

Next we calculate the pressure as function of 𝑧-coordinate in the module which we need to
find out the energy input to push the water into the module, and to evaluate the potential for
energy recovery from the retentate stream. We derive a single ordinary differential equation
that describes the hydrostatic pressure on the upstream side, 𝑃h (relative to the constant
value in the permeate). We use Eq. (11.29), in which we implement that 𝜙v = 𝑣𝑧 ℎch 𝐴/ℓ,
where 𝐴 is membrane area and ℓ is the length of the flowpath between feed and retentate
(i.e., between inlet and exit), resulting in

ℓ

𝐴

𝜕𝜙v

𝜕𝑧
= −𝑣w . (11.43)

We introduce a non-dimensional coordinate in the flow direction, 𝜉, from 𝜉 = 0 at the inlet,
to 𝜉 = 1 at the outlet, and we then have 𝜕𝑧 = ℓ 𝜕𝜉. We also make use again of the factor f.
We then arrive at

𝜙v,f

𝐴

𝜕 𝑓

𝜕𝜉
= −𝑣w . (11.44)
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Next we implement an expression for 𝑣w. We implement Eq. (8.27) in Eq. (11.44) and arrive
at

𝜙v,f

𝐴

𝜕 𝑓

𝜕𝜉
= −𝑘†F-m

(
𝑃h − 𝜎𝑖 ΔΠ

)
(11.45)

with both 𝑃h and ΔΠ dependent on position 𝜉. From this point onward we use one constant
value for 𝑘†F-m → 𝑘eff

F-m. The osmotic pressure difference across the membrane is ΔΠ =

𝑐(𝑧)−𝑐p (𝑧), where c without subscript is that on the upstream side. (We neglect the DBL
in the present approach, so we can use here 𝑐(𝑧) which is the concentration in the bulk of
the channel.) Using the mass balance Eq. (III-5) we obtain 𝑐(𝑧)−𝑐p (𝑧)= (𝑐(𝑧)−𝑐f) /(1− 𝑓 ),
and now we can use Eq. (11.40) and arrive at

− SP
WR
· 𝜕 𝑓
𝜕𝜉

= 𝑝∗ − 𝜎𝑖

𝑓 𝜎𝑖

1 − 𝑓 𝜎𝑖

1 − 𝑓 (11.46)

where we introduce a specific productivity, SP = 𝜙v,prod/𝐴 𝑘eff
F-m𝑐f , where the produced water

flowrate is 𝜙v,prod = WR 𝜙v,f , and we use a dimensionless pressure given by 𝑝∗ = 𝑃h/𝑐f .
This differential equation can be solved from 𝜉=0 to 𝜉=1 for given values of SP and 𝜎𝑖 and
an estimate of 𝑝∗, resulting in a certain final value of f at 𝜉=1 (starting at 𝑓 =1 at 𝜉=0). We
adjust the estimate for 𝑝∗ until we arrive at the required value of f, which is 𝑓𝜉=1 = 1−WR.
This is now a complete model that can be numerically solved.

We can arrive at a semi-analytical expression in case of a membrane that perfectly retains
the solutes, in which case 𝐾f,𝑖 or Φ𝑖 must be zero, and we obtain

𝑓

𝑝∗ 𝑓 − 1
d 𝑓 = −WR

SP
d𝜉 (11.47)

which we integrate from 𝜉=0 to 𝜉=1, to

1
WR

ln
(1 −WR) 𝑝∗ − 1

𝑝∗ − 1
+ 𝑝

∗2

SP
− 𝑝∗ = 0 (11.48)

based on which we can semi-analytically derive 𝑝∗ for any value of WR and SP. This
dimensionless pressure 𝑝∗ increases with WR and SP. At low SP, 𝑝∗ approaches ‘from
above’ a value of 1/(1 −WR).

With pressure 𝑃h= 𝑝∗ 𝑐f now obtained, we can calculate the total energy input and energy
recovery. The energy input is the feed pressure 𝑃h times 𝜙v,f . Energy recovery is the retentate
pressure times retentate volume flow rate (which is inlet volume flow rate times 1−WR),
times the efficiency of an energy recovery device, 𝜂ERD, if that is installed. The energy input
minus energy recovery can be compared to the thermodynamic energy of separation, and we
can in this way derive the energy efficiency of module operation, see Eq. (III-12).
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11.5 2D module calculation for RO and NF

Next we extend the plugflow model by describing concentration profiles in the upstream
channel in more detail in x- and z-direction. Now the DBL is naturally included in the
model. This is an important improvement because it is an interesting question whether the
use of the analytical film layer approach is a good way to model flow in the very thin channels
of a membrane separation unit. This is a reasonable doubt because the DBL concept assumes
a layer of a certain thickness in front of the membrane through which all solutes and water
must flow in 𝑥-direction to the membrane, without any flow coming ‘sideways’ (entering
the DBL by flow in the 𝑧-direction). The DBL concept also assumes that flow is ‘fully
developed’, i.e., inside the DBL we have steady state transport in x-direction across a layer
of fixed thickness. In reality, early on in the module, the DBL may not yet be ‘formed’, with
the fresh inflow arriving in the flow channel at all distances from the membrane, entering
the layer ‘sideways’. Thus, though the DBL is a useful concept to explain many phenomena,
it may not be optimal when the aim is a precise module calculation.

Thus the DBL concept is no longer used in the more advanced model that we discuss next.
Expressions for membrane fluxes 𝐽𝑖 and 𝑣w now use a z-dependent interfacial concentration
𝑐int replacing 𝑐f . In the feed channel, we now consider concentration profiles not only in
the 𝑧-direction, but also in the 𝑥-direction. The water velocity in 𝑧-direction is in good
approximation still assumed to be invariant with 𝑥 (we still have plug flow of the water in
𝑧-direction), but just like before, the velocity in 𝑧-direction will decrease with 𝑧. This implies
we now use a differential volume balance

𝜕𝑣𝑧 (𝑧)
𝜕𝑧

= −𝜕𝑣𝑥 (𝑥, 𝑧)
𝜕𝑥

= − 𝑣w

ℎch
(11.49)

where x is a coordinate towards the membrane and z along the membrane. For a flat channel,
the plug flow profile for the water velocity in 𝑧-direction, implies that the water velocity in
the 𝑥-direction, 𝑣𝑥 , increases from zero at the backside of the flow channel (the position the
furthest away from the membrane), to a value equal to 𝑣w at the membrane interface. Thus
with 𝑥 starting at zero at the backside, and with ℎch the thickness of the channel, we have
𝑣𝑥 = 𝑣w · 𝑥/ℎch. The solute mass balance, Eq. (11.30) now changes to

𝑝s
𝜕𝑐𝑖 (𝑥, 𝑧)
𝜕𝑡

= − 𝜕
𝜕𝑧
𝑐𝑖 (𝑥, 𝑧)𝑣𝑧 (𝑧) −

𝜕

𝜕𝑥
𝐽𝑥,𝑖 (𝑥, 𝑧) (11.50)

where we include convection along the membrane (in z-direction), and a flux of solutes in
x-direction that has many contributions. In 𝑥-direction the solute (ion) flux is described by
the extended Nernst-Planck equation, Eq. (7.2), where we use 𝑣𝑥 instead of 𝑣F. Furthermore,
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there is a factor 𝜀 accounting for porosity and tortuosity. There is no factor 𝐾f,𝑖 here because
in a spacer channel there is no relevant friction of solutes with the mesh matrix (this is
different from flow of solutes through a membrane, where pores are smaller by many orders
of magnitude). Implementing Eq. (7.2) as well as 𝑣𝑥 = 𝑣w · 𝑥/ℎch in Eq. (11.50), we arrive
for steady state at

𝑣𝑧
𝜕𝑐𝑖

𝜕𝑧
+ 𝑣𝑥

𝜕𝑐𝑖

𝜕𝑥
= 𝜀𝐷𝑖

𝜕

𝜕𝑥

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(11.51)

where we also implemented Eq. (11.49). Note that 𝑣𝑥 depends on 𝑥 by increasing linearly
from zero at 𝑥 = 0 to a value of 𝑣w at the channel/membrane interface. The velocity in
𝑧-direction is independent of 𝑥 but decreases with 𝑧 according to Eq. (11.49).

For a single neutral solute, as well as for any binary salt solution, we can simplify
Eq. (11.51) to

𝑣𝑧
𝜕𝑐

𝜕𝑧
+ 𝑣𝑥

𝜕𝑐

𝜕𝑥
= 𝜀𝐷

𝜕2𝑐

𝜕𝑥2 (11.52)

independent of a gradient in electrostatic potential, 𝜙, similar to results developed in §7.3.
For a binary salt, c is the monovalent equivalent salt concentration, see p. 173, and the
diffusion coefficient D in Eq. (11.52) is the harmonic mean diffusion coefficient, 𝐷hm, see
Eq. (7.30).

Next we solve for the pressure gradient in 𝑧-direction for which we use Eq. (11.33) (for
some details see here). For the downstream compartment (permeate side), the same set of
equations can be used as for the feed channel, though we can also use the approach of the
previous model for the permeate side. Then we set the pressure on the permeate side to one
value, independent of 𝑧-position, while we neglect concentration gradients in 𝑥-direction in
the permeate channel, gradients that most likely are small. The relevant volume and mass
balances to be solved on the permeate side are then Eqs. (11.29) and (11.30). The final
element is boundary conditions in solute flux in the upstream channel at 𝑥 = 0 and 𝑥 = ℎch.
At 𝑥 = 0 (the backside of the channel; which is the very left in Fig. 11.1), the derivative
in 𝑥-direction in concentration is set to zero. At 𝑥 = ℎch, which is the channel/membrane
interface, the flux of a neutral solute is given by 𝐽𝑖 = 𝑣w𝑐int,𝑖 − 𝜀𝐷𝑖 𝜕𝑐𝑖/𝜕𝑥 |𝑥=ℎch which at
each z-position is then equal to the solute flux in the membrane, given by Eq. (11.9) (with
𝑐f,𝑖 replaced by 𝑐int,𝑖). For a binary salt this boundary condition is also valid, with 𝐽𝑖 now
the monovalent equivalent flux, 𝑐𝑖 the monovalent equivalent salt concentration, and 𝐷𝑖 the
harmonic mean diffusion coefficient. This finalizes the overview of required equations for an
RO module calculation for neutral solutes or a binary salt. For solutions with more than two
ions, then Eq. (11.52) can no longer be used, and we must set up full mass balances in at least
two of the ions, a statement that the divergence of current is zero, and combined with local

http://www.physicsofelectrochemicalprocesses.com/supp_mat/ro_2
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electroneutrality. These equations are discussed in §11.6 followed by simplified models for
binary symmetric salts. Relevant is chemical equilibrium for ions at the channel/membrane
interfaces, i.e., Donnan equilibrium, which was discussed in §2.8.

Important is the charge of ions because most solutions to be treated by RO or NF are
electrolytes. Also many organic molecules, proteins and nanoparticles, are charged, with
the charge often dependent on pH. Also the membrane is more likely charged than not.
One consequence of the charge of ions and membrane, is that the transport of each species
becomes strongly coupled to the transport of all other species. This is due to two effects.
First of all, the net current through an RO membrane is zero.iii This constraint leads to
a coupling of the fluxes of the ions through the membrane such that the flux of positive
charges becomes equal to that of the negative charges. It is the electric field that develops in
the membrane that leads to these two fluxes to be exactly the same: if –as an example– the
anions on average are slower, or have a lower concentration in the membrane, the electric
field will develop in such a way that these anions go faster, while that same electric field will
slow down the cations. The second effect of the charge of solutes and membrane, is that
at each position in the membrane there must be local electroneutrality, which implies that
the membrane charge together with all the charges of all the ions residing nearby, add up to
zero. This constraint of local electroneutrality (EN) holds at each position in the membrane.
At the outer surfaces of a membrane, i.e., at the solution/membrane edges, there is local
charge separation in the Donnan EDLs formed there (but overall the Donnan layer is also
electroneutral). For more discussion on this topic, see here. These EDLs likely do not
extend more than a few nm into the membrane, so the in the largest part of the membrane
there is local EN. Donnan equilibrium was discussed in §11.6.

11.6 RO and NF with charged membranes - Ion
transport inside the membrane

Having all equations established for the flow channel and for the interface between solution
and membrane, we can now discuss the transport phenomena of ions inside a charged
membrane. Ions and solutes are not only convected by the water which is pushed through
the membrane, there are also diffusional and migrational forces acting on them. With
‘migration’ or ‘electromigration’ we refer to the forces on the ions because of their charge
and the electric field. The electric field is the negative of the gradient in electrical potential,

iiiIn an RO module there is the theoretical possibility of a net current through the membrane at one position,
compensated by current in the other direction at another position, but this effect is likely very small.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/ro_3
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E = −∇𝑉 , or if only one coordinate 𝑥 is considered, 𝐸 = −𝑉T · 𝜕𝜙/𝜕𝑥 where we use the
dimensionless electrical potential, 𝜙, a number which can always be multiplied by𝑉T=𝑅𝑇/𝐹
which is around 25.6 mV at room temperature, to return to the electrical potential, or voltage,
𝑉 , with unit (m)V.

To describe the ionic flux 𝐽𝑖 we use Eq. (7.71) which describes transpot by convection,
diffusion and migration, including also ion friction with the membrane structure, leading
to 𝐾f,𝑖 < 1. Note that all concentrations are defined per unit pore volume, while all ion
fluxes and water velocities are defined per total ‘projected’, or geometrical, membrane area,
i.e., these are superficial velocities, not interstitial. In a steady state process, ion flux 𝐽𝑖 is
constant across the membrane (except for reactive ions, see below), and this simplifies the
(numerical) solution, but in general we must solve a differential mass balance for a volume
element of total membrane phase,

𝑝m
𝜕𝑐𝑖

𝜕𝑡
= − 𝜕

𝜕𝑥
𝐽𝑖 + 𝑅𝑖 (11.53)

where we assume a Cartesian (planar) geometry with ions flowing in only a single 𝑥-
direction. It is known that in certain unsteady, dynamic, membrane processes (e.g., for
membrane capacitive deionization with mixtures of ions), the accumulation of ions in the
membrane significantly affects the separation process, and in those cases this mass balance,
Eq. (11.53), must be solved.

Both in steady state and in a dynamic problem, in RO and NF the ionic current (or, ‘charge
flux’, 𝐽ch) through the membrane will be zero, and thus

𝐽ch =
∑︁
𝑖

𝑧𝑖𝐽𝑖 = 0 (11.54)

is one constraint, while local charge neutrality, Eq. (2.35), will also hold at each position in
the membrane. The constraint of a zero ionic current must be considered at each position in
the membrane, and can also be phrased as the divergence of ionic current being zero

𝜕𝐽ch

𝜕𝑥
=
𝜕

𝜕𝑥

∑︁
𝑖

(𝑧𝑖𝐽𝑖) = 0 (11.55)

which, interestingly, must also hold in a dynamic calculation, and also when ions are
adsorbing at/reacting with the membrane.

The reaction term 𝑅𝑖 in Eq. (11.53) above relates to ion-pair formation, or acid-base
reactions between different ions in a group of correlated species (like the three species in the
group of carbonate ions), and relates to reactions of the ions with the membrane charges.
As explained in Ch. 10 of this book, to account for the acid-base reactions between ions, we
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set up groups of ions (for instance the three types of carbonate ions form a group) and add
up both sides of Eq. (11.53) for all members of a group after which the 𝑅𝑖-terms vanish.
Mathematically, this is very advantageous when subsequently we assume the acid-base
reactions to be much faster than ion transport, such that locally there is chemical equilibrium
between the reactive species (see here for more discussion).

The description of the flux of water across the membrane as function of pressure is
discussed in §8.1 and when for all ions we can assume 𝐾f,𝑖 = 1, water flux can be based
on Eq. (8.14) or (8.20) (which for RO are the same except that Eq. (8.20) assumes equal
diffusion coefficients, and Eq. (8.14) does not), or, when 𝐾f,𝑖 ≠1 but all 𝐾f,𝑖’s and 𝐷𝑖’s are
the same for all ions, we can use Eq. (8.20). Otherwise we have to return to the general
equations (8.2) and (8.8).

11.7 RO and NF with charged membranes - analytical
solutions

In this section we present (semi-)analytical solutions of the transport rate of ions through
charged membranes. Here we only discuss a 1:1 salt with cations and anions having the
same diffusion coefficient and the same 𝐾f,𝑖 and Φ𝑖 . For these assumptions, the extended
Nernst-Planck equation can be set up for both ions, combined with electroneutrality and the
zero-current constraint, and then we arrive for salt flux through the membrane at Eq. (8.40),
which we reproduce here replacing 𝐽salt by 𝐽,

𝐽 =
𝐾f,𝑖

2

{
𝑣w

(
𝑐T,m −

𝑋2

𝑐T,m

)
− 𝑘m,𝑖

𝜕𝑐T,m

𝜕𝑥

}
. (8.40)

It is possible to solve Eq. (8.40) analytically, with J implicitly related to the 𝑐T,m’s on either
side, to 𝑣w, etc., but the result is rather cumbersome. Thus we follow a different approach.
We first integrate Eq. (8.40) to

𝐽 =
𝐾f,𝑖

2

{
𝑣w

(〈
𝑐T,m

〉
− 𝑋2〈

𝑐T,m
〉† ) − 𝑘m,𝑖Δ𝑐T,m

}
. (8.41)

which is Eq. (8.41) in Ch. 7. Now we only must find the two averages
〈
𝑐T,m

〉
and

〈
𝑐T,m

〉†.
The first average,

〈
𝑐T,m

〉
, is the average value of 𝑐T,m in the membrane, which has a value

between a. the average of the 𝑐T,m’s at the two sides of the membrane, which will be the case
at low water flow rate, and b. a value close to the upstream-side value of 𝑐T,m, which happens

http://www.physicsofelectrochemicalprocesses.com/supp_mat/ro_5
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at high water flow rates. The average with index † is given by 1/
〈
𝑐T,m

〉†
=

∫ 1
0 1/𝑐T,m d𝑥.

To find these two averages, we make use of 𝜕𝐽/𝜕𝑥=0 after which Eq. (8.40) leads to

𝜕2𝑐T,m

𝜕𝑥2 = Pem

(
1 + 𝑋2

𝑐2
T,m

)
𝜕𝑐T,m

𝜕𝑥
. (11.56)

Interestingly, Eq. (11.56) immediately shows that with positive water flow rate, and with 𝑐T,m

decreasing through the membrane, thus a negative gradient, that the second derivative of
𝑐T,m is also negative, i.e., the decrease in concentration always goes faster and faster towards
the downstream side of the membrane. We numerically solve Eq. (11.56) at gridpoints 1
. . . N and then easily calculate the two averages that we need in Eq. (8.41) by summation
(trapezoid rule), see Ch. 21. We combine this result with Donnan equilibria on the two
boundaries, an expression for the DBL layer, and the dead end condition, and in this way
calculate J for any given 𝑣w, X, 𝑐f , etc. The relationship between 𝑣w and hydrostatic pressure
across the membrane, Δ𝑃h,∞, we discuss below.

First we discuss two approaches, a semi-analytical approach, and a fully analytical solution
for rejection as function of 𝑐f and 𝑣w. These approaches used the result that full numerical
calculations that could fit real RO data, see Fig. 11.3, showed linearly decaying profiles
for 𝑐T,m across the membrane. Then the average ⟨𝑐⟩ is the average of the two 𝑐’s at the
two membrane edges, 𝑐1 and 𝑐2, while for the ‘inverted average’ we then obtain ⟨𝑐⟩† =

(𝑐1 − 𝑐2) /ln (𝑐1/𝑐2). This model gives results that are very close to the full model that uses
Eq. (11.56). Replacing the average ⟨𝑐⟩† by the regular average ⟨𝑐⟩ only leads to a small
change, and can also be implemented. For experiments where 𝑐p is much lower than 𝑐int, the
DBL equation can be simplified to Eq. (11.20). To obtain a simple analytical equation we
leave out the convection and migration terms in Eq. (8.41), which we find leads to an error
of around 5 to 10%, but then we have the compact result that salt flux is

𝐽 = −½𝑘m,𝑖𝐾f,𝑖Δ𝑐T,m (11.57)

which we can combine with Eq. (12.29) and rewrite to

𝐽 = 𝑃

(√︃
𝐶2 + 𝑐2

int −
√︃
𝐶2 + 𝑐2

p

)
(11.58)

where 𝑃 = 𝑘m,𝑖𝐾f,𝑖Φ𝑖 is a salt transfer coefficient with unit L.m-2.h-1 (from now on
abbreviated as LMH), and where we also introduce a charge parameter, 𝐶 = |𝑋 |/2Φ𝑖 ,
that has unit mM. Expansion of Eq. (11.58) for low C is tricky except for the first term which
is

𝐽 = 𝑃
(
𝑐int − 𝑐p

)
. (11.59)
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For the ‘dead end’ experiment (low water recovery), based on Eq. (11.58), and if we use
𝑐p ≪ 𝑐f and Φ𝑖𝑐p ≪ |𝑋 |, we arrive at

𝑅𝑖 = 1 − 𝑃

𝑣w

(√︃
𝛼2 + exp (2𝑣w/𝑘dbl) − 𝛼

)
, 𝛼 =

𝐶

𝑐f
. (11.60)

At high 𝑐f , Eq. (11.60) predicts a limiting rejection independent of 𝑐f and independent of C

𝑅𝑖 = 1 − 𝐵

𝑣w
exp (𝑣w/𝑘dbl) (11.61)

where B is a traditional salt permeability, which in this limit is the same as P. However,
below a certain 𝑐f , according to Eq. (11.60) rejection is no longer independent of 𝑐f . Even
though Eq. (11.61) uses the same parameters as Eq. (11.26), they have a very different
derivation. As long as rejection is better than 90%, the difference between the two equations
is small, less than 10% difference in passage; and much less at the point where rejection is
at a maximum. Series expansion of Eq. (11.60) leads to

𝑅𝑖 = 1 − 𝑃

𝑣w
· 𝛼 ·

∑︁
𝑛=1...∞

𝑄n

𝑛! · 𝛼2𝑛 · 𝑒
2𝑛 𝑣w
𝑘dbl (11.62)

where the prefactor is 𝑄n =Π 𝑗=1...𝑛𝑞 𝑗 , where 𝑞 𝑗 = 𝑞 𝑗−1−1 and 𝑞1 =½. If we only take the
first element in this series we arrive at

𝑅𝑖 = 1 − 𝑃Φ𝑖𝑐f

2𝑣w 𝐶
𝑒

2𝑣w
𝑘dbl (11.63)

which is the ‘good co-ion exclusion limit’ that we obtain at high charge or low 𝑐f . This limit
will also be discussed further on.

As we show in Fig. 11.3A, this model accurately describes a large dataset of RO
with a commercial seawater desalination membrane (Dupont SW30-HRLE), with feed salt
concentration from 50 to 600 mM, reproducing that in the higher salinity range data of
rejection overlap, while rejection increases with further lowering 𝑐f when 𝑐f is less than
200 mM. Data are presented as passage, 𝑃𝑖 , which is 100% minus rejection, 𝑅𝑖 . Data are
very well described when we use 𝑘dbl = 110 LMH, 𝑃 = 0.39 LMH, and 𝐶 = |𝑋 |/2Φ𝑖 = 58
mM. If we use an estimate of membrane charge X of a few mM, say 𝑋 = 3 mM (based on
results in Kimani et al., 2022), the non-electrostatic partition coefficient is Φ𝑖 ∼ 0.03. If
we then assume a membrane thickness of 𝐿m =100 nm, and take a salt diffusion coefficient
of 𝐷𝑖 = 1.6 ·10−9 m2/s, we derive for 𝐾f,𝑖𝜀 a value around 2.5 ·10−4, i.e., a membrane
reduction factor (mrf) of the order of 4,000, definitely a very high number compared to
values earlier derived for electrodialysis membranes, see p. 166. These results underpin that
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Fig. 11.3: Data and theory for desalination of water containing NaCl at various concentrations, for
different transmembrane water fluxes. Theory based on Eq. (11.60). A) Results for passage, P, which
is 100% minus rejection. B) Water flux versus applied pressure.

the membrane is charged, and that charge must be included in the theory, because theories
based on neutral solutes do not show any dependency of rejection of feed concentration. To
recalculate from membrane parameters P and C to the classical salt permeability B, we must
match Eq. (11.60) and Eq. (11.61) with one another for one reference salt concentration
and water flowrate for which we choose 𝑐f = 500 mM and 𝑣w = 40 LMH. We then obtain
𝐵=0.36 LMH.

To find the associated relationship between applied pressure and water flux, we use
Eq. (8.3) and insert the simplified salt flux equation of the present section, Eq. (11.57) (thus
we assume in the membrane c changes linearly, and ⟨𝑐⟩ = ½ (𝑐1 + 𝑐2)). This will lead
to a modification of Eq. (8.47) where the term within (. . . )-brackets becomes 1/𝑘F-m +〈
𝑐T,m

〉
/𝑘m,𝑖 . Eq. (8.47) only describes the pressure change within the membrane, so we

must implement mechanical equilibrium at both membrane-solution edges which leads to
Δ𝑃h,m = Δ𝑃h,∞ + 𝑐R

T,m − Πp −
(
𝑐L

T,m − Πint

)
, and we then arrive ativ

Δ𝑃h,∞ + Δ𝑐T,m − Πp + Πint = −
(

1
𝑘F-m

+
〈
𝑐T,m

〉
𝑘m,𝑖

)
𝑣w +

(
1 − 𝐾f,𝑖

)
Δ𝑐T,m (11.64)

ivNote: Δ𝑃h,∞ < 0. Indices L and R refer to the left and right side of the membrane. The left side, L, is the
upstream side, where on the outside of the membrane we have salt concentration 𝑐int, while the right side, R,
refers to the permeate, where we have Πp. We use here osmotic pressure Π which for an ideal symmetric salt
solution equals 2𝑐∞.
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which becomes

Δ𝑃h,∞ + 𝐾f,𝑖Δ𝑐T,m − Πp + Πint = −
(

1
𝑘F-m

+
〈
𝑐T,m

〉
𝑘m,𝑖

)
𝑣w . (11.65)

Because we can reasonably assume that 𝐾f,𝑖Δ𝑐T,m is much smaller than the other terms
combined, we can leave out this term and arrive at

𝑣w =

(
1
𝑘F-m

+
〈
𝑐T,m

〉
𝑘m,𝑖

)−1 (
|Δ𝑃h,∞ | − |ΔΠm |

)
(11.66)

where ΔΠm is the osmotic pressure difference directly across the membrane, between ‘int’
and ‘p’. Comparison with experiments, see Fig. 11.3B, showed that the entire second part
within (. . . )−1is small compared to the constant factor 1/𝑘F-m which simplifies Eq. (11.66)
to the classical result

𝑣w = 𝐴 ·
(
|Δ𝑃h,∞ | − |ΔΠm |

)
(11.67)

where dimensional pressures, 𝑃 and Π, expressed in Pa or bar, are pressures 𝑃 and Π

multiplied by RT. In Eq. (11.66), A is water permeability, in the theory the same as 𝑘F-m/𝑅𝑇 .
Eq. (11.67) can be combined with Eq. (11.21) if we make the assumption that the osmotic

pressure only has an ideal contribution, i.e., that Π ∼ Πid, where Πid = 2𝑐 in case of a
symmetric salt solution. We then obtain

𝑣w = 𝐴 ·
(
|Δ𝑃h,∞ | − Πf 𝑅𝑖 𝑒

𝑣w/𝑘dbl,𝑖
)

(11.68)

which is an equation only valid when the dead-end condition, Eq. (11.3), also applies, and
when osmotic pressure does not have other than ideal contributions.

If we use Eq. (11.68) to describe the data as presented in Fig. 11.3 the osmotic pressure
that ‘pushes back’ is overestimated, and thus the pressure at which 𝑣w starts to increase
(intersection point with x-axis) is overestimated, for instance at 𝑐f = 600 mM by about
4 bar. We therefore implement the correction discussed in Ch. 4 due to electrostatic ion-ion
interaction, and write Π at the membrane upstream surface (‘int’) as a summation of an
ideal term, Πid = 2𝑐int, and a contribution due to electrostatic interactions. This correction
can be implemented by multiplying the ideal osmotic pressure, 2𝑅𝑇𝑐int, with the correction
1 − 0.015 3

√
𝑐int (𝑐int in mM). At room temperature and 𝑐f =600 mM this correction leads to

a reduction in osmotic pressure of 4 bar. Furthermore, because rejections are very high, we
can assume 𝑐p=0. We then arrive at the equation we use for pressure versus water flow rate
in the dead-end experiment (limit of low water recovery)

𝑣w = 𝐴 ·
(
|Δ𝑃h,∞ | − 2𝑅𝑇𝑐int

(
1 − 0.015 3

√︃
𝑐mM

int

))
, 𝑐int = 𝑐f exp (𝑣w/𝑘dbl) . (11.69)
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As Fig. 11.3B shows, a very good fit of theory to the data is obtained, certainly for
𝑐f =200 mM and higher. For water permeability we derive 𝐴=2.2 LMH/bar.

—

In the limit that the charge factor C is high, much larger than the salt concentration on
both sides of the membrane, then we will be operating in the good coion exclusion limit.
Then the concentration of counterions in the membrane (‘ct’) is close to the fixed membrane
charge, |𝑋 |, and the coion (‘co’) concentration in the membrane is much smaller. We can
then derive for salt fluxv

𝐽 =
2𝑣w

|𝑋 | 𝐾f,𝑖 𝑐int 𝑐p Φ
2
𝑖

sinh
(
𝑣w/𝑘m,𝑖 + ln

(
𝑐int/𝑐p

) )
sinh

(
𝑣w/𝑘m,𝑖

) . (11.70)

In the derivation of Eq. (11.70) use is made of the assumption 𝑐m,co ≪ 𝑐m,ct and thus
𝑐m,ct ∼ |𝑋 |. Eq. (2.46) then leads to 𝑐m,co = Φ2

𝑖
𝑐2
∞, 𝑗/|𝑋 | at each side of the membrane. The

derivation of Eq. (11.70) assumes equal diffusion coefficients in the membrane and an equal
partition function, Φ𝑖 . Eq. (11.70) does not make an assumption on the value of 𝑐p relative
to 𝑐f . The equation can be combined with an expression for the DBL, Eq. (11.18), and with
the dead-end condition, Eq. (11.3), which is only valid in case of a low water recovery. If
we assume 𝑐p ≪ 𝑐f , we then arrive at Eq. (11.63).

—

Finally, an interesting semi-analytical approach for RO is the convection-only limit by
Dresner (1972) who shows that in a membrane concentrations are constant in the firt part of
the membrane and only drop off near the permeate side. The field strength, 𝐸 = −𝜕𝜙/𝜕𝑥,
is constant in this first region. This constant-𝑐/𝐸 region is located near the upstream side,
progressing until a position about a distance 𝐷∗m,𝑖/𝑣w away from the downstream edge of
the membrane. It is for thick membranes that this model can be relevant. In that case it
is possible that most of the membrane is in the constant-concentration regime, and then all
fluxes in the membrane can be calculated based on the composition of the upstream side
of the membrane, making use of an extended Nernst-Planck equation where concentration
gradients are neglected, which based on Eq. (7.71) is

𝐽𝑖,Dresner = 𝐾f,𝑖

(
𝑐𝑖𝑣w − 𝑘m,𝑖𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
. (11.71)

vBiesheuvel et al., J. Membr. Sci. Lett. 2, 100010, 2022.
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In this model by Dresner, many physical-chemical details can be easily included, also
including all of the acid-base reactions and ion-pair formations between all the ions. All
partition effects (different between ions) can be included, as well as the various constraints of
local electroneutrality and zero current, and the adsorption of ions to the membrane structure
as described by a Langmuir isotherm or similar approaches. The Dresner-model leads to
a set of algebraic equations without having to consider any concentration gradients across
the membrane and the numerical solution thereof. In our view this is a very interesting
modelling framework to further develop and test.





12
Electrodialysis

Membranes can desalinate water in two ways: by applying a pressure difference and thereby
pushing the water through the membrane, as discussed in the previous chapter, and by
applying a current across a charged membrane. In this second method, called electrodialysis
(ED), counterions are the main species travelling across a membrane and they carry most
of the ionic current. In ED, cells are assembled with one membrane that transfers cations
and one membrane that transfers anions, and thereby it is possible to remove both anions
and cations from a flow channel and thus desalinate water. This process of electrodialysis is
discussed in this chapter.
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12.1 General introduction to electrodialysis

In electrodialysis (ED), cell pairs are constructed with one anion-exchange membrane
(AEM), one cation-exchange membrane (CEM), and two flow channels (spacer channels),
and many of these cell pairs are combined into an ED stack, see Fig. 12.1. Electrical current
is supplied to one of the end-electrodes, and this current runs through all of the membranes
and channels and exits the stack on the other end-electrode. Faradaic reactions take place at
the end-electrodes to convert the electronic current into an ionic current. Averaged over a
cell cross section, the ionic current is the same at each position between the end-electrodes.
All cell pairs behave in the same way. Just like NF and RO, ED operates in steady-state, i.e.,
if nothing goes wrong, the process can in principle continue forever.

In ED, in a cell pair, one channel is for water that will be desalinated, thus upon flowing out
of the cell the water has become the freshwater or ‘diluate’. This channel is called the diluate
channel or diluate compartment. The other channel is for the water that becomes increasingly
concentrated; here ‘concentrate’ is produced and this is the concentrate compartment. The
vocabulary used in RO and NF –of feed, retentate and permeate– is not used in ED, because
in ED the water remains in the channel, and freshwater is produced by removing salt ions
from the water.

In ED, if each channel is fed with the same water flow rate, then the water recovery, WR,
will be 50%, i.e., of all the incoming water, 50% becomes freshwater (diluate) and 50%
concentrate.i To increase WR, we can increase the water flow rate in the diluate channels
(the channels that produce freshwater) relative to that in the concentrate channels. Note that
there is always some water flow through the membranes (to the concentrate side), and thus
water recovery based on exit streams is slightly less than water recovery based on the inflow.

Membrane transport in ED is described by the exact same physical laws and equations as
presented in Ch. 11 to describe RO and NF. The same equations are used for the transport of
ions and other molecules, as well as for the flow of the fluid, the water. The same equations
are used both in the membranes and in the spacer channel, and also in the Donnan interfacial
layers the equations are the same for these different membrane processes.

A sole difference is that in ED the ionic current is no longer zero, but is now equal
to the current applied to the ED stack. The divergence of current is still zero, i.e., if we
only have one direction in a planar (Cartesian) geometry, the ionic current does not change
with position. In ED, the pressure difference across a membrane is now close to zero.
Therefore, in an ideal situation the transmembrane water flow 𝑣w can be low, and then in a

iWater recovery, WR, is defined as the volume flow of freshwater produced, over total flow rate fed to a desalination
device. See p. ?? for a detailed discussion of definitions of water recovery.
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Fig. 12.1: Schematic view of an electrodialysis stack showing multiple cell pairs, each consisting of
two flow channels, one where diluate (freshwater) is produced, the other producing concentrate. Here
two cell pairs are drawn, but a practical stack contains hundreds of cell pairs.

first approximation set to zero. Thus, the 𝑥-component to the velocity in the spacer channel
is then zero, and therefore the 𝑧-component to the velocity is unchanging, in both 𝑥- and
𝑧-direction; see Fig. 12.2 for a description of the 𝑥-coordinate (towards the membrane) and
the 𝑧-direction (along the membrane).

Water flow through the membranes in ED. It must be noted that the assumption of no
water flow through ED membranes is only an ideal case. In reality there are two driving
forces for water to flow to the high-concentration side, first of all because the flow
of counterions through the ion-exchange membranes drags water along, and secondly
when a concentration difference develops between the two sides of the membrane, the
hydrostatic pressure gradient in the membrane will be downward towards the concentrate
side, thereby also pushing the water to the concentrate side, see §8.2 and §8.3. Thus
there certainly is transmembrane water flow in ED. Also the water that is in the hydration
shell of the ions is –as part of the hydrated ion– transported to the high-concentration
side. Of these causes for water flow to the concentrate side, the the osmotic effect
is not related to current but is due to a concentration difference that develops across
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Fig. 12.2: Schematic view of an ED cell pair with typical concentration profiles across the channel
from channel midplane to membrane. The simplified geometry depicted here, where only half of
each channel needs to be considered, is applicable in case of a binary symmetric salt solution with
ions of equal diffusion coefficients, and membranes that are equal in all regards except for the sign of
membrane charge.
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the membrane. This effect can be reduced by making the membrane thicker, but the
other effects are still directly proportional to the counterion flux and thus independent
of thickness. We can aim for a design where on the concentrate side the hydrostatic
pressure is higher than on the diluate side, and this will push back the flow of water.
(For ultrathin membranes (less than 1 𝜇m thickness) placed between two solutions with
different salinities, water flow by osmosis will be very significant even when there is no
current. See §8.3 for a related discussion on osmosis and electro-osmosis.)

Practical differences of ED in comparison to RO are that membranes in ED tend to be
much thicker than in RO; instead of 100–200 nm in RO, the membrane thickness in ED is now
10s of microns, up to ∼ 200 𝜇m. This thickness is necessary to avoid coion diffusion (which
is always in the wrong direction, opposing salt removal from freshwater to concentrate).
Thick membranes help because coions flow through the membrane to a large extent because
of diffusion, and the gradient in concentration across the membrane that determines this
diffusional flux will be lower for thicker membranes. This gradient and thus the flux of
coions will go down by a factor of 10 when a membrane becomes 10× thicker. Thus, in ED
and related current-driven membrane processes, one cannot make the membranes too thin.

The fixed membrane charge density in commercial ED membranes is as large as |𝑋 |=5 M
and higher (𝑋 defined per unit open pore volume). To compare, in RO the membrane charge
𝑋 is more typically a few mM. The proton-conducting material Nafion© used for fuel cells
is an ion-exchange material with a moderately high charge density of |𝑋 | ∼2.7 M.

Geometrically, whereas in RO the flow channel only has a membrane on one side, in ED
the channel has membranes on both sides, where one membrane is an AEM, the other a
CEM.ii Whereas in RO there is a zero flux of solutes and water on one side of the flow
channel, now in ED such mathematical simplifications are not possible, and in general any
theoretical model for an ED cell pair must include two flow channels and two membranes.
Only in a simplified calculation can we use the midplane in each channel as a symmetry
plane. This is possible for a symmetric salt solution and when the two membranes have
exactly equal properties (except that one is negatively charged and the other positive) and
the two ions have the same diffusion coefficients.

In RO modelling, significant attention is given to the spacer channel on the feed
side because concentration polarization (CP) in the diffusion boundary layer (DBL)
leads to an increased concentration of solutes on the channel/membrane interface, which
increases passage of solutes, and increases the osmotic pressure and thus reduces the

iiIn a process called ‘shock electrodialysis’ both membranes are CEMs or both are AEMs.
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transmembrane water flow. In ED there is also much interest in concentration polarization,
i.e., the concentration of ions at the channel/membrane interface compared to an average
concentration in a channel. In ED, however, different from RO, in the channel that is the
most critical, which is the diluate channel, the concentrations do not increase towards the
membrane, but instead go down, while in the concentrate channel, concentrations are higher
at the membrane interface than in the center of the channel, see Fig. 12.2.

The decreasing salt concentration towards the membrane in ED is important because in
the diluate channel concentrations are low, the more so the further we are away from the
entrance, and decrease further towards the membrane. Thus the resistance across the diluate
channel will be larger than in the concentrate channel (i.e., the voltage drop over the channel
for a given current) and this resistance becomes even larger when the salt concentration
drops to very lower values near the membrane. Furthermore, when for one of the ions the
concentration at the solution/membrane interface decreases so much that it hits zero, the
limiting current, LC, is reached, at least for this ion.iii When this point is reached, theory
based on an equilibrium Donnan model for the EDL structure at the solution/membrane
interface is predicted to break down and we must revert to a theory based on the Poisson
equation including ion transport in a region of several 𝜇m’s beyond the solution/membrane
interface. This wider region is called the extended space-charge (SC) region. Theory that
includes the extended SC region allows the current 𝐼 to go beyond the LC.

Other mechanisms also enable operation for 𝐼 > LC without the concept of the extended
SC region. The first mechanism is the reaction of water to H+ and OH– , i.e., water self-
dissociation, which generates additional ions that carry the current. The second mechanism
is when 𝐼 → LC that the pH in the membrane changes to very high/very low values in such
a way that the membrane charge is neutralized. For instance, for a negative membrane pH
in the membrane becomes very low and a protonation reaction leads to a reduction of the
charge of the membrane. As a consequence, the membrane becomes more leaky for coions
which enables a higher current, and the extended SC region does not develop. Thus the
equilibrium Donnan model remains valid. This might sound as a positive effect, but it is
not, because the extra current is ineffective because it is carried by coions which go in the
wrong direction (to the diluate channel). Thus these extreme pH values lead to ‘current
induced membrane discharge’ as a mechanism that makes 𝐼 > LC possible in ED, while
the equilibrium Donnan model remains applicable (Andersen et al., Phys. Rev. Lett. 109
108301, 2012).

iiiBecause of various effects, as discussed in this and the next paragraph, the concentration will in the end never
reach zero. Thus, with LC is implied the calculated final current when the concentration at the membrane is
predicted to drop to zero, based on a theory that does not include these extra effects.
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In bipolar membranes, which are membranes consisting of an anion-exchange layer in
direct contact with a cation-exchange layer, similar (over-)limiting currents are observed
with the concentration of one of the participating ions going to zero at one of the interfaces.
Interestingly, now this limit is due to the concentration of one of the ions going to zero not
outside the membranes, but at a point inside one of the membrane layers near the junction
where the two layers are in contact (Tedesco et al., pers. comm., 2020).

In this chapter we discuss the classical ED geometry with two channels, and one AEM
and one CEM, and use the equilibrium Donnan model at the channel/membrane interfaces.
We first consider the case without water flow through the membrane and later on present
theoretical calculations that do include this effect.

12.2 The Sonin-Probstein approach for electrodialysis
Very similar to the module design for RO and NF, also in ED we have thin flow channels,
or spacer channels, placed adjacent to a membrane. Through these layers the water flows
along the membrane. In ED, there are actually two different membranes, CEMs and AEMs,
placed in an alternating manner in an ED stack. Thus each channel is sandwiched between
one AEM and one CEM.

In ED, while water flows in the 𝑧-direction through these channels along the membranes,
by various transport mechanisms ions are moving sideways, across the narrow channel in
𝑥-direction and through the membranes. In 𝑧-direction we only consider convection, and
because of that we can numerically solve the transport equations in such a way that we
sequentially step through the 𝑧-domain where we solve all equations (relating to transport in
the 𝑥-direction) at a certain 𝑧-coordinate, and then we move to the next 𝑧-coordinate.

In the Sonin-Probstein (SP) approach (Sonin and Probstein, 1968; Tedesco et al., 2016–18)
we solve the entire 𝑥-directional domain of a spacer channel by the same physical description,
without making the assumption of a bulk phase that is adjacent to a diffusion boundary layer.
Instead, in the SP-approach, we solve the same equations at each position in the channel,
and we include how at each 𝑥-position there is flow of water and ions in 𝑧-direction, not only
‘outside the DBL’ but at each 𝑥-coordinate, right up to the membrane. Any flow pattern
for the 𝑧-component of the fluid velocity can be considered, such as a parabolic dependence
of 𝑣𝑧 on position 𝑥, where velocity 𝑣𝑧 is zero at the membrane edge, and it increases to a
maximum in the center of the channel. However, in ED the flow channels are filled with
spacer mesh material that promotes mixing and this leads to a situation where a flat velocity
profile may be more realistic. We also find that calculations with parabolic or flat velocity
profiles by and large give the same result. Thus, we suggest to assume ‘plug flow’, i.e., we
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assume that the 𝑧-component of the velocity, 𝑣𝑧 , is independent of 𝑥, just as we assumed for
the feed channel in an RO module, see Ch. 11. Note, that now 𝑣𝑧 is independent of 𝑥, does
not imply that concentrations are also invariant with 𝑥! Instead, the profiles of 𝑐(𝑥) is the
topic of much to follow in this chapter.

At each (𝑥,𝑧)-coordinate we can solve the component mass balance, Eq. (11.51) from
Ch. 11. Note that this equation includes the flow of water through the membrane (water
velocity 𝑣w at the membrane surface) and thus includes how 𝑣𝑥 gradually changes with 𝑥
towards the value 𝑣w at the channel/membrane interface, while 𝑣𝑧 decreases with 𝑧 when
water flows out through the membrane. Let us simplify this model and neglect membrane
water flow from this point onward. This implies that 𝑣𝑥 is zero at each 𝑥-position, and based
on Eq. (11.29) we can also conclude that 𝑣𝑧 is now invariant both with 𝑥 and 𝑧. We now
obtain the ion mass balance that we solve at each (𝑥,𝑧)-coordinate, Eq. (11.51) with 𝑣𝑥 =0,

𝑣𝑧
𝜕𝑐𝑖

𝜕𝑧
= 𝜀𝐷𝑖

𝜕

𝜕𝑥

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(12.1)

which we can further simplify when we have a binary salt solution (i.e., only one anion and
one cation), see §7.7,

𝑣𝑧
𝜕𝑐

𝜕𝑧
= 𝜀𝐷hm

𝜕2𝑐

𝜕𝑥2 (12.2)

where 𝑐 is the monovalent equivalent (m.e.) salt concentration, 𝑐 = 𝑐+/𝑧+ = 𝑐−/|𝑧− |, see
Eq. (7.29), and 𝐷hm is the harmonic mean diffusion coefficient, see Eq. (7.30). From this
point onward we often leave out index ‘hm’, and often leave out the factor 𝜀 as well; it should
be straightforward to see where this index and factor can always be included again.

We solve Eq. (12.2) using the method of sequential steps, i.e., we use the implicit Euler
method to discretize in the 𝑧-direction, from a coordinate 𝑧 𝑗-1 to 𝑧 𝑗 , after which we arrive at

𝑐 𝑗 (𝑥) − 𝑐 𝑗-1 (𝑥)
𝜏

= 𝐷
𝜕2𝑐 𝑗 (𝑥)
𝜕𝑥2 (12.3)

where time 𝜏 is the length of the step in 𝑧-direction, divided by the water velocity in 𝑧-
direction, 𝑣𝑧 . For a sequence of such steps in 𝑧-direction, we can numerically solve Eq. (12.3),
where we discretize the right side of Eq. (12.3) using the central difference approximation.
We can now completely solve at each 𝑧-position for all x-positions simultaneously where
the problem is formulated as a set of algebraic equations, and then we move to the next
𝑧-position.

An important point we address further on is how the current is distributed over the channel
length. Typically more current flows early on in a channel and less further down towards
the exit. The easiest is when we can assume the cell pair voltage, 𝑉cp, is the a certain preset
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value, thus the same at each z-position. We run the calculation finding the profile of current
I with position z, average, and in this way find the total stack current density for the imposed
value of 𝑉cp.

Interesting analytical expressions are obtained when we now assume there is one single
step in 𝑧-direction, as if we immediately step from the entrance to the exit of the cell. This
will be a valid approximation for a relatively short cell, or when the degree of desalination
is low. Then 𝑐 𝑗-1 equals the inlet concentration 𝑐in, and 𝜏 is the channel residence time,
given by 𝜏 = 𝑉c/𝜙v where 𝑉c is the channel volume and 𝜙v the volumetric flow rate.iv

Concentration 𝑐 𝑗 is now the effluent concentration (at position 𝑥), which we will denote by
𝑐(𝑥) from this point onward.

For this ‘single step’ case, Eq. (12.3) has the analytical solution

𝑐(𝑥) = 𝑐∗ + (𝑐in − 𝑐∗)
(
1 − cosh (𝜑 · 𝑥/ℎ)

cosh 𝜑

)
(12.4)

where 𝑐∗ is the salt concentration at the channel/membrane edge (at 𝑥 = ℎ), and where
𝜑2 = ℎ2/(𝜏𝐷).v To derive Eq. (12.4), we assumed that at the midplane we have 𝜕𝑐/𝜕𝑥 |𝑥=0.
In Eq. (12.4), 𝑥 runs from the midplane of the channel towards the membrane (where 𝑥=ℎ).
Note that ℎ is the half-thickness of the channel, thus the width of the channel is 𝛿=2ℎ. The
concentration at the midplane follows from Eq. (12.4) when we implement 𝑥=0.

At the edge of the channel we can evaluate the flux 𝐽, defined as

𝐽 = −𝐷 · 𝜕𝑐/𝜕𝑥 |𝑥=ℎ (12.5)

and combination with Eq. (12.4) results in

𝐽 =

√︂
𝐷

𝜏
(𝑐in − 𝑐∗) tanh 𝜑 (12.6)

which for a wide enough channel, i.e., for 𝜑≳2, simplifies to Eq. (7.13),

𝐽 =
√︁
𝐷/𝜏 (𝑐in − 𝑐∗) .

In general, for symmetric and asymmetric salts, this flux at the boundary of the channel can
be recalculated to a current 𝐽ch and transport numbers 𝑇+ and 𝑇− by Eq. (7.41).

ivAll fluxes and velocities are superficial velocities, i.e., the velocity and flux as if the spacer material were not
there. Thus, the volume 𝑉c is the empty volume of a channel, i.e., the product of cross-sectional area and
channel width.

vNote that 𝜑 is not the same as 𝜙, the electrostatic potential.
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From this point onward we consider a 1:1 salt with both ions having the same diffusion
coefficient. There can be more types of ions, but we must assume they all have the same
diffusion coefficient. Then we can use Eq. (7.44) (with 𝑧=1) and arrive at

𝐽ch = 𝐼/𝐹 = 2/𝜆 · 𝐽 (12.7)

and in this way connect the above equations to the current 𝐼. In Eq. (12.7) the current
efficiency, 𝜆, arises, a parameter that quantifies ion transport in a 1:1 salt solution, and which
relates to ion transport numbers according to 𝜆 = 𝑇+ − 𝑇− , see §7.2. (All of this assumes
there is one cation and one anion). For a 1:1 salt, this current efficiency is also the ratio of
total ions flux through a membrane, 𝐽m,ions = 𝐽m,+ + 𝐽m,− , over current density, 𝐽ch, because

𝜆 = 𝑇+ − 𝑇− =
𝐽+
𝐽ch
+ 𝐽−
𝐽ch

=
𝐽m,ions

𝐽ch
. (12.8)

In ED the current efficiency of membrane transport is between -1 and +1.vi. Combination
of Eqs. (12.6) and (12.7) leads to

𝐼 =
2𝐹
𝜆

√︂
𝐷

𝜏
(𝑐in − 𝑐∗) tanh 𝜑 =

𝐹𝛿

𝜆𝜏
(𝑐in − 𝑐∗) 𝜂 (12.9)

where 𝜂=1/𝜑! ·tanh 𝜑 is the effectiveness factor for desalination. This factor has the limits
𝜂→ 1 for 𝜑→ 0, and 𝜂→ 1/𝜑 for 𝜑→∞ (in practice 𝜑 > 2 suffices to be in this second
limit). Eq. (12.9) shows a relationship for current density across a channel in ED as function
of inflow salt concentration, the salt concentration at the channel/membrane interface, 𝑐∗,
and factors relating to channel size and water flow rate. This equation, based on the Sonin-
Probstein approach, is analytical and does not include the concept of a DBL of a certain
thickness with a certain transfer coefficient of which it is assumed that ions only move
across it from a core bulk phase to the membrane. Instead, this SP model equation includes
convective flow of salt along the membrane at all 𝑥-positions, and thus the concentration
profiles depend on fluid residence time and channel volume, which are key properties of
design and operation of an ED process.

For 𝜑 > 2, i.e., for a wide enough channel relative to the product of residence time and
diffusion coefficient, Eq. (12.9) simplifies to

𝐼 = 2𝐹/𝜆
√︁
𝐷/𝜏 (𝑐in − 𝑐∗) . (12.10)

viAs long as there is no water flow across the membrane. When there is water flow across the membrane, current
efficiency can be outside this range, see Fig. 12.6



The Sonin-Probstein approach for electrodialysis 331

Eqs. (12.9) and (12.10) also give a prediction for the limiting current, which is reached when
𝑐∗ = 0. Based on the general result, Eq. (12.9), we obtain

𝐼 lim =
2𝐹𝑐in

𝜆

√︂
𝐷

𝜏
tanh 𝜑 =

𝐹𝑐in𝛿

𝜆𝜏
𝜂 (12.11)

which for a low desalination effectiveness, 𝜂→0, e.g., because of a sufficiently wide channel,
simplifies to

𝐼 lim =
2𝐹
𝜆

√︂
𝐷

𝜏
𝑐in (12.12)

a result quite different from a DBL-based approach where
√︁
𝐷/𝜏 would be replaced by 𝐷/𝛿,

with 𝛿 a hypothetical thickness of the DBL. The new analytical result for the limiting current,
𝐼 lim, does not contain this thickness 𝛿 but includes the residence time, a measure of the rate
by which fluid is refreshed because of convection along the membrane.

The next step is to obtain a second expression for the ionic current, 𝐼, which we obtain
from 𝐼 = 𝐹𝐽ch and Eq. (7.41)b in case 𝐷+ = 𝐷− and a 1:1 salt, resulting in

𝐼 = −2 𝐹 𝐷 𝑐
𝜕𝜙

𝜕𝑥
. (12.13)

To obtain the current-voltage relationship for the entire spacer channel of width 𝛿 = 2ℎ, we
integrate Eq. (12.13) based on the fact that 𝐼 is invariant across the width of the channel,
which leads to ����Δ𝑉 s

𝐼

���� 𝐷𝐹𝑉T
=

∫ ℎ

0

1
𝑐(𝑥) d𝑥 (12.14)

where Δ𝑉 s is the full voltage drop over the spacer channel, with 𝑉T = 𝑅𝑇/𝐹 ∼ 25.6 mV at
room temperature. We insert Eq. (12.4) in Eq. (12.14) and obtain����Δ𝑉 s

𝐼

���� 𝐷𝐹𝑉T
=

𝛿
√
𝐴𝐵

cosh 𝜑
𝜑

tanh−1

{√︂
𝐴

𝐵
tanh

𝜑

2

}
(12.15)

where 𝐴 = 𝑐in cosh 𝜑 + (𝑐in − 𝑐∗) and 𝐵 = 𝑐in cosh 𝜑 − (𝑐in − 𝑐∗). We analyze Eq. (12.15)
together with Eq. (12.9) in Fig. 12.3. Interestingly, when the limiting current is reached,
𝑐∗ → 0, then the argument in the tanh−1-function approaches unity (one) (for 𝑐∗ = 0 the
square root of the ratio of A over B is exactly opposite to tanh 𝜑/2 ), and because the terms
in front always stay bounded, also when 𝜑→∞, Eq. (12.15) predicts that when the limiting
current is reached, Δ𝑉 s will diverge, whatever is the value of 𝛿, 𝜏, or 𝐷.

When we assume that across the channel concentration gradients are small, e.g., because
we set 𝜏 to a very low value, then Eq. (12.15) simplifies to Ohm’s law for this case of an
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ideal 1:1 salt with equal ion diffusion coefficients, the same as Eq. (7.56)����Δ𝑉 s

𝐼

���� 𝐷𝐹𝑉T
=
𝛿

2𝑐
. (12.16)

The above model can be solved if we know the current efficiency, 𝜆, and then we can
establish the current-voltage, 𝐼−𝑉 , curve, when we combine Eq. (12.9) and Eq. (12.15). The
calculation of 𝜆 requires evaluation of a membrane model, and this is what we will do in the
next section. But for now we simply assume a membrane that is perfectly selective and thus
only allows counterions to go through, thus we set 𝜆=1.

Calculation results for the voltage across the diluate channel based on Eq. (12.15) are
presented in Fig. 12.3 as function of current density. We use a reference value of 𝜑 = 1
which is realistic, based on 𝐷 =1 · 10−9 m2/s, residence time 𝜏=10 s, inflow concentration
𝑐in = 100 mM, and channel width 𝛿 = 200 𝜇m. Results are presented as function of current
divided by the limiting current at 𝜑 = 1, which based on Eq. (12.10) is 𝐼 = 147 A/m2.
Calculations at higher and lower 𝜑 represent respectively a lower and higher residence time
𝜏 (with 𝐷 and 𝛿 unchanged). Fig. 12.3 shows that when we approach the limiting current,
the voltage across the diluate channel diverges, as expected.vii For a higher residence time
(slower flow of water), thus for a lower value of 𝜑, the limiting current is lower, and the
reverse is the case when we flow faster (lower 𝜏 and higher 𝜑).

An overall salt balance for the diluate channel relates current density 𝐼 and membrane
area to the product of volume flow rate, 𝜙v,d, and the change in salt concentration between
inlet and outlet of the channel, 𝑐in − ⟨𝑐out⟩, by

𝜆 𝐼 𝐴 = 𝐹 𝜙v,d (𝑐in − ⟨𝑐out⟩) (12.17)

and the average outflow concentration is given by integration of Eq. (12.4), resulting in

⟨𝑐out⟩ = 𝑐in − (𝑐in − 𝑐∗) 𝜂 (12.18)

which also follows from combining Eqs. (12.9) and (12.17).
How far can we desalinate water according to Eq. (12.18)? If we work at the limiting

current, then 𝑐∗=0, and we obtain

1 − ⟨𝑐out⟩
𝑐in

= 𝜂 =
tanh 𝜑
𝜑

(12.19)

which shows that when 𝜑→∞ and thus 𝜂→ 0 (wide channel, fast flow of water) we do not
desalinate much, i.e., ⟨𝑐out⟩ ∼𝑐in, but in the opposite limit of a thin channel or long residence
viiFor 𝜑 = 1, when the limiting current is reached, the concentration at the center line of the channel is 35.2 mM,

and the average concentration is 23.8 mM.
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Fig. 12.3: The voltage across a diluate channel in electrodialysis as function of current 𝐼 and the flow
parameter 𝜑. Higher values of 𝜑 are because of a lower residence time 𝜏 and thus a faster flow of water
through the channel (𝐷/ℎ=10 𝜇m/s, 𝑐in=100 mM, 𝜆=1).

time, and thus 𝜙→0 and 𝜂→1, we can reach full desalination. The assumptions underlying
Eq. (12.19) include that we work at the limiting current at the exit of the channel, thus have
𝑐∗=0 at the exit. If that is indeed the case (which in reality will not be so), the above result
is obtained independent of the value of current efficiency, 𝜆. A comprehensive ED-model
which does not use this assumption of 𝑐∗=0 at the outlet is discussed in the next section.

12.3 1D model for an ED cell for non-unity current
efficiency

How would a more realistic ED model for a full cell pair look like? Such a model can be
based on the elements outlined above, for transport in flow channnels and in membranes,
with Donnan layers at the edges between these domains. Water flow through the membrane
can be included by methods outlined in Ch. 11. Both across the channel and the membrane
we discretize in 𝑥-direction and solve the resulting set of algebraic equations, while we ‘step
through’ the 𝑧-coordinate by sequential calculations at 𝑧-coordinate 𝑗 , then 𝑗+1, etc.

In this section, however, we first discuss a more simple approach, in continuation of the
model for the diluate channel of the last section. We also include the Donnan layers at the
membrane/solution edges, and the membranes themselves. We again consider an ideal 1:1
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salt solution with ions having equal diffusion coefficients in the channel (and also in the
membrane we assume the same mobilities: 𝐷m=𝐷m,anion=𝐷m,cation). The two membranes
have an equal magnitude of the membrane charge, |𝑋 |, equal thickness, and we use the
Nernst-Planck equation for ion transport. In the first part we assume no water flow through
the membrane.

We are also going to address changes in 𝑧-direction in more detail. Whereas in the
previous section, in 𝑧-direction only a single ‘position line’ was considered, we are now
going to solve a model with a sequence of such 𝑧-lines. In this way we describe more
precisely the plug flow character of flow in each channel. With plug flow we mean that in
𝑧-direction ions are mostly transported by convection, and there is not much transport by
diffusion and dispersion in 𝑧-direction. Instead, in the approach of the last section with only
a single 𝑧-line, the mixing in 𝑧-direction was at a maximum, because the concentration at a
certain 𝑥-coordinate was assumed to be the same from entrance to exit of the channel.

In the present section we combine a plug flow model for flow in the 𝑧-direction, with a
result from the previous section for ions flux, which we base on Eq. (12.6), and is then

𝐽m,ions = 𝑘s (𝑐 − 𝑐∗) (12.20)

where 𝑐 is now the 𝑧-dependent average salt concentration in the channel, and as before, 𝑐∗

is the salt concentration at the channel/membrane interface. (Thus we replaced 𝑐in by 𝑐.)viii

We introduce the channel transfer coefficient 𝑘s =
√︁
𝐷/𝜏 tanh 𝜑, which is a function of

channel width, ion diffusion coefficient, and a surface refreshment time, 𝜏, similar to the
concept of surface renewal in the Danckwerts theory of mass transfer from chemical reactor
engineering. The parameter 𝜏, which in the last section was the residence time in the
entire channel, now becomes a characteristic time required for ions to be mixed up along
the 𝑧-coordinate. Using Eq. (12.20) we calculate a surface salt concentration 𝑐∗ which is
required in equations for the Donnan layer at the channel/membrane interface. For a very
high surface renewal rate, thus 𝜏 very small, Eq. (12.20) simplifies to the statement that
𝑐∗=𝑐, i.e., absence of concentration gradients across the channel.

Assuming transport only by convection in 𝑧-direction, then for steady state a salt balance
for an ED channel (without water flow through the membranes) will be

−2 𝑣𝑧 𝛿
𝜕𝑐

𝜕𝑧
= 𝐽m,cem,+ + 𝐽m,cem,− − 𝐽m,aem,+ − 𝐽m,aem,− (12.21)

viiiFor wide channels this result is unproblematic, it functions as an analytical equation for the DBL, but for a
thinner channel we must realize c is an average concentration, not the concentration on one side of the DBL and
𝑐∗ that on the other side. Problematic is that Eq. (12.20) is based on an ‘Euler backward’ discretization, with
flux 𝐽m,ions and concentration 𝑐∗ evaluated at the end of a discrete step in z-direction, while c is the average
concentration at the start of this step.
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where on the left we have transport by convection of all ions, therefore the factor 2, while on
the right we have four fluxes through the membrane, of cations and anions, through CEM
and AEM. In the coordinate system defined as ‘to the right’, the CEM is assumed here to
be to the right of the channel, the AEM left. We assume that counterion fluxes are the
same in magnitude; thus the magnitude of cation flux through the CEM is equal to anion
flux through the AEM, and the same holds for the coions, thus 𝐽m,cem,+ + 𝐽m,aem,− = 0 and
𝐽m,cem,− + 𝐽m,aem,+ = 0. And we introduce the total ions flux through one membrane as
𝐽m,ions = 𝐽m,+ + 𝐽m,− . In balances such as the next one, we make sure 𝐽m,ions is a positive
number when indeed there is an ions flux leaving a channel (and negative when there is a
flux of ions entering a channel). We then arrive at

𝑣𝑧
𝜕𝑐

𝜕𝑧
= −

𝐽m,ions

𝛿
(12.22)

which we will use in both the diluate and the concentrate channel, and we can in this way
analyze co-current flow as well as counter-current flow. In both cases there is only the
𝑧-direction to consider in the mathematical code.ix

We now first describe the model for the ion-exchange membrane. Just as for RO and NF
in Ch. 11, also in ED, the fluxes of all ionic species through the membrane are given by
the Nernst-Planck equation in combination with local electroneutrality (which involves the
membrane charge, 𝑋). Furthermore, we know that the ionic current is unvarying across the
membrane. We analyze the situation of no transport of water across the membrane. In steady
state and for unreactive ions, also the flux of each ion is unvarying across the membrane. We
use Eq. (7.71) and combine the factor 𝐾f,𝑖 , 𝜀, 𝐷𝑖 and thickness 𝛿 into the membrane transfer
coefficient 𝑘∗m,𝑖 =𝐾f,𝑖𝜀𝐷𝑖/𝛿. When we have a 1:1 salt with 𝐷𝑖 and 𝐾f,𝑖 the same for anion
and cation, then we obtain for the ionic current density, 𝐽ch = 𝐽+ − 𝐽− ,

𝐽ch = 𝐼/𝐹 = −𝑘∗m,𝑖 𝑐T,m
𝜕𝜙m

𝜕𝑥
(12.23)

where 𝑥 = 𝑥/𝛿. We can integrate Eq. (12.23), resulting in∫ 1

0

1
𝑐T,m

d𝑥 =
1
⟨𝑐⟩†

= −
𝑘∗m,𝑖
𝐽ch

∫ Δ𝜙m

0
d𝜙m (12.24)

where to solve the left side we need to know how the total ions concentration, 𝑐T,m, changes
across the membrane. Because this concentration does not change much for a good ion-
exchange membrane, we can replace the left side by 1/

〈
𝑐T,m

〉
where

〈
𝑐T,m

〉
is the regular

ixIn Biesheuvel et al., J. Membrane Sci. 647 120221 (2022), cross-current flow in ED is considered as well.
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average, which for a linear profile is the average of 𝑐T,m evaluated at the two outer edges
of the membrane (just in the membrane). The error made in replacing ⟨𝑐⟩† by ⟨𝑐⟩ can be
estimated as 1/12Δ𝑐2/⟨𝑐⟩ in case of a linear profile in 𝑐(𝑥).x Even for a moderately charged
membrane with 𝑋 =2 M (𝑐T,m is always slightly above 𝑋), and a rather extreme difference in
𝑐T,m across the membrane of Δ𝑐T,m=0.2 M, the error made in taking the average is only as
small as 0.1%. For a lower concentration difference, and membranes with a higher charge,
the error will be even less. Thus, we can safely use the average concentration

〈
𝑐T,m

〉
and

obtain after integration
𝐽ch = −𝑘∗m,𝑖

〈
𝑐T,m

〉
Δ𝜙m . (12.25)

Note that Δ’s denote a value at a position ‘right’ minus ‘left’, in both cases just inside the
membrane on either side. For the total ions flux in a membrane, 𝐽m,ions = 𝐽+ + 𝐽− , we obtain

𝐽m,ions = −𝑘∗m,𝑖
(
𝜕𝑐T,m

𝜕𝑥
− 𝑋 𝜕𝜙m

𝜕𝑥

)
(12.26)

where 𝑋 is either negative (CEM) or positive (AEM). This equation can be integrated without
making any assumption (as long as 𝑋 is not a function of position) to

𝐽m,ions = −𝑘∗m,𝑖
(
Δ𝑐T,m − 𝑋Δ𝜙m

)
. (12.27)

Eq. (12.25) and Eq. (12.27) can be combined with equations for the two flow channels,
and the Donnan layers at the channel/membrane edges, and with an overall condition which
can be a cell pair voltage or current.xi We can calculate for each 𝑧-coordinate the current
efficiency, 𝜆, by Eq. (12.8).

Current efficiency. As an intermezzo, let us evaluate the parameters that determine
the current efficiency. If we implement the equations for 𝐽ch = 𝐼/𝐹, Eq. (12.25), and
for 𝐽m,ions, Eq. (12.27), in the expression for current efficiency, Eq. (12.8), we obtain

𝜆 =
𝐽m,ions

𝐽ch
=

𝑋〈
𝑐T,m

〉 − 𝑘∗m,𝑖Δ𝑐T,m

𝐽ch
(12.28)

xThis expression is based on comparing the approximation with a more rigorous approach where we assume a
linear decay of 𝑐 across a layer, and implement that 𝑥-dependence on the left side of Eq. (12.24) and make the
integration.

xiTypically we apply a certain total current to the total cell. But the current density will vary with 𝑧-position. The
only property not varying with 𝑧-coordinate, is the cell pair voltage. This will be the same at each 𝑧-coordinate,
while for co-current flow the current density typically decreases with 𝑧. This is further analyzed in the next
section.
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where we evaluate 𝜆, 𝑋 , 𝐽ch, and 𝐽m,ions all as positive quantities (further on in this
box we again use the |. . . |-notation to indicate that we use positive quantities). We
can simplify Eq. (12.28) when on both sides the salt concentration just outside the
membrane, 𝑐∗, is much lower than 𝑋 . In that case 𝑐T,m will be close to 𝑋 and thus the
first term on the right will be close to unity. In this limit, the expression for total ions
concentration in the membrane is (for a fully dissociated 1:1 salt, with Φ𝑖 the geometric
mean partition coefficient for non-electrostatic effects, see §2.8)

𝑐T,m, 𝑗 =

√︂
𝑋2 +

(
2Φ𝑖 𝑐∗𝑗

)2
(12.29)

which can be linearized for small values of 𝑐∗/𝑋 , and the difference in 𝑐T,m is then

Δ𝑐T,m =
2
|𝑋 |

(
𝑐∗c

2 − 𝑐∗d
2
)

(12.30)

where ‘c’ and ‘d’ refer to concentrate and diluate channel, with index * referring to
a salt concentration right next to the membrane. This expression can be inserted in
Eq. (12.28), and we then arrive at

𝜆 = 1 −
2 𝑘∗m,𝑖 𝐹
|𝑋 | |𝐼 |

(
𝑐∗c

2 − 𝑐∗d
2
)

(12.31)

which shows that 𝜆 drops when a membrane becomes thinner or for other reasons
has easier mass transport (higher 𝑘∗m,𝑖). It then loses its functionality in ED to retain
coions from moving across a membrane and charge efficiency drops. This is because
coions mainly move across an ED membrane by diffusion, the rate of which is directly
proportional to 𝑘∗m,𝑖 . The dependence on the flow channel salt concentrations is also very
interesting: a membrane that may seem to be very selective and only allow counterions
to pass through when salt concentrations are low on both sides, say 𝑐in=10 mM, may no
longer be that selective at 500 mM. And the membrane becomes especially leaky when
a concentration difference develops across the membrane. When the salt concentration
in the concentrate channel goes up and in the diluate channel goes down, Eq. (12.31)
shows that current efficiency drops. Also at low currents the membrane becomes more
leaky. For all these reasons the theory predicts that the further one progresses into an
EDL channel, the lower is current efficiency, i.e., the larger is coion leakage as indicated
as well in Fig. 12.4.

The influence of membrane thickness on 𝑘∗m,𝑖 and thus on efficiency, is is also why
processes to harvest energy from saltwater and fresh water, which is the reverse of ED
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(called ‘reverse electrodialysis’ (RED), ‘blue energy’, ‘osmotic power’, or ‘nanopore
power generation’) when ultrathin membranes are used, will never be viable. Even
though power densities can be very high in certain laboratory experiments where the
solutions on the two sides of the membrane are kept at a high concentration difference,
nevertheless, in a real (R)ED membrane system, the massive coion leakage (because
of a very low value of 𝜆 and a high value of 𝑘∗m,𝑖) leads to very rapid mixing of
the freshwater and concentrated water, and the power production in this device will
be orders of magnitude less than in an optimized RED stack with membranes of an
optimized thickness of for instance 𝛿 = 20 𝜇m, see Tedesco et al. (2018). In reality
the situation is even worse because the present analysis neglects the significant, and
adverse, water flow that would also run through an ultrathin membrane, quickly diluting
the concentrate water stream.

We continue with our ED calculation where we only have ion transport by convection
in 𝑧-direction (plug flow) with no transmembrane water flow. The above equations can all
be combined, including also Eq. (12.29) at both membrane edges, and this set of equations
can be solved for a given current density 𝐼 (=𝐹 ·𝐽ch). However, with 𝜆 a varying parameter,
given by Eq. (12.8), we obtain a quite convoluted set of equations. It is much better to
solve the entire set of equations numerically. In addition, the condition of a constant current
density is not realistic for ED. Instead, in ED it is not the current density that is unvarying
with 𝑧-coordinate, but the cell pair voltage, 𝑉cp, is constant from entrance to exit of the
cell.xii The cell pair voltage is a summation of various terms which all change as function of
the 𝑧-coordinate in the channel, while the summation, 𝑉cp, remains constant. The cell pair
voltage is given by

𝑉cp

2𝑉T
= sinh−1 |𝑋 |

2Φ𝑖𝑐∗d
− sinh−1 |𝑋 |

2Φ𝑖𝑐∗c
− Δ𝜙m + Δ𝜙s,sr,d + Δ𝜙s,sr,c (12.32)

in which the inner membrane potential, Δ𝜙m, follows from Eq. (12.25), and the last two
terms are the voltage drops over the d- and c- half-channels based on Eq. (12.15), which as
an example for the d-channel is given by

Δ𝜙s,sr,d =
𝐽ch

𝐷

ℎd√
𝐴d𝐵d

cosh 𝜑d

𝜑d
tanh−1

{√︂
𝐴d

𝐵d
tanh

𝜑d

2

}
(12.33)

xiiUnless we work with a cell with ‘segmented electrodes’. In that case the current can be more evenly distributed
and 𝑉cp is no longer the same at each z-position.



1D model for an ED cell for non-unity current efficiency 339

with the definition of 𝐴 and 𝐵 provided below Eq. (12.15), in which we replace 𝑐in by 𝑐.
Note that one parameter in this equation is 𝜏 (an element of 𝐴, 𝐵 and 𝜑) which is the surface
renewal time, a tunable parameter that can be interpreted as the extent of mixing of ions
across the channel, i.e., the dispersion across the channel. (The same parameter 𝜏 is also
included in the channel transfer coefficient 𝑘s used in Eq. (12.20)). The first two terms in
Eq. (12.32) are the Donnan potentials at the channel/solution interfaces for which we use
Eq. (2.43). The factor 2 in Eq. (12.32) is because we have two channels and two membranes
in a cell pair.

We solve this model for co-current flow of electrolyte in the d- and c-channels. In co-
current flow the flow through the channels (along the membranes) has the same direction.
We assume that the two channels are fed with the same water flow rate and the same inlet
salt concentration, 𝑐in, and we set all other properties of the two channels to the same
values. In this section water flow through the membrane is set to zero, thus at all 𝑧-positions
𝑣w = 0. (This is also assumed in Eqs. (12.20), (12.27), and (12.33).) As a consequence
of these assumption, in this calculation the (average) concentrations in the two channels
at each 𝑧-coordinate are related by 𝑐d + 𝑐c = 2 𝑐in. (The same relation also holds for the
interfacial concentrations 𝑐∗

𝑗
when we use the same 𝑘s-value in the two channels.). We

present in Figure 12.4 the concentration in the diluate channel 𝑐d, current density 𝐼, and
current efficiency 𝜆, all versus position 𝑧. Parameter settings are: 𝑐in =500 mM, |𝑋 |=4 M,
channel width 𝛿=200 𝜇m, water velocity through channel 𝑣𝑧 =1 mm/s, diffusion coefficient
in channel 𝐷=1 · 10−9 m2/s, 𝑘∗m,𝑖 =1 𝜇m/s, renewal time 𝜏=2 s, and 𝑉cp=0.2 V.

Fig. 12.4 shows how from the entrance onward all parameters change gradually: the
concentration in the diluate channel gradually decreases, first fast, then slower, and the
channel/membrane concentration is always lower, but the difference decreases with 𝑧. The
further we move through the cell, the lower is the current efficiency, 𝜆, dropping all the way
to zero. At that point we have the situation that we are still directing current through the
membrane but there is no further desalination. In this steady state which in this calculation
is reached after about 6 cm into the channel, current (electrical field) drives counterion
transport out of the diluate channels (leading to desalination), but this is completely offset
by coion transport by diffusion. It is not the case that a certain ion now moves back from
c- to d-channel through the same membrane it came from, but it leaks out of the c-channel
on to the next d-channel, i.e., any type of ion only moves in one direction in a stack, there
is no ‘back’-diffusion. In this steady state reached after (in this case) 6 cm into the channel,
ions moving as counterions from d- to the c-channels has become equal to the same ions
moving as coions from c-channels to d-channels. Clearly, in this latter part of the cell we
only transport current but do not further desalinate, i.e., we are wasting energy without any
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Fig. 12.4: Results of semi-analytical 1D transport model for co-current flow in electrodialysis,
presented as function of distance 𝑧 from inlet. (a). Average concentration in diluate channel, 𝑐d,
and channel/membrane salt concentration, 𝑐∗. Concentrations in concentrate channel are given by
twice the inflow concentration minus the corresponding concentration in diluate channel. (b). Current
efficiency, 𝜆. (c). Current density, 𝐼 (See main text for parameter settings).

advantage. The energy efficiency of this ED stack would improve if we make the cell shorter.
We can also flow faster and desalinate more water in the same stack. These results clearly
highlight that proper design of an ED cell pair (the key element of the ED stack) requires
careful analysis.

12.4 2D model for an ED cell for non-unity current
efficiency

The previous calculation made use of the surface renewal concept which used equations
from earlier sections to obtain values for 𝑐∗ and the voltage drop over each channel, Δ𝜑s.
This model was advantageous because we had a one-dimensional model that included most
relevant elements. However, the derivation has an unphysical assumption which in the
context of a 2D model leads to the poorly defined factor 𝜏. If we want to include water flow
through the membranes, then the equation for 𝐽m,ions can be corrected for this, as we will
do below, but relations for 𝑐∗ and Δ𝜙s,sr,d, such as now Eqs. (12.20) and (12.33), no longer
follow from Eq. (12.1). If we nevertheless apply these equations, the model becomes less
accurate.

These objections can be resolved in a model that in many regards is more simple, and
has one parameter less as well. Namely, we can construct a model based on the general ion
balance, Eq. (12.2), discretize this equation in 𝑥-direction, and solve the set of equations
using a numerical method called the ‘method of lines’. For the voltage drops over the
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channels we use Eq. (12.14) which we solve numerically by the trapezoidal rule. Results
of this full 2D approach are presented in Fig. 12.5, for the same parameters (not requiring
a value for 𝜏). Fig. 12.5 shows that we obtain quite similar results. In the new ‘methods of
lines’-model the surface concentration starts at the inlet concentration, and in general is a
bit closer to the average concentration than in the prior ‘surface renewal’ model. The initial
current density is lower in the new model, but the two lines quickly converge. Thus, the full
‘method of lines’-model has one parameter less, does not include the somewhat unphysical
factor 𝜏, and in general is more transparent. This 2D calculation based on the method-of-
lines is therefore preferred. We also need this more accurate modelling framework to be
able to go to mixtures with three or more ions, with reactions between ions, etc.

Effect of membrane thickness on ED performance. An interesting calculation is to
reduce the thickness of the membrane, thereby increasing the membrane transfer
coefficient, 𝑘m. The reduction of membrane thickness sounds like that is always a
good idea, less resistance etc., but for thinner membranes current efficiency 𝜆 drops
more rapidly, and there is much less desalination in the diluate channel. For the
calculation in Fig. 12.5 desalination, defined as

(
𝑐d,in − 𝑐d,out

)
/𝑐in, is almost 90% but

when we reduce membrane thickness by a factor 100, desalination is less than 20%.
At the same time current density remains at a high value along the entire channel,
beyond 80 mA/cm2, much higher than in Fig. 12.5. Thus, as also argued in the previous
box, below a certain thickness, reducing the thickness of membranes will deteriorate
operation of current-driven membrane processes.

One important feature stands out in the calculations just made, reported in Figs. 12.4
and 12.5, namely that salt concentration at the channel/membrane interface is not very much
different from the average value. This suggests that a calculation neglecting these gradients
in 𝑥-direction altogether would not be off by too much.xiii

If we neglect concentration gradients in x-direction, the numerical model is much
simplified. Including water flow across the membrane can now be done without too much
difficulty. To do this, we must implement Eqs. (7.71), and (8.7). To calculate the hydrostatic
pressure difference across (the inner coordinates of) the membrane, we follow the approach
explained in Ch. 11 that the hydrostatic pressure change across a solution/membrane interface
equals the osmotic pressure increase at that same interface. We neglect axial pressure
xiiiThis is a result for a symmetric salt solution with only two ions. However, for three or more ions, with different

mobilities and valencies, a detailed description of concentration profiles across the channel is of key importance
to predict differences in transport rates, as we describe in §12.5.
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gradients through the two channels, thus set the hydrostatic pressures there equal to one
another, unvarying with 𝑧-coordinate.

How does transmembrane water flow influence the transport of ions and charge? In the
general NP-equation we can also have a convection term, 𝐾f,𝑖𝑣w𝑐𝑖 . We can subtract anion
flux from cation flux to arrive at an expression for 𝐽ch just as Eq. (12.25), now with an
additional term −𝐾f,𝑖𝑣w𝑋 (if 𝐾f,𝑖 the same for both ions). Similarly, for the expression for
total ions flux through the membrane, given by Eq. (12.27), we add a term 𝐾f,𝑖𝑣w

〈
𝑐T,m

〉
.

We supplement this calculation with two overall balances. Because of the changing flow
rates in the two channels, we have Φv,d + Φv,c = 2Φv,in, and 𝑐d Φv,d + 𝑐c Φv,c = 2 𝑐in Φv,in

(assuming that the channels had the same inlet concentration and inlet flow rate).
With 𝑘F-m = 1 ·10−8 m4/mol/s (this is an inverse water-membrane friction), and other

parameters the same as in Fig. 12.5 (for both channels, 𝑐in = 0.5 M, inlet flow velocity
through channel 𝑣𝑧,in = 1 mm/s) we obtain the results reported in Fig. 12.6. We observe
very intriguing predictions such as that the concentration in the diluate channel now drops
more rapidly to zero (which is good), while the concentration in the concentrate channel, 𝑐c,
increases, but not in a mirror-like fashion compared to the drop in 𝑐d. The water velocity
across the membrane, 𝑣w, starts high before dropping off to a low, but not negligible, value.
This ongoing water leakage to the c-channel is why 𝑐c decreases again after a few cm into
the channel, while the water flow in the diluate channel goes down, which reduces water
recovery. An optimal point to stop this process would be after 2 cm when a very much
desalinated diluate stream is obtained. Thus now we reach a much lower salt concentration
in the diluate channel, and we also reach it sooner, than without water flow. This is indeed
the –counterintuitive– advantage of transmembrane water flow. However, this positive effect
goes at the cost of a reduction in water recovery. As analyzed in Tedesco et al. (2017), if
the aim is a water recovery of 50%, and to that end we must flow more water into the diluate
channel (because part is lost by flow through the membrane), and if we then adjust the cell
pair voltage to obtain a certain required desalination (a certain value of 𝑐d,out − 𝑐d,in), then
the total energy cost (current times voltage) is higher for a system with water leakage than
without. Thus, when we have water leakage through the membrane, the advantage of the
resulting low diluate concentration as depicted in Fig. 12.6, is somewhat deceptive if taken
as evidence of better performance, because the water recovery also drops steeply.

Finally, we briefly mention the possibility to consider not just co-current or counter-current
operation of ED, which can both be described using the above 1D and 2D models. But with
the modelling framework discussed in this chapter, we can also resolve the cross-current
geometry that is generally used in a practical ED unit. Indeed, in many layouts of an ED
cell a cross-current flow geometry is used, where the flow in the c-channels, when projected
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Fig. 12.5: Results of 2D transport model for co-current flow in electrodialysis, presented as function
of position in the cell, 𝑧, based on discretization of Eq. (12.2) in 𝑥-direction and solution in 𝑧-direction
by the method of lines (transmembrane water velocity 𝑣w = 0). (a). Average concentration in diluate
channel, ⟨𝑐d⟩, and channel/membrane salt concentration, 𝑐∗. Concentrations in concentrate channel
are twice the inflow concentration minus the corresponding concentration in diluate channel. (b).
Current efficiency, 𝜆. (c). Current density, 𝐼 (See main text for parameter settings).
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Fig. 12.6: Results of 1D transport model for co-current flow in electrodialysis including transmembrane
water flow. (a). Concentrations in diluate and concentrate channels. (b). Current efficiency, 𝜆. (c).
Current density, 𝐼. (d). Transmembrane water velocity, 𝑣w. (e). Water recovery (See main text for
parameter settings).
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onto the flow in the d-channels, is roughly at a ‘90 degree angle’. To solve this geometry we
can set up a (quasi-)3D model, where, if flow in one channel is ‘north to south’, in the other
channel it is ‘left to right’. To describe this practical module, we can set up an 𝑁×𝑁 grid of
positions (nodes) and at each of these nodes (which describe a position in the d-channel, the
aligned position in the c-channel, and the membranes in between) we solve the equations
related to any of the approaches outlined in the present and the previous sections, with or
without including transmembrane water flow, with or without concentration gradients in the
𝑥-direction (Biesheuvel et al., J. Membrane Sci. 647 120221, 2022).

12.5 Selectivity in electrodialysis with a three-ion
mixture

In all previous sections we discussed ED for a perfectly ideal 1:1 salt. In practice, however,
water that is treated is a multi-ionic solution, where the ions have different valencies and
diffusion coefficients (in solution, and in the membrane). Ions also have different partition
coefficients (at the solution/membrane interface), and they may react with one another and
react with membrane groups (absorb in the membrane). All of these aspects require more
advanced modelling than discussed until now. As one example, we describe in this section
theory for ion transport in front of and inside an ED membrane for a salt mixture. We
will discuss the case of two different cations, and one anion, all monovalent, with the only
difference between the two cations that one has a twice higher mobility in solution and in the
membrane than the other (the anion has the same mobility as the slow cation). We describe
a single cation-exchange membrane (𝑋 = −4 M) with film layers on both sides. On both
sides of the membrane is a bulk phase at fixed composition (25 mM of each cation). This
simplified model illustrates several features of ED with an ionic mixture, and this model can
always be extended to a calculation for a realistic ED cell.

Inside the membrane we use the NP-equation (without transmembrane water flow) with
mrf = 1/

(
𝐾f,𝑖𝜀

)
set to mrf = 50 for each ion, see p. 166. For all ions we set the non-

electrostatic partition coefficient to unity, i.e., Φ𝑖 = 1. All three ions participate in a local
charge balance with a fixed membrane charge, X. Outside the membrane on both sides, we
either use a standard film model of fixed thickness, see §7.1.1 (the DBL has then the same
thickness as the membrane), or a DBL model with convective flow along the membrane,
with fixed 𝜏, described in §7.1.3. In the latter case we must then evaluate a modification of
Eq. (7.11) because we also include electromigration as an extra contribution to transport,
𝑧𝑖𝜕/𝜕𝑥 (𝑐𝑖𝜕𝜙/𝜕𝑥).
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These calculations show that the membrane hardly plays any role in determining the
cation-cation selectivity, but only a difference in mobility in the solution phase matters. In
the standard film model, irrespective of current, the selectivity S (ratio of fluxes of cations
across the membrane) is the same as the ratio of mobility of the cations in solution, which in
this case was a factor of two. The concentration profiles of both cations are the same, only
their fluxes are a factor of two different. For the DBL model with convective flow we use a
value of 𝜏 such that at an intermediate current the salt concentration on the upstream side of
the membrane is the same as for the simple film layer model. Now, when we have a mobility
ratio of 2, the ion profiles of the two cations become somewhat different, and selectivity is
no longer 𝑆=2, but less, and somewhat dependent on current, from 𝑆∼1.79 at low current
to 𝑆∼1.72 at high current. Thus, calculations indicate that for a typical ED membrane, the
cation-cation selectivity depends on cation mobilities in solution, and on the chosen DBL
model, but not on cation mobilities inside the membrane.

The above calculations were for the same bulk concentration on both sides of the
membrane. A calculation with the standard DBL model where on the concentrate side
concentration of the fast cation was increased 4 times, and of the slow cation 2 times (to
100 and 50 mM, resp.), resulted in the same outcome as before: mobilities in the membrane
play no role, and fluxes solely depend on the ratio of mobilities in solution. However, the
use of the improved DBL model with convective flow (fixed 𝜏), has a significant effect.
The selectivity at high current, which was 𝑆 ∼ 1.72, now drops to 𝑆 ∼ 1.56. Increasing the
concentration of the fast cation again by 4 and of the slow cation again by 2 (to 400 and 100
mM, resp.), we now have selectivity going slightly up again, but coion leakage starts to play
a more important role and the flux of both cations is now lower than for the ‘100/50’ case.

In this last case, with concentrations on the concentrate side at 400 mM and 100 mM for
the fast and slow cation resp., using the DBL model with convective flow, if we now reduce
the current, selectivity now steadily drops to unity and below (the fast cation is even removed
less than the slower cation) and at even lower currents we arrive at a situation that the fast
cation is not removed any more, but moves in the reverse direction back to the diluate side,
with the slow cation still moving in the right direction. Clearly we are not removing the
fast ion preferentially any more when on the receiving side the concentration of the fast ion
has increased to values much higher than of the slower ion. This calculation shows that a
composition on the concentrate side of for instance 400 mM/100 mM of fast/slow cations,
resp., cannot be maintained at arbitrary low currents; at least a moderate current is needed
to keep these cations in the concentrate stream. But also then we have significant fluxes of
the slow cation and of the anion, thereby lowering selectivity. For these conditions with
different compositions of the two bulk phases on either side of the membrane, concentration
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profiles of ions across the membrane are more interesting than when the two bulk phases
are the same (in that case for both cations concentration profiles are almost unvarying across
the membrane with a maximum change of ∼1 mM). In the new situation the concentrations
of the cations change across the membrane by 100’s of mM, with one going up, the other
going down by these significant numbers. Also outside the membrane, concentration profiles
can be very different between the two ions, for instance on the concentrate side an almost
invariant concentration for the fast ion at high concentration (transported by migration), and
the standard decaying profile (in direction away from membrane) for the slower cation.



Part IV

Electrode Processes





349

In Part I of this book we discussed the electrical double layer, mainly in the context of
equilibrium studies, thus in the absence of reactions or ion transport. In Part II of this book,
we developed various elements of transport theory in electrochemical systems. Now in Part
III we can address electrode processes where transport and electrode reactions are combined
with EDL effects.

An electrode is an EDL structure where a metallic (electron-conducting) phase is in contact
with electrolyte, which can be liquid (solvent plus ions), solid (a solid salt like AgCl), or
gaseous (a plasma). In an electrode, electronic charge from a conducting phase (like a
metal) meets with ions and other molecules from the electrolyte (and possibly from other
non-electrolyte phases). For Faradaic electrode processes, there is transfer of electronic or
ionic charge across the full EDL, thus both reactants and products of the Faradaic process
come from, and leave to, a bulk phase adjacent to (thus separate from) the electrode (the
EDL).

—

Two types of processes can occur at an electrode, Faradaic and capacitive (non-Faradaic).
In a Faradaic process there is transfer of ionic or electronic charge across the EDL, because
a reacting ion or molecule arrives in the EDL from a bulk phase, picks up, or releases,
electronic charge, and moves out of the electrode (EDL) again, back to the same bulk phase,
or to another one.

This is easy to visualize for an ion from the bulk electrolyte phase being reduced or
oxidized and moving back to the electrolyte phase. Also molecules such as H2 can come
from, or go to, a gas phase. Metal plating, where for instance a Cu2+ cation picks up electrons
and plates out as solid metal, is likewise a Faradaic electrode process: the ion comes in from
bulk electrolyte, picks up electrons and moves out of the EDL, in this case to the bulk metal
phase. This metal phase is a bulk phase outside the electrode (the EDL). The EDL is only
the very interfacial region between bulk metal and bulk electrolyte.

It is interesting to compare metal plating with other Faradaic processes. In most cases,
it is electron(-ic) charge that crosses the EDL, such as in a fuel cell where H2 molecules
arrive from a bulk gas phase, react with electronic charge and move out as H+ ions into the
electrolyte phase. This can be envisioned as the electronic charge transferring across the
EDL. For metal plating, instead, it is now the ion that transfers across the EDL, because the
electron came from the metallic structure, ‘waits for the ion to come in’ and after reacting
with the ion to a metallic atom, they together become part of the metal bulk phase.

In both of these examples, the key point remains that ions and molecules as reactants in
the Faradaic process come from a bulk phase outside the EDL, and end up in a bulk phase as
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well (either the same bulk phase, or another one). Such a Faradaic process can run forever,
without the electrode changing in composition, as long as external conditions, such as the
supply of reactants, do not change.

Instead, in a capacitive, on non-Faradaic, process, ions or molecules move into the EDL
structure (the electrode), perhaps associate or react with electronic charge, but the key point is,
they stay there. There is not a product molecule that moves out of the EDL to a charge-neutral
bulk phase. Thus there is storage of charge and ions. If current is continuously supplied,
the composition of the electrode changes in time, and unless for a notable exception, the
electrode potential changes as well.xiv Interestingly, there is no accumulation of charge in
an electrode. Instead, all sources of current into the electrode, add up to zero. For instance,
an electronic current arriving from a metallic phase, leaves as ionic current. The current
moves across the electrode unchanged in ‘intensity’ (in ‘numerical value’). Nevertheless,
its ‘nature’ did change, from electronic to ionic. So in some sense the current is unchanged
while travelling across the electrode, it is the same current, in another sense it most definitely
changed.

Both for Faradaic and capacitive electrode processes, the current that runs into an electrode
influences the EDL structure, because it has an impact on the concentrations of ions and
other molecules in the adjacent electrolyte phase. Nevertheless, with current flowing across
an EDL, the EDL remains locally at chemical equilibrium, and thus the distribution of
ions in the diffuse layer remains the same (i.e., described by the same EDL structure).
This is because the ions distribute across the diffuse layer much faster than the rate of
changes in the overall process outside the EDL. So, the EDL is modified (indirectly, via
outside concentrations) by bulk transport processes, but the EDL can be described as if
there is no transport (quasi-equilibrium), and thus typically the Boltzmann equation (and
modifications thereof) can be used to describe the diffuse layer. Inside the EDL there are
often (heterogeneous) chemical reactions, and other surface ad-/desorption steps, or (acid-
base) reactions between ions inside the EDL, and these steps can be slow, and thus ion
concentrations inside the EDL that relate to these reactions depend on current. But despite
the involvement of these (possibly slow) heterogeneous or acid-base reactions, solutes and
ions remain at equilibrium with an outside bulk and thus the EDL is at equilibrium, because
changes around the electrode in the adjacent bulk phases have a slow rate, to which the EDL
can quickly adjust to retain an equilibrium structure.

As discussed in in the preamble to Part I, on p. 15, this is different for flow acrouss a
nanoporous medium, such as an ion-exchange membrane. With global equilibrium, no flows

xivThe notable exception is an electrode with local phase separation inside the EDL, and for low enough currents.
Then the potential can be more or less stable for a limited period of time.
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at all, then the entire material is (described by) an EDL. However, when there is a current,
this entire layer goes out of ‘global’ equilibrium, i.e., its structure is no longer at chemical
equilibrium with one of the external bulk phases, but instead there are transport processes,
from one side of the porous structure to the other. Then this layer is no longer (described
as) an EDL. Exceptions are the ‘Donnan layers’ at the two edges (outside surfaces) of such
a layer, and they are in equilibrium with the outside electrolyte (i.e., in equilibrium with the
ion concentrations in the electrolyte phase just outside the EDL).

—

When ions inside the EDL have interactions with the metal surface, there is often a chain
of reaction and transport steps. This sequence includes ion transport to the surface, ion
adsorption and surface reactions, and ultimately one of the reactions at the electrode surface
is the electrode reaction where atoms react with electronic charge. The rate and direction
of this electrode reaction depend not only on ion concentrations near the reaction site, but
also on the charge density of the metal phase. When this reaction step is very fast, it can be
described by the Nernst equation. If this is the case, the rate of the overall process can still be
limited by the rate of adsorption to the surface of reactants, or association and dissociation
reactions on the surface, or surface diffusion. But because the electrode reaction is very fast
we can simply use the Nernst equation for the electrode reaction. Note that all of this does
not relate to the electrode process being Faradaic or capacitive. In both cases there can be an
electrode reaction. To distinguish these two types of processes, the key point remains that in
a capacitive process this sequence of reaction and transport steps is truncated somewhere and
the product ion or molecule cannot leave the EDL, i.e., the chain of reaction and transport
steps has an ‘end-point’ with one of the product species locked inside the EDL.xv

—

Interestingly, in all of these processes, steady state or dynamic, capacitive or Faradaic, the
electronic current arriving in an electrode (the EDL structure at the interface of bulk metal
and bulk electrolyte) is equal to the ionic current leaving the electrode (the EDL). This is
the case because taken as a whole the EDL is charge-neutral, and remains so, and thus all
currents entering and leaving the EDL (ionic and electronic) together must add up to zero,
see Fig. 13.3 in Ch. 13. Thus there is continuity of electronic and ionic current across the
electrode.

—
xvOr of course the reverse situation, that previously stored ions are now coming out of the electrode.
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At an electrode, or other charged interface, in contact with (solid) electrolyte, there
is always an EDL being formed, i.e., charge separation between different regions in the
EDL.xvi Two main types of EDL structures can be identified, and below we sub-divide them
into five types in total. The sequence here is based on ‘increasing degrees of freedom’ in
how the EDL structure can change while remaining at equilibrium.

Type I EDLs are formed when there is contact of two electroneutral bulk phases that via an
electrode reaction or ion exchange are in chemical equilibrium (for the electron or at least one
of the ions). The bulk phases must in principle be able to keep a constant chemical potential
for the species that are exchanged, for instance because the bulk phases are continuously
refreshed. These EDLs can be called ‘reversible’ or ‘non-polarizable’. Instead, Type II EDLs
relate to processes without such a transfer of an ion or electron across the EDL, between
different bulk phases. These processes can be called ‘(ideally) polarizable.’ For Type II
EDLs there can be two bulk phases but there is no transfer of ions or electrons between
them. The other option is that there is one bulk phase, in most cases a liquid electrolyte, and
in addition there is a charged material that is entirely part of the EDL.

We next provide a sub-division of types of EDLs into five categories, where Type I relates
to processes with chemical equilibrium of ions or electrons between two bulk phases. When
the interface is an electrode, i.e., the interface between metal and electrolyte, and we have a
Type I EDL, then a Faradaic electrode process can take place. Instead, an electrode of Type
II is a capacitive electrode.

• Type Ia EDL. For certain interfaces, there is not much we can ‘change’ about the EDL
structure. This is for instance the case for the metal-metal interface (the metal-metal
‘junction’), and for the interface between a metal and a solid salt (e.g., the interface between
an Ag metallic wire, and the AgCl salt layer that covers it). At such an interface, an EDL
forms, with regions of positive and negative charge within the EDL, and a resulting voltage
difference across the EDL, but there is not much we can change about this equilibrium
EDL structure. There is just ‘one single operational point’ of EDL chargexvii and voltage.
For the example of Ag metal covered with AgCl, we can try to push in some extra charge
in the metal (by applying a certain current for a certain duration), but after that period, the
EDL returns to the structure it had before the current injection. It does not ‘remember’
this flow of charge.

xviOf course along the ‘line’ from very negative to very positive charge in these regions, there are obviously
situations with exactly zero charge separation, thus a zero EDL voltage.

xvii‘EDL charge’ refers colloquially to the charge of one of the regions in an EDL, see p. 495, and see Fig. 13.3 in
Ch. 13.
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• Type Ib EDL. For this type of EDL, we have one extra degree of freedom compared to Type
Ia because the EDL/interface is in contact with electrolyte of which the ion concentrations
can be changed. This is for instance the case for the outside of an AgCl layer (which covers
an Ag-metal wire), where the AgCl-layer is in contact with electrolyte. In colloid science
AgI particles dispersed in water are a well known system. Also the interface between a
Cu2+-solution and a metal falls in this group, where the Cu2+ ion can transfer from solution
to a bulk metal phase. For such interfaces, the EDL voltage follows the Nernst equation,
and the EDL voltage has a logarithmic dependency on the electrolyte concentration of the
ion (Cl– , I– , Cu2+) that exchange between the two phases (irrespective of how other ions
can modify the diffuse layer structure).

Similarly, for a Faradaic electrode process with either the reactant or product (or both)
coming from, or going to, an electrolyte phase, the Nernst equation describes the
dependence of EDL voltage on the concentrations of the ions that participate in the overall
electrode reaction (concentrations taken at a location near the interface, just outside the
EDL). Though an EDL forms, we cannot speak of charge storage (or storage of ions) at
the interface. By this we mean, if we charge an electrode for some time, then after we
cease current supply, charge will leak away again, and the electrode returns to the prior
state. Thus, unless we change ion concentrations in the electrolyte phase near the surface,
the EDL voltage cannot be changed.xviii

• Type IIa EDL. Type IIa EDLs are formed at the interface of electrolyte and a charged
material, not a metal; so it is not an electrode. Of the charged material we cannot change
the surface charge density by external means, and in this respect it is like a Type Ib EDL
in that there is only one equilibrium EDL structure based on the external composition of
the solution just outside the EDL. However, except for that similarity, everything else is
different. To describe the EDL structure, the ions that we need to consider are ALL ions.
All of them participate in formation of the EDL, i.e., all of them influence the EDL voltage.
The EDL depends on the concentration of charged groups of the material. Examples are the
EDL theories discussed in Ch. 2 for the Donnan structure inside ion-exchange membranes,
and Ch. 3 where we discuss the GCS theory.xix

xviiiOr we can change EDL voltages if one if one of the reactants comes from a gas phase, or goes to a gas phase,
and we change the gas phase pressure.

xixAlso the case of an ionizable surface falls in this group, where there is a surface with chemical charge that can
change as function of pH and other concentrations, i.e., the surface is ionizable. So also here an ion such as a
proton is at equilibrium between electrolyte and this charged region. However, it is an equilibrium of an ion
between one bulk phase and the EDL, and not an equilibrium (of a proton) between two bulk phases, as is the
case for instance for the I– -ions in an AgI particle.
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• Type IIb EDL. This is an EDL structure such as type IIa, again not an electrode, but now
we can change the density of ’fixed groups’ (for instance the adsorbed charged molecules
in an interface, or the charged polymer of a polymer gel), and thus a capacitance can be
defined as the change of a concentration with pressure. The EDL model not only relates
ion adsorption to the charge of the fixed groups, but also includes a relation between
external pressure and the density of these fixed groups. There being a capacitance implies
that we can change the charge and ion concentration in the EDL by external means, a
pressure in this case, and thus can ‘store’ charge and ions, to release them again at another
pressure.

• Type IIc EDL. This EDL structure is the electrode where, like type IIb, capacitance plays
a role, and we can store and release salt and charge by changing an external force. In
this case capacitance relates to the result of a change in voltage applied to the electrode,
the result being a change in charge or a change in ion adsorption. These are capacitive
electrodes. The EDL model describes the relationship between charge, ion adsorption,
and EDL voltage. The EDL voltage can be changed externally, leading to a different
charge (and ion adsorption). Or for instance at a fixed charge, when the external salt
concentration changes, the EDL voltage changes. Theseways to modify the EDL structure
are not possible in any of the other types of EDLs. The related EDL theory can be extended
to describe the pressure that such an electrode exerts on its surroundings, for instance a
volumetric expansive force exerted by a carbon electrode on the porous structure, or the
surface pressure exerted on the L/G interface in electrowetting.

It is possible to have a combined capacitive-Faradaic electrode process as we will discuss
in Ch. 14, i.e., Type Ib and IIc combined, and then the Faradaic process will ‘depolarize’ the
electrode and if that goes on for long we end up in the Type Ib case. In an electrochemical
cell with two or more electrodes we can have some electrodes being capacitive, and some
electrodes are Faradaic.

—

As discussed earlier on, we define the EDL as the complete zone between two charge-
neutral bulk phases, or between one such phase and one charged material that is completely
inside the EDL. Thus a porous ion-exchange membrane, or a porous electrode (which is
a porous structure of 100s of 𝜇m’s thickness with relatively large transport channels lined
with particles that themselves are nanoporous), as a whole is an EDL when not externally
perturbed much by flow across it. However, generally it will be perturbed a lot and then for
nanoporous materials (ion-exchange membranes), the interior of the membrane is no longer
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an EDL, though for a porous electrode, the individual particles that form the electrode can
still be (described as) an EDL if inside them there are no strong transport limitations.





13
The difference between Faradaic and non-Faradaic

electrode processes

Both Faradaic and non-Faradaic processes can take place at an electrode. In a Faradaic
process both reactant and product species transfer between bulk phases outside the electrode.
In a Faradaic process, after applying a constant current, the electrode charge, voltage and
composition will go to constant values. Thus, a current-voltage curve, or polarization curve,
can be constructed based on data from steady-state experiments. For a non-Faradaic process,
however, one cannot obtain a polarization curve, because upon applying an external current,
electronic charge is progressively stored. Instead, to characterize a non-Faradaic process,
one can inject a discrete amount of electronic charge into the electrode, after which the
voltage makes a change to a new value. By repeating this procedure a charge-voltage curve
can be constructed based on equilibrium data.

“How is one to differentiate between a faradaic and a nonfaradaic current? The answer is
that any process which allows a continuous current to flow will be regarded as faradaic,

whereas one which does not will be regarded as nonfaradaic. [...] The question of whether
or not a continuous current flows hinges upon the question of whether or not the [reaction]
products [...] can build up in concentration (or more strictly in chemical potential) [in the
electrode] in such a manner as to stop the flow of current. If one or more of the products
[..] can diffuse away, this will never happen, since more current will be needed to replace

the substance which has diffused away.”i – David C. Grahame (1952) –

iD.C. Grahame, J. Electrochem. Soc. 52, 370C–385C (1952).
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In electrochemistry and electrochemical engineering, there is a neat distinction between
two types of processes that can take place at an electrode. These are called Faradaic
and non-Faradaic (capacitive) processes. This difference is important because the two
processes represent two fundamentally different modes of how an electrode behaves and
how to characterize the electrode (process). Experimentally, for a Faradaic process we
can construct a steady state current-voltage (𝑖-𝑉) curve, or polarization curve, and this
makes it categorically different from a non-Faradaic process, which can be described by an
(equilibrium) charge-voltage (𝜎-𝑉) curve. Thus, the proper class of an electrode process
can (with some restrictions) be established on the basis of experiments using an electrometer
without knowledge of microscopic details of the electrode process. Let us explain the two
types of electrode processes in more detail below.

To have a Faradaic process, there must be an electrode reaction where an ion or atom
is reduced or oxidized to another species, and in addition the reactant must come from a
bulk phase, and the product of the reaction must leave the EDL and go to a bulk phase, see
Figure 13.1. This can be the same bulk phase (where the reactant came from) or another
one. Bulk phases are the phases outside the metal/electrolyte interface, i.e., outside the EDL,
outside the electrode. Thus, in a Faradaic process, reactants and products of the electrode
reaction enter and leave the electrode (i.e., enter and leave the interface, the EDL).

In Faradaic processes, in most cases there is the transfer of electrons across the EDL, from
a conductor (metallic) bulk phase, to the ionic bulk phase (or vice-versa). If electrons move
to the ionic phase, the ions (or other molecules) that enter the EDL in oxidized form leave as
reduced species and go back to an electrolyte phase (or alternatively to another phase, such
as a gas phase). In the other case of Faradaic processes, it is the ion that crosses the EDL,
coming from a bulk solution and ending up in a bulk metal phase (or vice-versa). This is
what happens in metal plating.

In both these types of Faradaic processes, electrons or ions transfer across the EDL. In
neither case is charge progressively stored in the EDL.ii The bulk phases serve as a reservoir
for reactants and products that are involved in the electrode reaction. These are reservoirs
where we can in principle establish a constant chemical potential (activity, concentration)
of the relevant molecules, for instance by constantly refreshing the reservoir, or by making
it large.

iiSee p. 495 for a discussion of how the EDL is always charge neutral overall, but there are multiple regions of
charge, 𝜎𝑖 , that together are charge-neutral. In case there are only two such regions, then 𝜎1 + 𝜎2 =0, i.e., the
two charges are the same in magnitude but opposite in sign. The charge in one arbitrary region is colloquially
referred to as the EDL charge, and typically this region is the metallic phase if there is one, or else it is the more
‘solid’ phase.
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For at least one component this bulk phase will be an electrolyte phase (either liquid
or solid), in which ions or uncharged molecules are dissolved (or are a constituent of the
solvent), but the other reservoir can also be something else, such as a bulk metal phase, as
is the case for a plating reaction. Alternatively, an oxidic layer formed on a metal can serve
as reservoir, or a solid salt, as is the case for a corrosion process, for the lead acid battery,
or for the Ag/AgCl electrode. Finally, one of the bulk phases can also be a gas phase, as for
hydrogen fuel cells.

With ionic (atomic, molecular) reactants coming from such a bulk phase, and products
eventually going there, we have a Faradaic process. In that case we can characterize the
electrode process by construction of a polarization curve (𝑖-𝑉 curve). This is the same when
the electrode reaction is part of a chain of reaction steps where prior to and after the electrode
reaction the ions (atoms, molecules, adsorbed species) are involved in transport and reaction
steps without an electron (not an electrode reaction), such as adsorption/desorption to/from
the surface and association/dissociation reactions on the metal surface. Also in this more
complex reaction scheme, the key requirement for a process to be Faradaic or not is still
whether or not the electrons and ions that enter the EDL and participate in an electrode
reaction, also leave the EDL again in the form of a different molecule, and go to an external
bulk phase. For such a Faradaic process, as long as the external bulk phases do not change
their composition (and do not disappear altogether), steady-state operation is possible, where
each value of current corresponds to one value of electrode potential and vice-versa. So
these are Faradaic processes.

—

In contrast, in a capacitive electrode process, i.e., a non-Faradaic electrode process, with
current flowing across the electrode, charge is progressively stored. But what does charge
storage mean, because isn’t the EDL always charge neutral overall? The answer is that in an
EDL there are regions of positive and negative charge. And indeed, the charges in all these
regions together always add up to zero. But in a capacitive process, with current flowing,
the charge in each of these regions continuously changes, and in one region the charge will
go up, in the other go down.iii

Interestingly, in a capacitive process there can also be an electrode reaction involving
electrons and ions (atoms, groups, etc). But the ions (atoms, etc) that enter the EDL are not

iiiColloquially this is expressed as that ‘the EDL charge goes up/down.’
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able to leave the EDL.iv Examples of a capacitive process in which there are certain atoms
located inside the EDL that undergo an electrode reaction, is the storage of charge (and ions)
in intercalation materials such as Prussian Blue Analogues (PBA), which are materials of
importance for capacitive deionization (CDI), see Ch. 1. During cation adsorption in the
pores of these materials the Fe3+ lattice atoms (atoms which are part of the solid crystal
structure of the PBA) are reduced when they take up an electron. Then, the PBA lattice (one
region in the EDL) decreases in charge, while the pore solution (another region of the EDL)
increases in charge. In these cases we have a non-Faradaic process, for which a 𝜎-𝑉 curve
can be constructed, and not an 𝑖-𝑉 curve. The 𝜎-𝑉 curve of these electrode materials can
be analyzed to derive values for capacity (a number typically with unit C/g) or capacitance
(F/g), see p. 495.

The distinction between Faradaic and non-Faradaic electrode processes has in literature
sometimes led to some confusion. In some cases a Faradaic process was associated with
transfer of an ion or electron across some surface inside the EDL structure, where surface
then is a dividing plane theoretically presumed to exist in the EDL.vvi The notion of a such
a theoretical surface, however, is problematic because many surfaces can be defined in a
microscopic model of an EDL.

Other literature sources assume that the simply presumption of there being an electrode
reaction is sufficient to qualify the process as Faradaic. However, these two criteria depend
strongly on a microscopic perspective of the EDL, i.e., on the theoretical picture proposed
of the atomistic details of what occurs in the electrode (see p. 15). But this picture may be
up for discussion. And this perspective neglects the experimental side of the EDL concept,
which relates to (the identification of relevant) metrics and characterization methods. This
strong focus on the microscopic perspective may have been why these two criteria led to a
blurring of the clear distinction between these two basic types of electrode processes, and
why as a consequence much additional vocabulary was generated over the past decades to
describe purported intermediate cases.

The confusion is absent when the definition of a Faradaic electrode process includes the
specification that both reactants and products move in and out of the interface (the EDL, the
electrode), to and from adjacent bulk phases, and neither of them accumulates in the EDL,

ivWhen such a capacitive process is run in reverse, the ions do leave the electrode, but they came at that moment
from the EDL, where they had been stored for a (potentially long) time; i.e., they didn’t come in from a bulk
phase ‘a second ago’. Also in this case the charge and ionic composition of the EDL changes in time, which
shows this is a capacitive process.

vIn contrast to this notion, we argue that a Faradaic process requires the transfer of an electron or ion across the
complete interface, i.e., across the EDL, or electrode.

viSee p. 495 for a further definition of interface vs. surface.
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as already explained by Grahame in 1952, see p. 357. In this case a steady state process is
possible for a Faradaic process, with a constant current and an ongoing electrode reaction,
while the charge in the various regions in the interface stays the same. This does not happen
in a capacitive process.

Thus, the distinction between capacitive and Faradaic electrode processes depends on
whether during current flow there is accumulation of some species (and thus charge) in
the interface between a metal and electrolyte bulk phase (this interface is the electrode, the
EDL).vii There is no need to search for or define a mathematical dividing plane (surface)
inside a microscopic (theoretical) EDL model, and there is no need to decide whether inside
the EDL electrons or ions hop across this surface. Instead, one can focus on finding (by
experiment) an answer to the question whether the electrode changes its composition over
time upon ongoing current supply. If there are no changes, the electrode process is Faradaic
but if the question is answered in the affirmative, we have a capacitive (i.e., non-Faradaic)
process.

Faradaic and non-Faradaic processes are easily distinguished, but two additional remarks
are relevant. First, in an electrode both processes can occur at the same time. Thus there
can be a capacitive process going on with increasing storage of charge and ions, while at the
same a Faradaic current leads to charge leaking away. The opposite situation is when in a
perfect Faradaic process, we change one of the external conditions, such as current, voltage,
or electrolyte composition. Then for a (very brief) period some capacitive (non-Faradaic)
current will flow to adjust the EDL interfacial structure to the new situation. But after
that brief period of time, this extra current ceases and the electrode process continues in a
steady-state Faradaic manner.

Faradaic and non-Faradaic processes can be distinguished on the basis of how they respond
to a step change in voltage (see Fig. 13.2, panel a and b) or current (panel c and d). Upon
a step change in electrode potential (panel a and b), the Faradaic process quickly levels out
to a new value of the current (different from before). Instead, in the non-Faradaic process,
after a voltage step change, after some time the current will return to zero, and it will do so
after each step in voltage. The integral of current with time (denoted by * in panel b), is the
additionally stored charge (see panel f). When instead of stepping up the voltage, we step
up the current (panel c and d), the Faradaic process responds by going to a new electrode
potential, while in the non-Faradaic process, any ongoing nonzero current will either result
in the voltage increasing without limit, or the voltage is constant for a limited period of time
before it also starts to increase. This second scenario is possible when there is internal phase
separation in the electrode, related to strong interactions between ions in the EDL, see Chs. 1
viiAccumulation refers to the change in time of a concentration or amount.
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and 15.
Based on data from such experiments, we can construct two types of defining characteristic

curves. For the Faradaic process, we can construct a current-voltage curve based on steady-
state data, the 𝑖-𝑉 curve, or polarization curve, see Figure 13.1e. For the non-Faradaic,
capacitive, process, the defining curve is very different, and it is a curve of charge, often
defined per amount of electrode material, as function of electrode potential. The slope of
the curve is the capacitance (also called differential capacity), an electrode property with
dimension F/g, and a function of where we are on the curve, i.e., a function of EDL charge.

Let us analyze what happens when the current approaches zero and the system goes to
equilibrium. For the Faradaic process the electrode potential goes to a value given by the
Nernst equation, see Ch. 14. What does the Nernst potential depend on? It does not depend
on all ions in the electrolyte. Instead, it only depends on the activity of those ions in the bulk
phases that are reactive in the electrode, i.e., the activities of the reactant and product species
involved in the electrode reaction. With the activities (chemical potentials) of these species
fixed (in their bulk phases), there is no way to modify the EDL structure and the equilibrium
Nernst potential, for instance by pushing in charge.viii After pushing in charge for some
time, and then turning off the current again, the charge just leaks away again because of
the Faradaic process, and the system returns to the prior equilibrium EDL structure and
the prior value of the Nernst potential. This is in stark contrast to what happens in a non-
Faradaic, capacitive, process. Here, the equilibrium electrode potential and composition can
be controlled by injecting extra charge, which does not leak away, but is stored. Examples
of Faradaic and non-Faradaic electrode processes are discussed in Chs. 14 and 15.

—

Perhaps it was noticed that in the above discussion the term ‘charge transfer electrode’ was
absent. This is a term often used to define a Faradaic process. The reason for its absence in
this book is that all electrodes are charge-transfer electrodes, in the sense that in all electrodes
there is continuity of electronic and ionic current, i.e., the electronic and ionic currents are
the same ‘numerically’, though not in what are the charge-carrying entities. Thus, the EDL
as a whole always remains charge neutral, see Fig. 13.3, so all electrode processes transfer
charge across the electrode.

But it is possible to state whether in a certain Faradaic electrode process there is electron
transfer or ion transfer across the interface, i.e., across the EDL, from one bulk phase to
another. E.g., in case of ion transfer, a Cu2+-ion transfers across the interface (the electrode)
from the electrolyte bulk to the metal bulk. often it is an electron that transfers from the
viiiThis is at equilibrium. When we are off-equilibrium, the EDL structure changes.
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In all electrode processes, the electronic current that arrives in an electrode equals the ionic 
current leaving the electrode. This is valid for capacitive and Faradaic electrodes alike. 

The EDL as a whole always remains charge neutral, without accumulation of charge (). 
Thus in each electrode type, there is always full transfer of charge across the electrode.
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(): The EDL has regions of positive and negative charge, and the charge in each region can 
change. This change is colloquially called charge storage/accumulation in the EDL.

Fig. 13.3: In any electrode process there is complete transfer of charge across the interface, because
the interface, the EDL, as a whole does not store charge. This is the case for capacitive (non-Faradaic)
and Faradaic electrode processes alike.

metal phase to the electrolyte, recombining with an incoming ion and leaving as another
ion. Thus we can use the term ‘charge transfer electrode’ to define a Faradaic process, if we
realize it must mean the transfer of an ion or electron completely across the electrode, from
one bulk phase to another. So the term ‘charged species transfer electrode’ would be more
correct.
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Electrode Kinetics

Ions and other species can adsorb at an electrode, diffuse over the surface, react with other
species, and when the conditions are right, possibly combine with electronic charge to react
to another species in an electrode reaction. This can happen both in capacitive and Faradaic
processes.a This electrode reaction –the reduction/oxidation reaction of an adsorbed (atomic,
ionic) species with electronic charge– will often be fast relative to the other steps, which
include: transport of ions from bulk electrolyte to the electrode, association/dissocation
reactions at the electrode, and surface diffusion over the electrode. When the electrode
reaction is fast, the Nernst equation can be used. In cases where the electrode reaction is
(partially) rate-limiting, an expression where the rate depends on kinetic constants and the
electronic and ionic charge must be used. In this case (where we have a limited rate of the
electrode reaction) a detailed model of the EDL structure becomes important. This is also
the case when there are multiple competing reactions on the same electrode.

aIn a Faradaic process the reactants at the start of the entire sequence of adsorption and reaction come from an
adjacent bulk phase, and the product of the reaction chain (after the electrode reaction) leave again to go to a
bulk phase. This can be the same bulk phase as where the reactants came from, or it can be another bulk phase.
In a capacitive process at some stage the reaction sequence is truncated and the intermediate species remains
locked in the electrode.
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14.1 Introduction

In 1965 it was Paul Delahay who wrote in his book ‘Double Layer and Electrode Kinetics’ that
‘mastery of electrode kinetics requires adequate understanding of double layer phenomena’,
and we completely agree (of course). Thus, after many chapters in this book devoted to
the EDL without considering electrode reactions, we can now take up the topic of electrode
reaction kinetics and the influence of the EDL structure. We will consider Faradaic processes,
thus after a step change in voltage or current, after some time a new steady state will be
reached where an ion, metal atom, or gas molecule, is reacting away, and a product molecule
formed, at a constant rate.

Electrode Kinetics, or electrocatalysis, is the scientific field in which the chemical steps
occurring in an electrode are studied in detail.i These reaction and transport steps mainly
occur inside the EDL, i.e., inside the electrode, which is the interface between a metal and
an electrolyte phase. One of the reaction steps is an electrode reaction, which is the step
where an atom or other adsorbed entity reacts with electronic charge. An electrode reaction
can either be in the direction of oxidation, where an ion releases one or more electrons, and
in the direction of reduction, where an ion picks up electrons, i.e., it is reduced. An example
of reduction is when a cation picks up an electron and becomes a neutral atom.

Do we always have two (or more) electrode reactions? A very important question is,
if we have a Faradaic reaction in one electrode, do we then also need to have a second
Faradaic reaction in a second electrode?ii Such that the two Faradaic reactions together
ensure that the electrons liberated in the anode, are taken up by the cathode. This is often
implied in many texts, and for instance is the basic principle underlying the classroom
exercise to combine two ‘half reactions’ into one full redox reaction. However, to have
(at least) two electrodes, where in each a Faradaic reaction takes place, is only required
for a steady-state process. But not in a dynamic process, which is a process where
electrode properties are allowed to change in time. We will next discuss three situations
where the requirement of two simultaneous Faradaic reactions is not met.

First, we can have an electrode reaction in a single electrode that is disconnected
from any other electrode. When this electrode (one that allows an electrode reaction)
is inserted in an electrolyte, or the conditions in the electrolyte are changed, then an

iElectrode Kinetics is different from the field of Electrokinetics, which is the study of transport processes around,
and in, charged materials and particles, often related to solving the Navier-Stokes equation including the
electrostatic body force term, see Ch. 8.
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electrode reaction will briefly take place. When on a piece of metal several half-
reactions take place near each other (two Faradaic reactions), anodic and cathodic, even
though this may be one and the same piece of metal, we nevertheless have different
electrode structures, i.e., different electrodes, on its surface. These different electrodes
form regions that may be very nearby one another, short-circuited through the metal,
but different electrode reactions take place in the two regions. Such a two-electrode
system on the same piece of metal, this can run for a very long time.

Second, in a cell with two electrodes, where one electrode is capacitive, and the other
Faradaic, we can have electrode reactions in both (or only in the Faradaic electrode),
but there is no equivalence between the rate of oxidation in the anode and the rate of
reduction in the cathode.

Third, we can have two Faradaic electrodes, and even here the two Faradaic reactions
do not always have to add up perfectly. Because after we change the cell voltage, or
current, for a brief time the two electrode reactions in the two electrodes are not exactly
equal, and the EDL structures (charge) in the two electrodes change. Only when steady-
state is reached, do we end up in the situation that the two electrode reaction rates are
the same again.

All of these situations are discussed in Ch. 16.

The electrode reaction will often be fast compared to all the other reactions and transport
processes that occur in the electrode prior to, and after, the electrode reaction. By ‘prior’
and ‘after’, we refer to the sequence of reaction steps that takes a reactant from a bulk phase
to a product in the same, or another, bulk phase. Then to describe the electrode reaction
the Nernst equation can be used which assumes local chemical equilibrium between the
species involved in the electrode reaction. The Nernst equation relates local concentrations
of (adsorbed) species with a potential drop across an inner layer, a layer between the location
of these species and a position in the metallic phase. In this way the chemical potential
of the electron plays a role in the reaction rate. We can use the Stern layer concept from
Chs. 2 and 3 and equate it with the inner layer across which the electron transfers. The EDL
structure will now influences the electrode reaction equilibrium, because of the Stern layer
potential and the ion concentrations inside the EDL. Also other non-reactive ions influence
the EDL structure and in this way influence reaction rates and electrode selectivity.

Initial studies on the influence of the EDL on the electrode reaction (rate, direction) were
by Frumkin (1933) who described how the rate of an electrode reaction depends on the
Stern potential, and by Grahame (1952) who wrote how the rate of the electrode reaction is
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a function of a local voltage drop across (part of) the EDL, and not dependent directly on
the measured potential in the connecting wire relative to a reference electrode.

We will focus in this chapter of Faradaic processes, which are processes that can run
in steady state (see p. 495) without the electrode structure changing. This implies there
must be an electrode reaction taking place. There is an EDL formed, with a diffuse layer
and other elements to the EDL structure, and the structure of the EDL strongly influences
the current. For mixtures with various ions and other species, the EDL structure and the
electrode potential not only influence the rate of conversion, but when there are multiple
electrode reactions, these factors also influence the selectivity of the electrode process, i.e.,
they play a role in what are the main products of the electrode process.

We can study an electrode process by focusing on one electrode (which is then the
‘working electrode’ in a setup with also a counter electrode and a reference electrode), or we
can study a full electrochemical cell with two electrodes, and run an entire electrochemical
process. It is possible to place this primary electrochemical cell inside a larger, secondary,
electrical circuit (which is then also an electrochemical cell as a whole) that pushes electronic
charge into both electrodes of the primary cell, which influences rates and selectivities in the
primary cell. This works best when the primary cell has very low electrode reaction rates.
The best example of this method, of unfathomable importance to society, is the cathodic
protection of steel and other metal structures. Metal must be protected from corrosion, which
is the oxidation of metal atoms at the anode of the primary electrochemical cell. When the
secondary cell pushes electrons into the primary cell, the electrode potentials in the primary
cell go down, both in the anode and in the cathode, and thus the Nernst reaction in the anode
is shifted away from oxidation, and pushed towards reduction, i.e., towards formation of the
metal. At sufficiently low potentials, electrons and metal cations (in the oxidic corrosion
products around the damaged metal piece) may even recombine to form metal again.

Even though two-electrode and multiple-electrode cells are of great interest, as indicated
above, in the next sections we focus on the study of a single electrode. The theory of
electrode kinetics in a single electrode is at the basis of the study of systems with multiple
electrodes.

14.2 The Nernst equation, role of EDL structure, and
surface transport

To explain how a model can be set up for transport of molecules to an electrode and
subsequently an electrode reaction there, we make an example calculation for a very
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important electrochemical reaction, namely the oxidation of CO on a platinum electrode
to CO2. The model we describe below illustrates the general structure of the theory and
identifies the various factors that can influence the reaction rate. These can include transport
of species towards and over the electrode surface, the structure of the EDL around the
reaction site, and, via the Nernst equation, the electrode potential.iii

The reaction of CO to CO2 on a Pt-electrode in water follows an intricate set of reaction
steps, and in the theory below we only include a limited number of these steps. The steps we
include are as follows. First of all, we consider the diffusion of CO through the water to the
platinum surface, and subsequently the diffusion of adsorbed CO over the electrode surface
towards the reaction sites, which are terrace steps in the Pt-surface. At these locations,
which can be envisioned as ‘lines’ running across the electrode surface, OH is adsorbed, the
product of a reaction of water that releases an electron and a proton. When the diffusing
COads arrives, it reacts with OHads and CO2 is formed, together with a proton and an electron.
We assume that the reaction product, CO2, immediately dissolves into the water, which has
a constant CO2 partial pressure. In the first calculation we neglect how this CO2 can convert
into bicarbonate ions. We also neglect how bicarbonate ions have a tendency to (re-)adsorb
to the surface, slowing down electrode reactions.

Thus in this problem we envision lines criss-crossing the surface, with OH-species
adsorbed at these lines (the terrace steps). The lines have all kinds of patterns, which
we will not consider, but from optical images we can observe and measure the line density
which is the length of line per unit electrode area, ℓ. The line density ℓ recalculates to an
average distance between the reaction lines as 𝛿 = 1/ℓ. The CO dissolved in water at a certain
bulk concentration first diffuses through the water to the surface, and adsorbs everywhere on
the Pt. After being adsorbed, it diffuses over the surface to the reaction lines. We describe
surface diffusion along a line described by a coordinate 𝑥 that runs between two (assumed
to be parallel) reaction lines. The COads adsorbs anywhere between the reaction lines and
then diffuses in this 𝑥-direction to the reaction lines.

The reactions at the OH-adsorption lines we consider later, but let use first describe the
diffusion of CO through the water to the electrode surface and then across the surface. For
the adsorbed CO-species, we can set up the mass balance on the electrode surface

𝜕𝑐ads

𝜕𝑡
= 𝐷s

𝜕2𝑐ads

𝜕𝑥2 + 𝐽 (14.1)

where 𝑐ads is the concentration of adsorbed CO and 𝐽 is the 𝑥-dependent ‘incoming’ CO-
flux (from solution). For this we can use any equation from Ch. 7, which all show that in
iiiFor a more detailed model, see Koper et al., 2002.
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steady-state the flux towards a reactive interface is linearly dependent on the difference of
bulk concentration, 𝑐∞, and surface concentration, 𝑐∗,

𝐽 = 𝑘L (𝑐∞ − 𝑐∗) (14.2)

where the transfer coefficient 𝑘L can have different dependencies on diffusion coefficients,
stirring intensities, etc., dependent on the chosen dispersion model, see Section 7.1.

We assume that there is an instantaneous adsorption equilibrium 𝑐ads = 𝐾 𝑐∗ at each
position 𝑥. We will assume steady-state and thus set 𝜕𝑐ads/𝜕𝑡 to zero. Eq. (14.1) is then a
second order ODE mathematically similar to Eq. (12.3) in Ch. 12. The solution is also given
there as Eq. (12.4) and based on that result we can derive an expression for the flux along
the surface of CO ‘into the reaction lines’ (from one side) J. Thus per unit electrode surface
the CO conversion rate is 𝑟CO = 2 ℓ 𝐽, which is given by

𝑟CO = 2ℓ𝐽 = 2ℓ
√︁
𝐷s𝑘L/𝐾

(
𝐾 𝑐∞ − 𝑐RL

ads

)
(14.3)

when the group 𝑘L/(ℓ𝐷s𝐾) is larger than around 10, which is the case when the reaction
lines are sufficiently far apart (low ℓ). In Eq. (14.3) 𝑐RL

ads is the concentration of adsorbed CO
at the reaction sites where CO will react with adsorbed hydroxyl ions.

Eq. (14.3) shows that transport limitations already are able to limit the rate of this process,
whatever we do to enhance reaction kinetics, namely 𝑟CO cannot be larger than the value
given by Eq. (14.3) when we insert 𝑐RL

ads = 0.
But let us continue for conditions that the supply of CO by transport is not rate limiting.

Then we require further information on the rate of the electrode reaction.



15
Porous electrodes

Porous electrodes are important in electrochemical processes, for various purposes. They
store energy in batteries, and they can be used for water desalination, as well as for enhanced
Faradaic conversions. We present calculation results for these three examples based on
porous electrode theory. This is a theory for transport, reactions and storage of ions and
charge across a porous electrode, taking into account that a porous electrode is a multi-
phase system with separate phases for ion transport, storage of ions and charge, and electron
transport.
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15.1 Introduction

Porous electrodes are encountered in many applications in electrochemical processes. An
important application is water desalination by capacitive deionization, where ions are stored
throughout the electrode in EDL structures formed in porous materials that can be electrified
(electronically addressed, i.e., connected electronically to an external electric circuit). This
porous material (often based on a finely dispersed powder that is compacted and solidified
with a binder) is accessible for ions because of transport pathways that cross the full thickness
of the electrode. In secondary batteries, such as Li-ion batteries, in the same way ions
transport across the electrode and are stored in materials with a high capacitance. A
notable difference is that the electrolyte salt concentration is many times larger than in water
desalination, to avoid salt depletion and to minimize ionic resistances; also the solvent is
generally not water. Hydrogen fuel cells also use a thin layer of porous electrode that is on
top of a solid electrolyte phase and in contact with H2-gas. In fuel cell electrodes catalytic
nanoparticles are deposited on the porous electrodes to facilitate the conversion of H2 to
protons that go into the aqueous electrolyte phase and diffuse into the proton conducting
membrane. In certain types of solid electrolyte fuel cell, instead of protons, O2– -ions travel
across the membrane and on the other side react with H2-gas to water. Porous electrodes
can also be used in reactor systems to enable enhanced rates of electrode reactions because
of the larger accessible area than for non-porous electrodes.

In all of these porous electrodes, not just contact with ions is important (and with gaseous
fuels in fuel cells), but electronic charge must also be able to be transported throughout the
electrode and reach the sites where electrode reactions take place and/or sites in the material
where EDLs are formed. Thus not only the ionic conductivity inside the porous electrode is
of importance, but the electronic conductivity as well.

The electronic conductivity is the key challenge when porous electrodes are applied as
slurries or in fluidized beds. In such a system ionic contact is optimal, but electronic contact
certainly problematic. Metallic mesh structures, thin channels, conductive additives, are
all options that can be helpful and all are investigated to optimize these ‘fluid electrode’
systems. In this chapter, however, we focus on film electrodes, which are electrodes that are
constructed as a permanent structure fixed in place.

A porous electrode consists of many phases. First of all there is a part that keeps the entire
structure together, a ‘glue’, often a fibrous structure able to cast a web across all particles that
binds all elements together. In a tight-packed and closed-off battery cell, this component
might not be necessary but when there is a flow of water and/or gas through or along a
porous electrode, a glue is necessary to keep the structure together.
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Then we need a material that conducts electronic charge across the electrode with only
a small loss of energy (low voltage drop). Thus we need a very conductive matrix, for
instance made of graphite or carbon black or electron-conducting polymer. And then we
need pathways for ion transport as well. These pores are often called ‘macropores’ as they
are long (traverse the entire electrode) and relatively wide (order of a few microns). The
electron-conducting phase and these macropores must form uninterrupted, i.e., continuous
pathways. If there is a disconnect or bottleneck, transport beyond that point is hampered.
What is required is a percolating network, both for electronic charge, and for ionic transport.
In contrast, what does not need to be continuous are the locations where electronic charge
and ionic charge ‘meet’ in EDL structures, either to be stored there (capacitive electrode) or
to react to products that subsequently diffuse out of the electrode again (Faradaic electrode).
These sites can be positioned to directly ‘line’ the macropores, which speeds up rates
when the electrode is used for a Faradaic (conversion) reaction. Alternatively, when the
aim is to store ions and charge in EDL structures, these EDLs are inside microporous
materials, finely distributed across the electrode. These microporous materials can be
porous ‘activated’ carbons, ‘intercalation host compounds’, or ‘insertion materials’, and the
pores inside them simply called ‘micropores’. These EDL structures and reaction sites must
be accessible both for ions (arriving from the macropores) and for electronic charge (from the
conducting pathways). After constructing a porous electrode from various solid materials,
the electrolyte-filled macropores are automatically formed as the remaining open phase in
between these solid phases. that is

Of course any electrochemical cell has at least two electrodes, and this is also the case
for porous electrodes. Nevertheless, on shorter time-scales, processes are possible in a
single stand-alone electrode. A porous particle, disconnected from an electrical circuit, for
a brief period can absorb some ions with a simultaneous electrode reaction that produces
the electronic charge that is then charge-compensated by counterions in the EDL. But such a
process ceases quickly, and to then make the process continue, the particle must be connected
to an electrical circuit and thus to another electrode. This other electrode does not have to
be another porous electrode. In fact, there are no fundamental restrictions on what the other
electrode(s) should be. In this chapter we only discuss a single electrode.

We will discuss three relevant examples of porous electrodes in electrochemical processes,
and in the context of each example illustrate the theory of porous electrode transport and
storage.
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15.2 Faradaic reactions in a porous electrode

To enhance the rate of electrode reactions, porous electrodes are useful because they provide
more surface area. The carrier liquid then often flows through the electrode, through the
(macro-)pores. These pores are the electrolyte-filled phase of a porous electrode. In direct
contact with these pores is a fine dispersion of catalytic sites where we have the electrode
reaction. The higher the number of these sites, the higher the electrocatalytic activity of the
electrode.

A differential mass balance inside the porous electrode for a component 𝑖, which can
either be a reactant or product of the reaction, isi

𝑝
𝜕𝑐𝑖

𝜕𝑡
= − 𝜕

𝜕𝑥
𝐽𝑖 + 𝑅𝑖 (15.1)

where 𝑝 is porosity, and concentrations 𝑐 are defined per unit pore volume. The flux 𝐽𝑖 is
per geometrical (‘total’) cross-sectional area, and formation rates 𝑅𝑖 are defined per total
electrode volume.

For the molar flux 𝐽𝑖 we can use the extended Nernst-Planck equation. Because the pores
are generally relatively wide, we do not need to consider an ion-matrix friction, and like in
prior chapters we can use

𝐽𝑖 = 𝑣F𝑐𝑖 − 𝜀𝐷𝑖,∞
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(15.2)

where the fluid flow rate 𝑣F is per geometrical area. The factor 𝜀= 𝑝/𝜏 is included because
porosity p is not 100% and because the pores are tortuous, i.e., longer than a straight pore.
Often for porous structures, 𝜏 is related to 𝑝 by the Bruggeman equation, 𝜏 = 𝑝−1/2. In
these equations, concentrations and fluxes are in general time- and position-dependent. The
electric potential here, 𝜙, is that in the electrolyte-filled pores. Further on we also discuss
the potential in the electron-conducting phase, 𝜙ec. At the edges of this electrode, this
pore potential 𝜙 ‘continues’ into adjacent electrolyte phases without a potential jump, and
the same for ion concentrations, 𝑐𝑖 . So this is different from a charged membrane, where
there is a Donnan layer at the membrane/solution edge that leads to a jump in potential and
concentrations across this interface. Even though 𝜙 and 𝑐𝑖 are continuous at these outer
interfaces of the porous electrode, where they are in contact with solution/free electrolyte,
the gradients 𝜕𝑐𝑖/𝜕𝑥 and 𝜕𝜙/𝜕𝑥 do make a jump because of the 𝜀-factor (which is unity in

iJust as in other chapters, we prefer here the use of the notation 𝜕/𝜕𝑥 to describe gradients. The extension to
flow in many directions is unproblematic.
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an open electrolyte phase, and less than unity in a porous electrode), because for each ion
the fluxes are continuous across the interface, 𝐽𝑖,just inside electrode= 𝐽𝑖,just outside electrode.

If a reaction takes place on the catalytic sites that are dispersed throughout the porous
electrode, then we can relate the surface concentration right next to these sites, 𝑐s,𝑖 , to the
average concentration in the pores, 𝑐𝑖 , by a relation where 𝑐s,𝑖 − 𝑐𝑖 is proportional to the
reaction rate 𝑅𝑖 . For a reactant, we will have 𝑐s,𝑖 < 𝑐𝑖 , and for a product of the electrode
reaction it will be the other way around. For such correlations between a flux to the surface
and this concentration difference, see Section 7.1. Thus within the electrode we can run into
a ‘limiting current’ when the surface concentration of reactants hits zero. When this happens,
locally the electrode potential will strongly increase, and the current that was flowing to this
position will be redirected to other parts in the electrode.

In the transport pores there will be local electroneutrality based on the ions present in
the pores. For instance, when we only have Na+ and Cl– as ions, then in the pores their
concentrations are the same. This is because the charge in the EDLs is electroneutral by
itself, discoupled from the pore charge balance, which is because the pores are generally quite
wide (order of microns in the cross-section). This is very different from the electroneutrality
condition in charged membranes for RO or ED, where pores are one or a few nm across
and then the charge density of the membrane structure ‘on the surfaces of the pore’ interacts
with the charge balance of ions inside the pores. So for the porous electrode, for all ions
the mass balance, Eq. (15.1), is solved. For reactive ions, see Ch. 10, 𝑅𝑖 also contains
reactions between ions in solution, but these reactions are not considered in this chapter, and
𝑅𝑖 only refers here to the electrode reactions throughout the porous electrode (taking place
on electrocatalytic sites).

We inject per unit time a certain total current 𝐼 tot (in A) into a volume 𝑉 of electrode, but
this total current will not flow to all parts of the electrode in equal measure, i.e., more can
go to one region and less to another. If the electrode reaction involves 𝑛 electronic charges
per atom converted, then a volume integration over the entire porous electrode leads to

𝐼 tot = ± 𝑛 𝐹
∫
𝑉

𝑅𝑖 d𝑉 (15.3)

where the reaction rate 𝑅𝑖 can be position- and time-dependent.
The current 𝐼 tot is an electronic current arriving from the electronic circuit, and then

distributing across the complete porous electrode, and is equal to the ionic current coming
from the electrolyte phases around the electrode. More precisely, with these currents defined
as positive when directed from outside into the porous electrode, then the summation over
all these currents is zero. The porous electrode as a whole is always charge-neutral. This is
not just the case in steady state, but also in a dynamic situation, when the electrode structure
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changes. (As we see later, the same condition holds microscopically, at the scale of an EDL
or catalytic site.) This ionic current typically enters the porous electrode on one side, namely
where it is closest to the other electrode. At this interface we then have a certain ionic current
density 𝐼 ionic. And on other sides of the electrode there is no ionic current going in or out,
i.e., we have a zero-current condition, for instance where a dense layer serves as the current
collector. Electronic current for instance enters the electrode at this current collector that
was blocking for ionic current.

So how to describe the reaction rate 𝑅𝑖? We already pointed out that the reaction rate
increases with a higher density of reactive catalytic sites. Though of course when the
catalytic reaction is fast enough, the mass transfer processes inside the electrode become
rate-limiting, and more catalyst will not make the process faster.ii It also depends on the
surface concentrations 𝑐s,𝑖 which depend on the average pore concentration (at that position)
𝑐𝑖 and on a mass transfer coeficient 𝑘L and on the intrinsic kinetics of the reaction itself.

To describe the rate of the electrode reaction, there are many options. The most common
is the Butler-Volmer framework which relates the rate 𝑅𝑖 to the concentrations of reactive
ions in the electrolyte near the reaction site, and to the electrode potential, 𝜙𝑒, which is the
difference in potential between the electron-conducting (metallic) phase, and the electrolyte
phase (inside the pores), i.e., 𝜙𝑒 = 𝜙ec − 𝜙. Thus, the electrode potential can enhance the
rate of reaction, even making it reverse its direction. Thus, the electrode potential works as
an extremely powerful ‘catalytic engine’, able to make a reaction go faster or slower, making
it come to a standstill, and even make it go in reverse, switching around what is reactant and
product!

According to the BV-equation, and for a one-electron reaction, 𝑛= 1, the reaction rate is
given by

𝑅𝑅 = −𝑅𝑂 = 𝜚𝑅 − 𝜚𝑂 = 𝑘𝑅𝑐𝑂𝑒
−𝛼𝑅𝜙𝑒 − 𝑘𝑂𝑐𝑅𝑒+𝛼𝑂𝜙𝑒 (15.4)

where 𝑅𝑅 is the formation rate of species R, i.e., the reaction rate in the direction of reduction,
equal to −𝑅𝑂, which is the formation rate of species O, i.e., the reaction rate defined in the
oxidation direction. They are to be distinguished from the reduction reaction, i.e., only the
reaction in the reduction direction, 𝜚𝑅, and the oxidation reaction, 𝜚𝑂. Instead, 𝑅𝑅 (and
similarly 𝑅𝑂) is always a combination of a reduction reaction and an oxidation reaction. The

iiThis is a general ambivalence in the language of reaction modelling. It is often asserted for instance that
enhancing the catalytic activity will enhance the reaction rate, making the reaction faster. Or the statement that
larger pores or more stirring enhances the transport and reaction rate, etc. But of course these statements are
only correct when that particular step is rate-limiting. This language is used to mean that the rate ‘prefactor’ of
that particular step is improved, potentially making that step faster, irrespective of whether the reaction rate 𝑅𝑖

will actually go up or not.



Faradaic reactions in a porous electrode 379

reactive species are the O- and R-species, and the reaction rate depends on the concentrations
of the O- and R-species in the electrolyte phase just outside the EDL region (electrode), i.e.,
in the macropores at that particular position in the porous electrode. Species𝑂 is the oxidant
(the species in the oxidized state, that will be reduced in the reaction, i.e., it will take up
electrons to become species 𝑅, i.e., it becomes more negatively charged), while 𝑅 is the
reductant (the species in the reduced state, that will be oxidized in the reaction, i.e., give off
electrons to become 𝑂, i.e., it becomes more positively charged). The transfer coefficients
𝛼𝑖 add up to unity, 𝛼𝑂 + 𝛼𝑅 = 1, and typically are taken as 𝛼𝑂 = 𝛼𝑅 = ½. Because this is
a reversible reaction, a concentration increase of the one species leads to an increase in the
formation rate of the other species, for instance, a larger 𝑐𝑅 leads to a higher 𝜚𝑂 and thus
also to a higher 𝑅𝑂, and vice-versa. This is the same as in general descriptions of reversible
reactions in chemical engineering. But different is the effect of the electrode potential. The
reduction reaction, 𝜚𝑂, which has as reactant the species in the oxidized state, the oxidant,
also requires electrons as reactants. Thus we need to pull the electrons to where the ions are.
We must pull them from the metal to the position just in the electrolyte, or in the electrode
(the EDL structure), such that the ion and electron can react. If the drop in potential that the
electron must make is negative, they do not like that, that is a penalty (electrons are negative
species, they do not like to go to positions with a lower (more negative) potential). Thus to
make this reaction go faster, this drop must be made less negative, or in other words, made
more positive. Thus we must make the potential in the metal go down, relative to that in the
electrolyte, thus 𝜙ec must be lowered, or put more simply, to enhance the reduction reaction,
𝜚𝑅, the electrode potential 𝜙𝑒 must be lowered. This is exactly how the dependence of
the reduction reaction on 𝜙𝑒 is formulated in Eq. (15.4) by a term exp (−𝛼𝑅𝜙𝑒). For the
oxidation reaction, 𝜚𝑂, where electrons are the product, it is all the exact opposite, and
thus we have a dependence on 𝜙𝑒 according to exp (+𝛼𝑂𝜙𝑒). Thus by tuning the electrode
potential, we can make the reaction go in any direction, which underscores the power of
electrochemical catalysis as a method to achieve optimized reaction selectivity and kinetics.

When the reaction rate 𝑅𝑖 is very low, relative to the forward and backward reactions, i.e.,
relative to 𝜚𝑅 and 𝜚𝑂, the BV equation simplifies to the Nernst equation

𝜙𝑒 = ln𝐾 + ln (𝑐𝑂/𝑐𝑅) (15.5)

where the equilibrium constant 𝐾 relates to the kinetic rate constants 𝑘𝑖 according to 𝐾 =

𝑘𝑅/𝑘𝑂. As Eq. (15.5) shows, when we increase 𝜙𝑒, i.e., make the metallic phase more
positive (relative to the pore solution), it becomes more favourable for electrons, and thus
they are more reluctant to go out of this phase, and participate in a reduction reaction, and
this will lead to a new equilibrium situation where in the pore we have an increased ratio of



380 Porous electrodes

the concentration of oxidant over that of the reductant.
A final expression is required, which describes the Ohmic transport of electronic charge

across the porous electrode

𝐼ec = −𝜅ec𝑉T
𝜕𝜙ec

𝜕𝑥
(15.6)

where the electronic conductance 𝜅ec in S/m depends on how much electron-conducting
material is in the electrode, how well these particles are in contact, and their intrinsic
conductivity (from very high for carbon nanotube fibers to much lower for inorganic
intercalation materials). The higher is 𝜅ec, the more 𝜙ec is constant across the electrode
even with current flowing. The potential 𝜙ec is known at the position where the conducting
phase is in contact with wires that go to the external circuit. At outer areas of the porous
electrode (blocking for electronic current), we know that in the direction normal to the outer
surface we have 𝜕𝜙ec/𝜕𝑥 = 0.

We must also describe how the divergence of the electronic current density, 𝐼ec, and that
of the ionic current, 𝐼 ionic, relate to the electrode reaction rate, which is according to

𝜕𝐼ec

𝜕𝑥
= −𝜕𝐼 ionic

𝜕𝑥
= 𝑛𝐹𝑅𝑅 (15.7)

where as always, the current densities, here 𝐼ec and 𝐼 ionic, are defined per geometric area
(i.e., total area), and 𝑅𝑅 is defined per total electrode volume.

This equation can be rewritten to a well-known second order partial differential equation
in potential 𝜙ec,

𝜅ec
𝜕2𝑉ec

𝜕𝑥2 = 𝑛𝐹𝑅𝑂 (15.8)

where 𝑉ec = 𝑉T 𝜙ec. This entire set of equations suffices to describe ion transport across a
porous electrode with a simultaneously ongoing electrode reaction which convert one ion in
the pores into another one.

Generalized Frumkin Butler Volmer equation. A more advanced model identifies
how the reduction and oxidation reactions depend on the local charge stored in the
metallic phase, i.e., the density of electronic charge. This charge density 𝜎 then
determines a voltage drop over an inner layer (which can be called a Stern layer), 𝜙S,
and this is one element of the EDL structure at the reaction sites, see Ch. 14. The other
element is a diffuse layer with voltage 𝜙D, and together they add up to the electrode
potential: 𝜙𝑒 = 𝜙D + 𝜙S. We then have a porous electrode version of the generalized
Frumkin-Butler-Volmer (gFBV) equation. For electrodes with micropores (see next
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section), this gFBV equation including a full EDL model has been implemented to
describe leakage currents in capacitive deionization in Dykstra et al. (Water Research,
2017).

An infinite range of possible calculations can now be made, transient and steady-state,
with and without convection, background salt, etc. A calculation with a zero current to the
electrode is even possible, which will then result in an internal current, with the electrode
reaction going in one direction at one point in the porous electrode, and go in the other
direction at another position in the layer.

We make here one example calculation, for transport across a porous electrode in 𝑥-
direction only, for steady state. We include convection, thus use the full Eq. (15.2), with
fluid flowing from left to right through the porous electrode. Negative charge is continuously
injected in the electrode and in this way a cationic species in the oxidized state (the oxidant)
is reduced to a neutral species (the reductant). Thus the electrode is a cathode. Besides this
species that arrives in the oxidized state on the left and will leave as a reduced species on
the right, we have inert monovalent anions. What flows out of the electrode on the right is
collected in a beaker and the content thereof is (of course) electroneutral. Thus the ionic
current leaving the electrode on the right, is zero. Because the electronic current entering the
electrode is negative, we need to have a net positive ionic current entering the electrode on
the left. These two currents, integrated over the entire electrode, add up to zero because there
is no charge accumulation in the electrode and the current leaving the electrode on the right
is zero. Because of steady-state, the flow of anions is constant across the electrode. Thus the
flow of the oxidant exiting the electrode is the same as the anion flow (because the oxidant
is a monovalent cation, the reductant is neutral). At each position in the pores of the porous
electrode the concentration of oxidant equals that of the anion, to have local electroneutrality
in these transport pores. All diffusion coefficients are the same. At the downstream, right,
side, we use the ‘dead end’ condition, thus relate the salt concentration outside the electrode
to the ionic flux and fluid flow. This results in the fact that at the downstream side we only
have convection as driving force, and thus all concentration gradients here are zero.iii No
current flows out of the electrode here so for any binary salt also the potential gradient is
automatically zero, see §7.3 and §7.4. On the upstream side we consider a transport film
that includes all driving forces on solutes, which are diffusion, convection and migration.

We can set up a balance in the total species concentration, 𝑐𝑂 + 𝑐𝑅 + 𝑐− , and we then find
iiiThis is different in the theory of RO at the downstream side, where we do not have these zero concentration

gradients. That is because in that problem we have a partitioning and Donnan effect at the edges of the layer.



382 Porous electrodes

that because of the ‘dead end’ boundary condition, and because of the equal values of 𝐷,
that this total concentration is invariant across the upfront film layer and across the electrode.
At any point in the electrode it has the same value as in the bulk phase on the left (upstream
side), 𝑐ups

tot . Because also everywhere 𝑐𝑂 = 𝑐− because of local electroneutrality, we have
𝑐𝑅 = 𝑐

ups
tot −2𝑐𝑂. In the upstream bulk we set all three concentrations equal to one another, to

𝑐ref , and thus 𝑐ups
tot / 𝑐ref = 3. All dimensionless concentrations are 𝑐 = 𝑐/𝑐ref . Molar fluxes

are nondimensionalized by dividing by 𝑐ref 𝐿/𝐷 where 𝐿 is the electrode thickness and 𝐷
the diffusion coefficient in the electrode including the 𝜀-term. Fluid velocity is divided
by 𝐷/𝐿 to arrive at the Pe-number. The formation rate 𝑅𝑂 is divided by 𝑐ref 𝐷/𝐿2 to
arrive at a dimensionless 𝑅𝑂. The kinetic constants 𝑘𝑖 are divided by 𝐷/𝐿2 to also become
dimensionless quantities, 𝑘 𝑖 .

The differential mass balance that we now must solve in the electrode for the oxidant is

0 = −Pe
𝜕𝑐𝑂

𝜕𝑥
+ 𝜕

2𝑐𝑂

𝜕𝑥2 +
𝜕

𝜕𝑥

(
𝑐𝑂
𝜕𝜙

𝜕𝑥

)
+ 𝑅𝑂 (15.9)

in combination with Eq. (15.4) and a charge balance (based on subtracting the balance in
the anion, from the balance in the cation, i.e., the oxidant), which is

0 = 2
𝜕

𝜕𝑥

(
𝑐𝑂
𝜕𝜙

𝜕𝑥

)
+ 𝑅𝑂 . (15.10)

On the upstream side we have a DBL, which implies a relation between concentrations in
the upstream bulk, and at the electrode, related to current and to a mass transfer coefficient.
To derive this equation, we must evaluate fluxes at the very left of this layer, and at the
electrode surface. The latter is easily established, described by evaluation of Eq. (15.2) just
inside the electrode, for instance dependent on the potential gradient there. However, the
flux at the left side of the DBL (where it is in contact with the bulk) includes a contribution
because of the current.iv This current (divided by 2, with a ±-sign) ends up in the boundary
condition at this position for anions and cations. But how do we know the current when we
actually make a calculation for a certain value of the potential of the metallic phase of the
electrode, 𝜙ec? (We also assume a highly electron-conductive electrode, thus no gradients
in 𝜙ec.) The additional equation is that 𝐽ch,ups = −

∫ 1
0 𝑅𝑂d𝑥. Here, the electronic current,

which converts into a negative formation rate of the oxidant, leads to a positive current into
the electrode on the upstream side. This equation works because there is no current flowing
out of the electrode on the other side.
ivThis is different from similar modeling in Guyes et al. (Desalination, 2017) with porous capacitive electrodes,

because in their DBL approach there was no current.
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Fig. 15.1: Results of porous electrode theory for steady state reduction of a cation in a porous electrode
with convection, as function of potential in the electron-conducting, i.e., metallic phase, 𝜙ec. With
further lowering of 𝜙ec, the rate of reduction increases, and in the downstream effluent the concentration
ratio of the species in the reduced state over that in oxidized state strongly increased, while the electrode
also increasingly rejects the anion (Pe = 5, 𝑘𝑅 = 𝑘𝑂 = 1, 𝑐𝑅 |ups = 𝑐𝑂 |ups = 1).

We can make these calculations, and results are presented in Fig. 15.1, and these results
are of quite some interest. By lowering 𝜙ec, the potential of the electron-conducting phase,
we enhance the reaction towards the reductant species, i.e., we reduce the cation, to become
a neutral species. At a potential 𝜙ec = 0, nothing happens, and the water and ions will
go through the electrode unchanged. But when we now apply a slightly lower potential of
only -3 points (-77 mV) we can change this ratio in the effluent by a factor of 20. This is
a dramatic change and thus this electrochemical conversion can be very effective. Also of
interest is that the anion is rejected by this porous electrode. So even though there is no
membrane ‘sieving’ effect at all, just the redox reactions involving a reductant/oxidant, this
significantly blocks the inert anion from passing the electrode; at the most negative value of
𝜙ec, its concentration on the permeate side is down by a factor of 6, relative to the upstream
side.

Thus, in conclusion, even this simple example of faradaic reactions in a porous electrode
with convection leads to some quite ingenious mathematics, and some unexpected calculation
outcomes.
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15.2.1 The porous battery electrode

Secondary battery electrodes are based on charge storage in the electrode, i.e., in the EDL
structure formed at the interface between electrolyte and electron-conducting phases. The
primary example is the Li+-ion battery, where Li+-ions are stored in one of several possible
ion insertion materials. The solvent is organic, not aqueous. There is likely phase separation
inside the electrode, and in that case it is possible that there is a horizontal plateau in the
equilibrium curve of electrode potential versus stored charge, equivalent to the constant
pressure when a gas is slowly compressed, while liquid droplets are already formed. Thus
when there is such a plateau, there is co-existence between a gas-like (‘G’), or dilute, phase,
where the intercalation degree is low, and a liquid-like (‘L’), or dense, phase. While on
average the concentration in the material increases with charging (‘upon compression’),
these two densities of the two phases are constant, and represent the edges of the plateau
depicted in Fig. 15.2. This horizontal plateau makes it possible for the battery to operate with
the electrode potential in principle independent of charge, if we discharge slowly enough.

The horizontal plateau encountered in an electrode with internal phase separation, see
Fig. 15.2, arises in an EDL structure when the ions inside the EDL attract one another with
sufficient strength, and then for intermediate values of the overall concentration, they phase
separate. In Section 1.4 it was derived that using the extended Frumkin equation there is
a critical attraction parameter of 𝑔′ = −4, and for 𝑔′-values more negative than this value,
phase separation can occur. In that case, the equilibrium curve for electrode potential vs.
charge no longer steadily increases or decreases, but has a local minimum and maximum,
and that non-monotonic curve is unstable. Instead, experimentally one likely finds a constant
potential, i.e., the horizontal plateau in Fig. 15.2. Based on a ‘Van der Waals-construction’,
one can find the potential of the plateau (or for a gas that condenses, the pressure). For
a symmetric curve, as in Fig. 15.2, it is simply ‘half-way’, intersecting the ‘full curve’ at
𝜗 = 0.5. Knowing the potential in the plateau region, we can find the density of the two
co-existing phases (the ‘edges’ of the plateau, where it intersects the ‘full curve’). The
electrode potential in the plateau region is calculated from inserting 𝜗 = ½ in Eq. (1.23),
resulting in

𝑉𝑒,plateau = 𝑉 ref +𝑉T ln
𝑐∞
𝑐ref

(15.11)

and the densities of the two co-existing phases, 𝜗, follow from

ln
𝜗

1 − 𝜗 + 𝑔
′ (𝜗 − 1/2) = 0 . (15.12)

The more negative the value of 𝑔′, the wider the region of the horizontal plateau. With
𝑔′ = −4.5 (just below the critical value), the two 𝜗-values are at 𝜗 = {0.22, 0.78}, thus
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Fig. 15.2: Example of an equilibrium curve for electrode potential vs. charge for a porous electrode
for which there is an attraction between ions inside the electrode that leads to a local phase separation
between a gas-like (‘G’) dilute phase, and a liquid-like (‘L’) dense state. This results in a region where
in theory we have a constant electrode potential, independent of charge. The entire curve depends on
the ion concentration outside the EDL: for cations as absorbing species in the electrode, then with a
lowering of the bulk cation concentration, the entire curve moves downward.
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Δ𝜗 ∼ 0.55 apart, but when we reduce 𝑔′ further, to 𝑔′ = −5.5, the two end-values of 𝜗 are
at {0.10,0.90}, and thus Δ𝜗 ∼ 0.8, thus already for 80% of the complete charging curve, we
can have operation with a ‘horizontal plateau.’ To reach a 90% usage, we need 𝑔′ = −6.5.

If we operate the entire porous electrode in this ‘plateau’-mode, we can potentially charge
and discharge the electrode all the time at the same voltage. This will then appear as if a
Faradaic reaction is going on in a steady-state process, but of course this is just appearances.
Also the generated voltage, given by Eq. (15.11), has a dependence on ion concentration
that seems to be similar to the Nernst-equation, Eq. (15.5). However, the crucial difference
is that in the present case only one ion is involved. In any case, this kind of battery electrode
does not operate by a Faradaic principle, because it is not the case that reactants and products
freely flow in and out of the EDL structure (the electrode). Instead, this process is based
on capacitive electrode charging, with the pseudo-Faradaic behavior only a consequence of
counterions inside the electrode being mutually attracted to one another.

Porous electrode theory for these capacitive battery electrodes with internal phase
separation is a challenging topic (Dreyer et al., 2010): one option is to assume that at
each macroscopic position in the electrode part of the active particles, or host particles,
are for 100% in the L-state, while other particles are completely in the G-phase; the other
option is that within a certain particle there is a co-existence of these two states. In that
case, inside such a particle the two phases can be fully segregated, or there is a pattern in
how they are distributed, for instance each phase forms stripes (and thus both phases are
locally continuous), or one phase is dispersed in the other phase, so only the latter phase is
continuous... While the electrode discharges, dependent on kinetic limitations, the material
either is able to follow the horizontal plateau, or it tracks partially the meta-stable curve (the
curve that has a minimum and maximum), see Dreyer et al. (2010).

Despite the high level of complexity, we can illustrate this problem by presenting a
simplified model for ion transport and charge storage in such a battery electrode, focusing
on the theory related to transport across the electrode. We use a function for the local
charge-voltage curve that empirically includes the plateau as well as the steep parts outside
the plateau. This model extends the model of the previous section because instead of a
Faradaic reaction we now have capacitive storage of ions in the active or host particles.
These particles are in contact with the transport pores through which ions flow. The two
phases have porosity 𝑝tr and 𝑝hp, and we can set up a mass balance in the cation (the ion
that can also go into the host particles) given by

𝜕

𝜕𝑡

(
𝑝tr𝑐𝑖 + 𝑝hp𝑐max𝜗

)
= 𝐷𝑖

(
𝜕2𝑐𝑖

𝜕𝑥2 +
𝜕

𝜕𝑥

(
𝑐𝑖
𝜕𝜙

𝜕𝑥

))
(15.13)

where 𝑐𝑖 is a concentration inside the transport pores, and 𝜙 the potential in these same
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pores. We included here the NP-equation, without convection. The diffusion coefficient
𝐷𝑖 includes an effect of porosity and tortuosity, i.e., 𝐷𝑖 = 𝑝tr/𝜏tr · 𝐷𝑖,∞. We use variables
similar to those in Ch. 1, thus again 𝜗 times 𝑐max is the concentration of cations in the host
particles, i.e., the cation intercalation degree, or cation occupancy, and is also the charge
of cations per volume of these particles (after multiplying with 𝐹). A decrease of 𝜗 means
that cations flow out, and thus electronic charge flows into the electrode (electrons flow
out). Note that at a given ‘macroscopic’ 𝑥-position, 𝜗 averages over the mixture of dilute
(G) and dense (L) phases inside the host particles at that 𝑥-coordinate. [Below we discuss
⟨𝜗⟩ which is an average over the entire electrode (over the complete 𝑥-coordinate).] For the
anion, which cannot enter the host particles, we also use Eq. (15.13) but without the term
𝑝hp𝑐max𝜗, and with an additional factor -1 before the electromigration term. It is useful to
subtract the anion balance from the cation balance, to arrive at the charge balance

𝑝hp𝑐max
𝜕𝜗

𝜕𝑡
= 2𝐷

𝜕

𝜕𝑥

(
𝑐
𝜕𝜙

𝜕𝑥

)
(15.14)

where we used charge neutrality in the transport pores, that at each position 𝑐 = 𝑐− = 𝑐+.
We also implemented here the assumption that both ions have the same diffusion coefficient.

We consider constant current charging, with a dimensionless current 𝐼, which can be
multiplied by 𝐹, the diffusion coefficient 𝐷, and a reference concentration 𝑐ref , and divided
by electrode thickness 𝐿, to obtain a current density in A/m2. The current density 𝐼 relates
to the average cation intercalation degree by

𝑝hp𝑐max
𝜕 ⟨𝜗⟩
𝜕𝑡

= −𝐼 (15.15)

where dimensionless time 𝑡 can be multiplied by 𝐿2/𝐷 to obtain a dimensional time. ⟨𝜗⟩
averages the intercalation degree, 𝜗, across the entire electrode, while 𝜗 is already an average
of the local G- and L-phases.

We can integrate Eq. (15.14) across the electrode to obtain

𝑝hp𝑐max
𝜕 ⟨𝜗⟩
𝜕𝑡

= 2
(
𝑐
𝜕𝜙

𝜕𝑥

����
back
− 𝑐 𝜕𝜙

𝜕𝑥

����
front

)
(15.16)

and knowing that 𝜕𝜙/𝜕𝑥 = 0 at the backside of the electrode, for symmetry reasons, and
implementing Eq. (15.15), we arrive at

𝑐
𝜕𝜙

𝜕𝑥

����
front

=
1
2
𝐼 (15.17)

as boundary condition at the front side of the electrode.
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To describe the dependence of electrode potential on electrode charge, including the
plateau, we use several approaches that all assume local equilibrium at each macroscopic
coordinate 𝑥, i.e., equilibrium between the cations (e.g., Li+-ions) in the transport pores, and
those in the host particles. In reality, transport limitations between the transport pores and
the host particles are certainly possible. Also conversion of the dilute into the dense phase
and vice-versa (the co-existing compositions) will have a finite rate. The first approach is
the extended Frumkin equation, Eq. (1.22), with the electrode potential, 𝜙𝑒, equal to the
potential in the electron-conducting phase, 𝜙ec minus the potential in the transport pores,
𝜙.v We use this equation for the critical condition that 𝑔′ = −4 which implies that around
𝜗 = 0.5 the slope of potential vs. charge is zero. As a second option, instead of this isotherm
we use the empirical expression

𝜙𝑒 = 𝜙ec − 𝜙 = 𝜙ref + ln
𝑐𝑖

𝑐ref
− 𝑚 · (𝜗 − 1/2)𝑛 (15.18)

where 𝑚 is an adjustable pre-factor (we use 𝑚 = 104), and the power 𝑛 is an odd integer,
for which we use 𝑛 = 9. With this curve, between 𝜗 = 0.2 and 𝜗 = 0.8 the electrode
potential only varies by 0.4 dimensionless points (∼ 10 mV), and between 0.3 < 𝜗 < 0.7
only 0.01 potential points. Outside this range the electrode potential quickly increases at
low 𝜗 and decreases at high 𝜗. For instance, at 𝜗 = 0.036, the potential is 10 dimensionless
points (∼ 260 mV) above the plateau region. A third option is to explicitly model the phase
separation and the horizontal plateau, but a model along these lines is difficult.

Just as in the previous section, we assume that in the electron-conducting phase we have
no electronic resistance, thus across the electrode the potential in the electron-conducting
phase 𝜙ec is the same at each position (though it will change in time). We model an electrode
that is full of cations at a starting value of 𝜗 = 0.9, and while we discharge this electrode at
𝐼 = 0.2, we track 𝜙𝑒,overall − 𝜙ref which is the relevant voltage of the electrode. We model an
electrode with ionic current able to leave on the front side, while the backside is blocking
for all ions, thus also for ionic current. We use a constant value of the salt concentration at
the front side, 𝑐∞, and use 𝑝hp𝑐max/𝑐∞ = 2 (𝑐ref = 𝑐∞).

It is interesting to notice from evaluating the model, that it is the front side which
determines the entire electrode potential. The electrode potential here, thus the overall
electrode potential, is a direct function of the intercalation degree 𝜗 at the front side of the
electrode. Thus, when 𝜗 drops here, the voltage generated by the entire electrode drops, and

vNote that in any porous electrode there is a local electrode potential, 𝜙𝑒 = 𝜙ec − 𝜙, as well as a ‘measurable’
electrode potential, which is the difference in potential between where the electrode connects to an electronically
conducting surface or wire, and the potential in the electrolyte solution just outside the electrode, 𝜙∞. If there
are no electronic resistances across the electrode, we have 𝜙𝑒,meas. = 𝜙ec − 𝜙∞.
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vice-versa upon current reversal. Thus the aim of proper electrode design is also to have
high enough mass transport rates across an electrode such that 𝜗 at the front side does not
change much faster than at other points in the electrode.

Results of this calculation using the empirical function, Eq. (15.18), are presented in
Fig. 15.3, where we show profiles in 𝜗 across the electrode when there is a positive electronic
charge into the electrode and cations are going out, i.e., ⟨𝜗⟩ is decreasing linearly in time.
Starting at 𝜗 = 0.9 at time zero, first 𝜗(𝑥) drops equally fast everywhere, and then –as shown
in Fig. 15.3A– it starts to drop faster at the front side of the electrode (on the left in the
panel). A sharp ‘wave’ travels through the electrode until it hits the back end, after which
the entire electrode has a composition of 𝜗 ∼ 0.2, and continuing the charging process leads
to a sharp further drop in potential. The voltage of this electrode (expressed as negative of
the electrode potential), as shown in panel B, first quickly increases, but then from 𝜗 = 0.75
onward (towards lower 𝜗), the rate of voltage increase is much slower, only 0.15 points
(4 mV) over the entire range until we reach 𝜗 = 0.25. When we reverse the current,
the voltage immediately drops by about that amount, and then steadily decreases until we
are again at 𝜗 ∼ 0.75. This same slope d𝜙𝑒/d𝜗 is also found in the equilibrium curve,
Eq. (15.18), at values of 𝜗 around {0.3,0.7}. Outside this range of 𝜗, the equilibrium curve
is steeper, while it becomes very small and even zero when we approach 𝜗 = 0.5. Thus,
the voltage-charge curve as depicted in Fig. 15.3, derived from a dynamic transport model,
shows in most of the ⟨𝜗⟩-range an ‘apparent capacitance’ (change of electrode charge with
electrode potential) than the (empirical) equilibrium curve predicts. The steadily changing
electrode potential shown in Figs. 15.3B,D is reminiscent of results of other models and
experiments, and the same holds for the hysteresis loops in these figures, where we see that
the voltage level depends on the direction of current (Dreyer et al., 2010).

We can make a calculation for a fixed salt concentration which gives similar results
(because 𝑐 doesn’t change much across the electrode). With this assumption, we only
have to solve Eq. (15.14), with 𝜙 a function of 𝜗 using Eq. (15.18). Results are
practically similar to those of the full model as were presented in Fig. 15.3.

Porous electrode battery model with explicit consideration of phase separation. – in
preparation –
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Fig. 15.3: Calculation results for profiles of intercalation degree 𝜗 across the thickness of one battery
electrode, as well as the change in the overall electrode potential vs. average intercalaton degree, ⟨𝜗⟩,
which first goes down linearly with time (constant current) and after current reversal increases again.
Results presented using the empirical isotherm (A and B), Eq. (15.18), and the Extended Frumkin
isotherm (C and D), Eq. (1.22).
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15.3 Porous electrodes for water desalination

In the battery model discussed in the last section, we were interested in the relation between
electrode potential and (dis-)charge rates (current). In the present section we discuss another
example of porous electrode modelling, and now we are also interested in the resulting flows
of ions into and out of the electrode as function of current. With two electrodes that can
take up ions, we can construct a desalination cell. In such a cell, the ions flow into/out of
the electrodes which leads to changes in salt concentration in the space between the two
electrodes. The related technology is called Capacitive Deionization, abbreviated as CDI.
Many options are possible for the chemistry and design of the porous electrodes in such a
desalination cell, see §20.2 and §20.4. One option is that the two electrodes of a cell behave
in a symmetric manner, with only the role of anions (anode) and cations (cathode) flipped.
Another option is that the electrodes only allow one type of ion into the EDL structure, or
that a cell asymmetry is established by placing ion-exchange membranes in between the two
electrodes. Or the two electrodes are just very different. All options are open...

The degree of desalination in the channel depends on the total flow of anions and cations
into the two porous electrodes. The total removal rate for anions and cations (‘total’ referring
to a summation over the two electrodes) will be the same in case of a symmetric salt. Still,
each electrode can have a different ratio between how many counterions it absorbs, versus
how many coions it releases. Thus for a 1:1 salt, for each individual electrode we can measure
the current efficiency, 𝜆, which is the total molar flow rate of ions flowing in (or out) of the
electrode, divided by the current. This current efficiency is not a material property of the
electrode but depends also on salt concentration, current, etc. It can also change in time. At
each moment, the average of the two current efficiencies is the total salt removal rate from
the channel divided by the current. Thus for each individual electrode we need to establish
(measure, or calculate by a model), the current efficiency as function of time. A full CDI
model will combine a description of the electrodes with a description for the changing salt
concentrations in the transport channel (the space between the porous electrodes). Transport
and changing concentrations here, have an impact on the behaviour in the electrodes.

We now discuss a simple calculation where, just as in the last section, we neglect salt
concentration changes in the channel. We again use the extended Frumkin equation for an
intercalation material that only absorbs cations (such as a Prussian Blue Analogue). We now
use a much lower salt concentration, 50× lower than in the prior calculation (corresponding to
20 mM salt concentration now, vs. 1 M in the battery calculation, while in both calculations
𝑐max = 4 M). We start with an electrode where the concentration of cations is very low inside
the host particles, 𝜗 = 0.1, and we study the salt concentration profiles in the electrode, and
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Fig. 15.4: Calculation results for water desalination with porous intercalation electrodes, showing
time-dependent profiles of a) intercalation degree 𝜗 (cation adsorption in host particles), and b) salt
concentration inside transport pores, across the thickness of one electrode. Results based on the
Frumkin isotherm, Eq. (1.22), with 𝑔′ =−4, for constant current 𝐼 =−2, and 𝑝hp𝑐max/𝑐∞ =100. The
profiles are a time Δ𝑡 = 2.5 apart.

the current efficiency of this electrode, 𝜆, vs. time. The theory of the last section can be
used without further adjustments.

Results are presented in Fig. 15.4 for the cation adsorption in the host particles, 𝜗, and
for the profiles of salt concentration in the transport pores. While the host particles absorb
more and more cations, going from almost empty to almost full, the transport pores in the
electrode see a decay in salt concentration over time. During this process is a strong influx
of cations, cations which all move into the host particles, and a very tiny flux of anions out
of the electrode, with the current efficiency, starting at 0, quickly reaching a constant plateau
of 𝜆 ∼ 0.998. Thus, this electrode is highly selective because only cations can go into the
host particles. For CDI, this high selectivity is an optimal situation. However, many types
of materials for CDI absorb both anions and cations and then the current efficiency can be
much lower.

This is for instance the case for many microporous carbon materials. For electrodes made
of carbon, nomenclature for pores is that of macropores through which ions move (called
transport pores until now), and micropores, in which the ions are stored in EDL structures.
Ion storage in these micropores is described by a Donnan model.

The Donnan model is both a simplification and an extension of the extended Frumkin
isotherm. It is a simplification because two terms are omitted: the term relating to the
limited occupancy, ln (1 − 𝜗), and the ion-ion attraction term 𝑔′ (𝜗 −½). It is an extension
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because not only cations can now enter the micropores (where the EDLs are formed) but
anions as well. And we include a Stern layer, describing a voltage drop between the electron-
conducting phase and the aqueous micropore region where ions reside.

To accurately describe data both of charge and of salt adsorption (vs. cell voltage), the
Donnan model for microporous carbon electrodes is often further extended with two features.
First, the local charge balance not only includes the electronic charge in the carbon matrix
and the ionic charge in the electrolyte-filled micropores, but also includes ‘chemical’ fixed
charge, for instance due to carboxylic acid groups attached to the carbon material, thus
attached to the ‘walls’ of the micropores. A second important modification is to consider
that there are two types of micropore regions inside a typical microporous carbon: regions
with negative wall charge, due for instance to carboxylic groups, as well as regions with
positively charged groups on the pore walls. This amphoteric Donnan model is required to
describe data for charge and desalination with CDI accurately (Mubita et al., 2018, 2019). In
a further extension, both types of these charged groups can be ionizable, i.e., we can include
how this chemical charge in each region responds to local pH.

In this section we do not use this full model but make a calculation using the most
simple Donnan model, where Boltzmann’s law describes the distribution of ions between
the transport pores (macropores, mA) and micropores (mi). We include a Stern layer. We
consider a 1:1 salt with equal diffusion coefficients. We again make a calculation with
fixed current, and with salt concentration at the front side of the electrode fixed. Compared
to the intercalation materials discussed above, we can now start with a negatively charged
material (the electronic charge in the carbon is negative), and with a constant electronic
current into the electrode we can increase this charge to zero, and then reverse the charge to
positive, which leads to the electrode changing from cation desorbing to anion adsorbing,
see Fig. 15.5. This reversal of charge sign is not possible with the intercalation materials
discussed above.

The model is very similar to that of the previous sections. The ion balance is slightly
different, and is now

𝜕

𝜕𝑡

(
𝑝mA𝑐𝑖 + 𝑝mi𝑐mi,𝑖

)
= 𝐷𝑖

(
𝜕2𝑐𝑖

𝜕𝑥2 + 𝑧𝑖
𝜕

𝜕𝑥

(
𝑐𝑖
𝜕𝜙

𝜕𝑥

))
(15.19)

both for anions and cations. We can assume local equilibrium between the ions in the
micro-pores and in the macropores, and thus use the Boltzmann relation for each ion type,
𝑐mi,𝑖 = 𝑐𝑖 · exp (−𝑧𝑖𝜙D), where 𝑐𝑖 without any further subscript is the concentration of
an ion in the charge-neutral macropores. The Donnan potential 𝜙D is the potential in the
micropores, relative to in the nearby macropores, and relates to the ionic charge in the
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Fig. 15.5: Calculation results for water desalination with microporous carbon electrodes, showing the
time-dependence of a) profiles of the salt concentration in the macropores, across the thickness of one
electrode, and b) current efficiency, 𝜆 = 𝑡+ − 𝑡− . Results based on the modified Donnan model, for
constant current 𝐼 = 80, 𝐶St = 0.2 GF/m3, 𝜎mi,ions,initial = 1.5 M (𝑐ref = 1 mM).

micropores: 𝜙mi − 𝜙 = 𝜙D = − sinh−1 (
𝜎mi,ions/(2𝑐)

)
, with the latter equality only valid

for a 1:1 salt. Based on the Boltzmann equation, we can derive an additional relationship
between total ions adsorption, 𝑐ions,mi = 𝑐mi,+ + 𝑐mi,− , and charge 𝜎mi,ions = 𝑐mi,+ − 𝑐mi,− in
the micropores

𝑐2
ions,mi = 𝜎

2
mi,ions + 4𝑐2 (15.20)

valid for a 1:1 salt. The ionic charge in the micropores, 𝜎mi,ions, is simply opposite to the
electronic charge density in the carbon matrix (all charge densities are defined in amounts
per unit micropore volume), if we neglect the chemical ‘wall’ charge. Eq. (15.20) is
similar to Eq. (2.11). In Eq. (15.20), 𝑐 is the local (time-dependent) salt concentration
in the macropores. The average charge in the electrode relates to current according to
𝑝mi𝜕

〈
𝜎mi,ions

〉
/𝜕𝑡 = −𝐼. The Stern voltage (drop) is given by Eq. (2.18) with 𝜎w in this

equation the charge density in the carbon matrix (per unit micropore volume), which is
minus the charge density of the ions in the electrolyte phase inside the pores, 𝜎mi,ions, which
is given by the summation term of Eq. (2.5).

Calculation results for this charging and discharging process of a microporous carbon
electrode are presented in Fig. 15.5. We start with an electrode where the micropores are full
of cations. Upon discharging the electrode, these ions come out (while anions temporarily
move from outside into the macropores), leading to a quick increase of salt concentration in
the macropores (at time zero it was 20 mM everywhere) to a maximum of around 40 mM.
Upon discharging the electrode, at some moment all cations are removed from the micropores
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and then the situation quickly changes, and the entire salt concentration profile drops to a salt
concentration deep in the electrode close to zero, while now the electrode absorbs anions into
the micropores. Before this moment, the electrode was expelling around one cation from
the electrode for each electronic charge injected (𝑡+∼1), while after this moment, the same
injection of one electronic charge leads to an anion being absorbed (𝑡− ∼ 1) from solution.
When we have two electrodes of which one is absorbing anions, and the absorbs cations,
water is desalinated, and upon current reversal both electrodes will desorb ions, until the
reversal point where they will absorb ions again. In this operational mode, in one charge-
discharge cycle, we have two periods of desalination and two periods of salt release (Fig. 7C
in Porada et al., 2013). We can also have in one charge-discharge cycle a single period of
desalination and a single period of salt release if we switch from charging to discharge before
the reversal point or implement elements such as an ion-exchange membrane that limits this
reversal.

This concludes the discussion of one example calculation of water desalination using
porous electrode based on the technology of capacitive deionization (CDI). Many options
can be used in the design of a CDI technology, including ion-exchange membranes, movable
electrodes, fluidized bed electrode slurries, water not flowing along but through the electrode;
two electrodes that are similar to one another, or are very different in chemistry; the use of a
third auxiliary electrode to change the total charge in the primary CDI cell pair, etc. Indeed,
the list of intriguing ways to construct a CDI desalination device is very long.





16
Combined Faradaic and non-Faradaic (capacitive)

processes

In many processes, Faradaic and non-Faradaic (capacitive) processes occur simultaneously,
in either one and the same electrode, or in a cell with two or more electrodes. The two
processes can operate jointly, and this can lead to various unexpected results. For instance,
we can have a single electrode that sustains a Faradaic reaction while completely disconnected
from any other electrode. We can also have two capacitive electrodes that store charge in a
cyclic manner, with in addition in one of the electrodes a Faradaic reaction, which leads to
a loss of charge in one electrode. This seems to be impossible, how can we have a Faradaic
reaction in only one electrode? Shouldn’t there then also be a Faradaic reaction in the other
electrode, to compensate for the leakage of charge in the first electrode? In this chapter we
show that this second reaction is not necessary, and we can have two capacitive electrodes
operating in a cycle of charge and discharge, with an additional Faradaic reaction operating
in only one electrode for some time.



398 Combined Faradaic and non-Faradaic (capacitive) processes

16.1 Introduction
Every textbook on electrochemistry will teach the following two basic facts. First that we
always need at least two electrodes for an electrochemical process to occur; electrochemistry
with a single electrode is impossible. Second, when a Faradaic process occurs in one
electrode, we also need a second electrode with a Faradaic reaction, because for every
anodic reaction that liberates an electron, we need a cathodic reaction that consumes the
electron.

These two facts must be true, right? Well, perhaps not. In this chapter we discuss examples
that show that it can also be otherwise. The two statements above are correct, but only in a
steady state process, i.e., when all time-dependencies have vanished. But until steady state is
reached, or in a cyclical process, things can be different, as we already alluded to on p. 368,
and as we will illustrate in the next sections, where we discuss in detail the interesting class
of combined capacitive-Faradaic processes.

16.2 A single electrode
When we have a porous (carbon) capacitive particle in water with inert salt ions, and the
particle is uncharged to start with, and if we now add additional ions that can participate
in an electrode reaction in the carbon particle, then the particle will charge up, with a
rate determined by the rate of the electrode reaction and/or by the rate of diffusion of the
redox-active ions and the other ions towards/away from the particle.

With a typical redox reaction involving a reductant and oxidant, and with two other
monovalent ions, such as Na+, Cl– and the water ions, H+ and OH– , then we potentially
already have to consider diffusion and migration of six ions around and inside (the macropores
of) the porous particle. For the moment, let us neglect transport limitations of these ions,
and assume that the ion distributions around the particle are at equilibrium, and thus, that the
rate of the process of charging this electrode is determined solely by the rate of the electrode
reaction, as described in Ch. 15 as Eq. (15.4), where the concentrations 𝑐𝑂 and 𝑐𝑅 are those
near the reaction sites, for which we can use the concentrations in the micropores, described
by the Donnan model for porous electrodes, see the explanation below Eq. (15.19). Thus we
arrive at the rate of the redox reaction as

𝑅𝑅 = 𝑘𝑅𝑐mi,𝑂 𝑒
−½𝜙S − 𝑘𝑂𝑐mi,𝑅 𝑒

+½𝜙S (16.1)

where we included that we evaluate concentrations in the micropores, and we include that the
potential difference that drives the reaction is that between the micropore and the electron-
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conducting phase, which is the Stern layer potential, 𝜙S. The concentrations of oxidant and
reductant in the micropores relate to those in the macropores (and in the absence of mass
transport limitations, these are the same as those in the bulk solution outside the particles),
by

𝑐mi,𝑖 = 𝑐∞,𝑖 𝑒
−𝑧𝑖 𝜙D (16.2)

where for the oxidant we have 𝑧𝑂 and for the reductant we have 𝑧𝑅 (with 𝑧𝑂 = 𝑧𝑅 + 1). Let
us assume that both these ions are at low concentration, compared to the concentration of
the inert ions, i.e., the salt concentration 𝑐∞,salt. Thus the ionic charge in the micropores is
given by the well-known Donnan equation, 𝜎mi,ions = −2𝑐∞,salt sinh 𝜙D (for a 1:1 salt), and
this ionic charge equals minus the electronic charge, 𝜎mi,ions = −𝜎elec, and this electronic
charge relates to the Faradaic reaction rate by 𝜕𝜎elec/𝜕𝑡 = +𝑅𝑅, where 𝑡 is time. We finally
must relate the electronic charge to the Stern potential by 𝜎elec = 𝐶

∗
S 𝜙S where𝐶∗S = 𝐶S𝑉T/𝐹,

with 𝐶S the Stern capacitance in F/mL.
When the oxidant and reductant are supplied, the electrode reaction will start, and it will

continue until the moment that the EDL that forms in the carbon micropores has such a
structure that 𝑅𝑅 is reduced to zero, and then equilibrium is reached. When after that either
𝑐∞,𝑂 or 𝑐∞,𝑅 is changed, the reaction takes off again and the EDL structure again changes.

We can combine all equations to obtain

𝜕𝜎∗elec
𝜕𝑡∗

= 𝛽 𝑒−𝑧𝑂𝜙D−½𝜙S − 𝑒−𝑧𝑅𝜙D+½𝜙S (16.3)

where 𝑡∗ = 𝑡 𝑘𝑂, 𝜎∗elec = 𝜎elec/𝑐∞,𝑅 and 𝛽 = 𝑘𝑅𝑐∞,𝑂/𝑘𝑂𝑐∞,𝑅. We provide some numerical
calculation results of the development of the charge of the particle, 𝜎∗elec as function of
dimensionless time 𝑡∗ in Fig. 16.1, from an initial charge of zero. When charge levels off,
the Faradaic reaction rate goes to zero, and ion absorption also goes to zero, and we arrive
at a final equilibrium state that persists until one changes the concentration of the redox ions
in solution, or we change the salt concentration of the inert ions. In this second case, the
equilibrium potential is unchanged, but electrode charge and salt absorption will change.
Indeed, as Eq. (15.20) illustrates, the charging of this particle will lead to absorption of ions,
and thus we can even use this process to desalinate water (in an extremely impractical way,
for sure).

When equilibrium is reached, the electrode potential is given by the Nernst equation

ln 𝛽 = 𝜙EDL |eq = 𝜙D |eq + 𝜙S |eq (16.4)

and we must solve the Donnan EDL model (combination of diffuse layer and Stern layer)
to calculate the electrode charge 𝜎elec as function of 𝑐∞,salt and 𝐶S. This shows that the
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Fig. 16.1: Calculation results of the capacitive charging of a single porous particle, driven by a Faradaic
reaction that starts after addition of a small amount of redox-active ions, as function of dimensionless
time, 𝑡∗, and parameter 𝛽 explained in the text (𝐶∗S/𝑐∞,𝑅 = 25, 𝑐∞,salt/𝑐∞,𝑅 = 10, 𝑧𝑂 = 𝑧𝑅 + 1 = 3).

equilibrium potential, 𝜙EDL |eq, does not depend on 𝑐∞,salt but the equilibrium charge 𝜎elec

does. Thus, a change in salt concentration (while keeping the ratio of 𝑐∞,𝑂 over 𝑐∞,𝑅 the
same), will result in charging of the electrode particle, but the electrode potential will not
change.i

16.3 A Faradaic electrode going to steady-state
The calculation in the previous section was about an isolated particle where Faradaic
reactions take place upon a change in the concentration of redox-active ions, as well as
of inert ions (via their influence on the structure of the EDL). In the present section we
discuss an electrode that is electrically connected to another electrode, and thus we can also
inject current. In this case the steady-state is not arrived at when the Faradaic reaction rate
is zero, as in the prior example, but we have steady state when the Faradaic reaction rate is
the same as the current injected into the electrode. Between start-up and reaching steady
state, charge and potential in the electrode change.

Thus in this case the charge balance of the electrode is

𝜕𝜎elec

𝜕𝑡
= 𝑅𝑅 + 𝐼 (16.5)

where electrical current 𝐼 is defined as being directed from the external circuit into the
electrode, and it has the same unit as 𝑅𝑅 (which is moles per volume per time). It can be

iAt least, before and well after the addition, it is the same. It can be different while the system readjusts.
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multiplied by the total electrode (micropore) volume, and by Faraday’s number 𝐹, to arrive
at a current with unit A.

In the steady state, Eq. (16.5) shows that 𝑅𝑅 + 𝐼 = 0, thus if electrical charge is injected
in the electrode (i.e., electrons are extracted), then 𝑅𝑅 is negative, i.e., the reaction goes in
the direction of ions being oxidized (for instance, Fe2+ converting to Fe3+).

We can make a calculation where starting at a certain charge, we apply a negative current
and thus a reduction reaction will take place in the electrode. A first calculation is to
find the current at which the equilibrium electrode charge is zero. In that case both 𝜙D

and 𝜙S are zero, and based on 𝑅𝑅 + 𝐼 = 0 for steady state, from Eq. (16.1) we arrive at:
−𝐼 = 𝑘𝑅𝑐∞,𝑂 − 𝑘𝑂𝑐∞,𝑅, or in dimensionless notation: 𝐼∗ = 𝐼/𝑘𝑂𝑐∞,𝑅 = 1 − 𝛽. Indeed, in
the calculation shown in Fig. 16.2 for 𝛽 = 5, the electrode remains uncharged for a current
𝐼∗ = −4. For currents more positive, the electrode charge (at steady state) is positive, while
it is negative for more negative currents. Thus, interestingly, there is a range of currents,
−4 < 𝐼∗ < 0, where current and electrode charge have different signs. Only for 𝛽 = 1 do
electrode charge and current always have the same sign (at least at steady state).

Fig. 16.2A shows the approach to steady state for an electrode to which we apply a
certain current, starting at the situation that the electrode was uncharged. In this particular
calculaton with 𝛽 = 5, this implies that until 𝑡 = 0 the current was 𝐼∗ = −4. Thus when we
change the current 𝐼∗ to zero, the charge increases to 𝜎∗ = 18, while for negative currents,
𝐼∗ = −1,−2,−3, the final electrode charge is lower, and reached sooner. For currents more
negative than 𝐼∗ = −4 the electrode charge goes to negative values, and reaches the steady
state quickly, e.g., for 𝐼∗ = −10 we reach the steady state electrode charge of 𝜎∗ = −5 after
a time 𝑡∗ = 2.

In Fig. 16.2B, we analyze in more detail the steady state, or ‘final’, charge as function of
the parameter 𝛽, and the applied current, 𝐼∗. The results are highly intriguing and not very
intuitive, even while we have such a simple model. We notice that negative currents can be
achieved without problem, but on the positive 𝐼∗-branch, the behavior is quite unexpected,
with a local maximum in current, the more pronounced for low 𝛽, and then a limiting value
of current when 𝜎∗SS →∞. The asymmetry between +𝐼∗ and −𝐼∗ relates to the valencies of
the redox couple being in this case 𝑧𝑅 = 2 and 𝑧𝑂 = 3, and the asymmetry would be gone
for the hypothetical caes of 𝑧𝑅 = −½ and 𝑧𝑂 = ½, but other than that there are no quick
and easy interpretations of these results. They do point out how a simple Faradaic reaction,
in combination with an EDL structure model, can result in unexpected behavior, with the
current non-linearly related to charge; the same steady state current 𝐼∗ can even be achieved
at two different values of charge. In many physical problems, having multiple (physically
valid) solutions often leads to intriguing behavior, including the possibility of bifurcation,
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Fig. 16.2: A). Response of the electrode charge to a step change in current (starting at zero charge) for
a Faradaic electrode, in solution with inert salt and a small amount of redox-active ions, as function
of dimensionless time 𝑡∗ and current 𝐼∗. B). Steady state relationship between current and electrode
charge for different values of 𝛽. For parameter settings, see main text and Fig. 16.1.

etc.

Cyclic Voltammetry for a capacitive-Faradaic system. It is interesting to study what
is the outcome of a simple cyclic voltammetry experiment for an electrode with this
Faradaic reaction and EDL model. CV experiments are dynamic and thus the peculiar
behaviour reported in Fig. 16.2B might play a significant role. However, CV diagrams
we theoretically arrived at do not show very elucidating features, see Fig. 16.3. Here
we show at the very left a diagram without Faradaic reactions, only the capacitive
charging of the electrode based on the Donnan EDL model. Going right, the Faradaic
reaction rate steadily increases (𝑘𝑂 and 𝑘𝑅 are both increased by a factor 10 going
from panel B to C to D). Consequently, the symmetric ‘capacitive’ profile in panel A
gradually fades away to become a rather indistinct profile in panel D. Based on this
calculation we like to advise that diagrams obtained in a CV experiment, for this (and
other?) capacitive-Faradaic processes, are not a very useful starting point to study the
underlying capacitive or Faradaic behavior. While the actual electrode kinetics can
be very spectacular –see Fig. 16.2 for 𝛽 = 1/5– not much of particular interest can
be read off from the CV diagrams. Thus, this example suggests that the use of CV
diagrams as a means of obtaining useful information on an electrode process, may
not be very easy for a combined capacitive-Faradaic process. Other methods (𝑖 − 𝑉
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Fig. 16.3: Theoretical CV diagrams of an example of a capacitive-Faradaic process, with only capacitive
EDL charging on the left, and increasing participation of Faradaic charging moving right (Parameter
settings in main text, and box).

curve, charge titration, fixed current, see Ch. 22) may be useful to consider. [The CV
calculation is made with parameter settings as before, including cycling of the applied
potential 𝑉applied between -0.5 V and +0.5 V, the same Faradaic reaction as before, the
same Stern and diffuse layer capacitances, and a scan rate of the applied voltage of
𝑑𝑉applied/𝑑𝑡∗ = ±1𝑚𝑉 (per dimensionless second). Part of this voltage drops over an
external resistance, 𝑉Ohmic = 𝑉T 𝐼

∗ 𝑅Ohmic with 𝑅Ohmic = 10.]

16.4 Two capacitive electrodes with Faradaic charge
loss

Now we turn our attention to an electrochemical cell with two electrodes that both are
primarily capacitive: they store charge without any loss, and thus when we transfer current
for some time from one electrode to the other, and then we reverse the current direction, then
when the same total current is transferred back, the electrodes have again the same charge
as before. Thus, for such purely capacitive electrodes, the charge at the end of the cycle is
the same as at the start.

If both electrodes are purely capacitive, this situation is not very spectacular. With
a constant capacitance 𝐶 (let’s assume the same in both electrodes, and independent of
charge), and with a certain charge Σ transferred, the electrode potential in each of the
electrodes becomes Σ/𝐶, and these two potentials can be added up to give the final charging
cell voltage (if the electrodes were uncharged before the current was applied). When we
reverse the current we go back to a zero cell voltage at the end of the cycle, and this will
continue unchanged cycle after cycle.



404 Combined Faradaic and non-Faradaic (capacitive) processes

But what now if one of the two electrodes ‘loses charge’ by an undesired Faradaic
reaction. The first question then is, don’t we automatically have a Faradaic reaction in the
other electrode as well? Or more generally, can we have one Faradaic electrode, and one
capacitive electrode? The answer to the first question is ‘no’ (no need for a Faradaic reaction
in both electrodes at the same time) and to the second, ‘yes’ (yes, we can have a working
electrochemical cell with one Faradaic electrode and one capacitive). These asymmetric
situations are possible, but not forever. At one point, when the limit cycle is reached, the
cycle-averaged Faradaic reaction rate becomes the same in each electrode. But a lot of time
can proceed before we arrive in that final situation.

One conclusion we arrive at is, that for galvanostatic operation, where equal charge is
pushed back and forth in a cycle, or when at least one electrode is purely capacitive, in both
electrodes the cycle-averaged Faradaic reaction rate must become zero.

To illustrate this statement, we make a calculation with two capacitive electrodes with one
also subjected to a Faradaic reaction. We use the same equations as in the prior section, which
assume a Faradaic reaction based on an oxidant and reductant molecule (redox couple). We
will assume this reaction to only take place in one electrode, the cathode. At the same time
the anode is purely capacitive, thus the charge we push into the anode, Σ, during charging,
is simply returned in full during discharge. Thus we do not have to consider this electrode
further. But in the cathode, part of Σ ‘leaks away’. But how does that work, how is that
possible, isn’t there some law of charge balance that is violated? The answer is that no laws
are violated, and we can have a situation with a nonzero Faradaic rate in one electrode and
not the other. However, this can only continue for finite periods of time, not forever.

In such a calculation, if we would model an electrode pair where in the cathode we have
a Faradaic reaction with a reaction rate that continues unchanged, then indeed we arrive
at situations that are impossible. However, the Faradaic rate depends on the charge of the
electrode, and thus can go down, reach zero, and reverse sign. If it would always be positive,
even though small, theoretically the system will ultimately ‘diverge.’ Thus, in reality this
is also not the case. The first possible option is that that beyond a certain electrode charge
the Faradaic reaction becomes zero, and then the system will take the electrode charge into
that ‘inert’ region. But more likely, during a cycle the electrode charge will go up and down
in such a way that the Faradaic reaction rate is positive during one part of the cycle and
negative in another part of the cycle. Either this is the same reaction going in reverse, or
it is another reaction. In any case, after many cycles of charge and discharge, the cathode
has leaked so much charge that now, averaged over a full cycle, the total Faradaic current
of that electrode becomes zero. The entire operation is a very interesting –self-stabilizing–
system, with any perturbation quickly dampened out. Both in reality and in a correct theory,
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a difference between anode and cathode in the cycle-averaged Faradaic current will lead to
charge loss in one or both of the electrodes until the two cycle-averaged Faradaic currents
are the same again.

So what does it mean to say the system has ‘lost charge’ until we reach this stable end-
situation? It means that a certain amount of charge (number of Coulombs) has been taken
from the electronic side of the electrodes, and made to react with ions to other ions. In
some way this is similar to the calculation in the first section above, where a single electrode
particle takes up charge and converts ions to other ions. The only difference is that now it is
a two-electrode system that does this. If the two electrodes would be short-circuited, there
is now one overall non-zero electronic charge, as if they together had been charged up by
a third electrode. That value of the total electronic charge in the two electrodes together,
is the one that results in a ‘stable cycle’ where the cycle-averaged Faradaic current in one
electrode is equal to that in the other.

In Fig. 16.4 we show a calculation example of two capacitive electrodes where the cathode
is also subjected to a Faradaic reaction, and we show here the cell voltage between the two
electrodes vs. time, and the cathode electronic charge. For the chosen parameter settings
(available from the authors), we can see how the cell voltage changes from cycle to cycle,
but the changes dampen out later on, and the same holds for the cathodic charge, 𝜎C, which
started off to be negative only, but in later cycles switches between positive to negative within
a cycle.

Interestingly, a separate calculation gave the following result. In this calculation we allow
the same electrode reaction to happen not only in the cathode but also in the anode, i.e.,
mathematically the two electrodes are now treated the same. Nevertheless, they behave very
differently for many cycles from the start, just because of the way we start the charge/discharge
cycle. Because we start the very first half-cycle by charging the cathode negatively (which
attracts cations) and the anode positively (attracting anions), the electrode reaction (that
in our example involves divalent and trivalent cations) is not occurring in any measure in
the anode, even though mathematically it would be allowed. In the calculation related to
Fig. 16.4 the Faradaic reaction is not taking off in the anode even after 100 cycles.

What happens thereafter, we cannot give a definite answer, but it seems that a symmetric
situation does arise after many cycles, where ultimately the two electrodes behave the same,
and with the charge and discharge steps becoming indistinguishable. The cell voltage now
cycles between two values that (in magnitude) are the same. But in this particular calculation
thousands of cycles were necessary to arrive in this situation. Thus, we can again conclude
that capacitive-Faradaic processes demonstrate many peculiar features, some quite resistant
to being readily understood.
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Fig. 16.4: Cell voltage and cathode charge for a capacitive cell pair that is cyclically charged and
discharged at constant current for fixed periods of time. A Faradaic reaction takes place in the cathode.
The cycle gradually levels out to a situation where the average Faradaic rate in the cathode approaches
zero. In the meantime, the cathode has ‘lost’ charge.
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Bio-electrochemical processes
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Bioelectrochemical systems (BES) are electrochemical cells that use micro-organisms as
the catalyst of reactions at one of the electrodes. A BES provides routes for

• the conversion of chemical energy stored in organic material into electricity in the
microbial fuel cell (MFC),

• the production of valuable chemicals, such as H2, using electricity in the microbial
electrolysis cell (MEC), and

• the conversion of CO2 into acetate, using electricity (the microbial electrosynthesis
cell (MES).

In the MFC and MEC, a biofilm is formed at the anode and there micro-organisms oxidize
organic matter (the ‘substrate’). Electrons are produced and are transported via an electrical
circuit to the cathode, where they are used for the reduction of oxygen gas to OH– ions
(MFC) or for the reduction of protons to hydrogen gas (MEC). In an MFC, overall the
reaction is thermodynamically favorable, and therefore electrical energy can be recovered.
However, in an MEC or MES cell, electrical energy is required to drive the reaction, and
the energy from the aqueous organic streams together with the electrical energy input is
(partially) recovered as chemical energy in the form of hydrogen gas (H2). In another type
of bioelectrochemical system, the MEC, a biofilm grows at the cathode. These cells provide
a sustainable route for the conversion of, for example, CO2 into valuable chemicals, such as
acetate, using electricity.

Fig. V-1 presents typical examples of the polarization curve for a microbial fuel cell
(MFC), a microbial electrolysis cell (MEC) and a microbial electrosynthesis (MES) cell.
The overall reaction occurring in an MFC, which is the conversion of organic matter such as
acetate with oxygen to bicarbonate and water, is exactly opposite to the reaction occurring
in a microbial electrosynthesis (MES) system. Currents produced in an MFC are up to ∼ 10
A/m2 for anode potentials between -0.3 and -0.5 V (vs. Ag/AgCl). The maximum current,
𝐼SC, is reached when the system is short-circuited, when anode and cathode potential are
equal, both in magnitude and sign. When we work with an anaerobic cathode, oxygen
reduction is not possible, and with an input of electrical energy, hydrogen evolves at the
cathode, which makes the system operate as an MEC (lower left side of the diagram). On the
right-hand side of the diagram, we can reverse operation of the MFC and operate the system
as a cell for MES. In this case, the production of acetate or other organic molecules requires
a more negative cathode potential of at least -0.8 V vs. Ag/AgCl, while the overpotential at
the anode is even higher, with typical anode operating potentials above +1.3 V vs. Ag/AgCl.
While MFCs cannot reach a current higher than the short circuit current, when anode and
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Fig. V-1: Representation of the polarization curve, i.e., the relation between voltage and current,
for steady state conditions, for three bioelectrochemical systems: the microbial fuel cell (MFC), the
microbial electrolysis cell (MEC), and cells for microbial electrosynthesis (MES).

cathode potential are equal, an MES cell can, in principle, be driven to increasingly higher
rates, as long as sufficient energy (applied voltage) is invested in the reaction.



17
Ion transport in bioelectrochemical systems

Bioelectrochemical systems are electrochemical cells that use micro-organisms as the catalyst
of reactions at one of the electrodes. Bioelectrochemical systems provide routes for
the conversion of chemical energy stored in organic material, into electricity, or for the
production of valuable chemicals, such as hydrogen and acetate, using electricity. A biofilm
grows at the anode where micro-organisms oxidize organic matter, or it grows at the cathode
where micro-organisms produce organic chemicals. In this chapter, we present a general
approach to describe ion transport, amongst others across ion-exchange membranes, in a
bioelectrochemical system. We include electrochemical reactions at the electrodes, as well
as the acid-base reactions that take place in solution and in the membranes.
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17.1 Ion transport in bioelectrochemical systems

In this chapter, we present a system-level model to study transport of a mixture of ions in
bioelectrochemical systems, in combination with acid-base reactions at the electrodes and in
solution, as well as ion transport across membranes that are placed in the cell, see Fig. 17.1.

In an electrochemical cell, the electrical current directly relates to the reaction rates
both on the anode and on the cathode, and relates to the ionic current in the system. The
reaction stoichiometry of the electrode reactions, together with the selectivities imposed by
the membranes, determines the ionic fluxes, protonation degrees of all acid-base species,
and changes in pH. An example geometry is shown in Fig. 17.1. This design includes two ion
exchange membranes in a cell where acetate is produced the at (bio)cathode and transported
to the extraction compartment where it is extracted from solution. Other designs use only
one ion-exchange membrane.

In many bioelectrochemical systems the following (groups of) ionic species play an
important role:

• organic material, which is either converted or produced at one of the electrodes, in
this chapter represented by the model component acetate, which can be in an ionized
form, Ac– , or neutral (protonated) as HAc;

• carbonic acid ions (H2CO3, HCO –
3 , and CO 2–

3 );

• buffer ions, added to adjust the pH, here represented by HB and B– . In Fig. 17.1
HSO –

4 and SO 2–
4 are buffer ions;

• inert cations, such as Na+;

• inert anions, such as Cl– ;

• the hydronium ionsi and hydroxyl ions (H3O+ and OH– ).

For many reasons as explained in Fig. 10, it is of significant utility and elegance to assume
that all acid-base reactions are at local equilibrium, i.e., the acid-base reactions are much
faster than the rates of transport of ions. This assumption can be made for all groups of ions,
which are for instance HAc⇐⇒ Ac– , H2O⇐⇒ OH– + H+, for H2CO3⇐⇒ HCO –

3 ⇐⇒
CO 2–

3 , and for B– ⇐⇒ HB.
A key element in many bioelectrochemical systems are ion-exchange membranes (IEMs)

placed in the system, and transport of all these ions through the IEMs must be described
by the theory. In this chapter we discuss ion transport theory for a membrane with a single

iWe use the terminology of protons (H+) and hydronium ions (H3O+) interchangeably.
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Fig. 17.1: Schematic view of ion transport and electrode reactions in one example geometry of a
microbial electrosynthesis (MES) cell where acetate is produced from CO2 and transported through
an anion-exchange membrane (AEM) to the extraction compartment that it is in the middle of the cell.

charge sign (either an AEM or CEM). As we will explain later on, a bipolar membrane (BPM)
can be modelled as a combination of an AEM and a CEM, in direct contact, with a layer
of vanishingly small thickness in between. IEMs are characterized by their fixed membrane
charge density which leads to selective transport, with counterion transport enhanced, and
transport of co-ions hindered. Counterions are ions with a charge sign opposite to that of the
membrane fixed charge groups, while co-ions have the same charge sign as the membrane.
We can distinguish between an anion-exchange membrane (AEM), where anions are the
counterions, and a cation-exchange membrane (CEM), where cations are the counterions.
The transport of uncharged species is not directly influenced by the charge of the membrane,
and they are transported through the membrane by diffusional forces only, neither accelerated
nor retarded by the electrical field.

In this theoretical approach all fluxes are self-consistently calculated without the need
to prescribe any of them. We do not need to set up ion mass balances in the ions H+ or
OH– , which is one of the elegant aspects of the present modelling approach. We also
do not need to know whether it is the H+-ion or the OH– -ion that takes part in a certain
electrode reaction, and this certainly makes the calculation of the electrode reactions much
more straightforward. Instead, the theory will predict what are the fluxes of H+ and OH– at
the electrodes and what will be pH there.
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17.2 Ion transport in ion-exchange membranes

Diffusion and electromigration of ions through an IEM are described by the Nernst-Planck
equation

𝐽𝑖 = −𝐷m,𝑖 ·
(
𝜕𝑐m,𝑖

𝜕𝑥
+ 𝑧𝑖𝑐m,𝑖

𝜕𝜙

𝜕𝑥

)
(17.1)

where subscript 𝑖 refers to ion type 𝑖, 𝐽 is the ionic flux (mol/m2/s), 𝐷m the diffusion
coefficient in the membrane (m2/s), 𝑐m is the ion concentration per volume aqueous phase in
the membrane (mol/m3), 𝑥 is the position in the membrane, 𝑧 is the ion valency (e.g., +1 for
Na+), and 𝜙 is the dimensionless electrical potential, which can be multiplied by the thermal
voltage,𝑉T = 𝑅𝑇/𝐹, with 𝑅 the gas constant (J/mol/K), 𝑇 temperature (K), and 𝐹 Faraday’s
constant (C/mol), to obtain the voltage with dimension V. The diffusion coefficient in the
membrane is a certain fraction 𝑑f of the value in free (dilute) solution, 𝐷aq,𝑖 . We neglect in
Eq. (17.1) advection of ions due to volumetric (water) flow through the IEMs, as discussed
in the preceding chapters.

At each position in the membrane, mass conservation of every species is given by

𝜕𝑐m,𝑖

𝜕𝑡
= −𝜕𝐽𝑖

𝜕𝑥
+ Γ𝑖 (17.2)

with 𝑡 time (s) and Γ𝑖 the chemical formation rate of species 𝑖 (mol/m3/s) because of acid-
base reactions. Note that in our model Γ𝑖 does not need to be explicitly evaluated, and below
we discuss how this is achieved.

The reaction-terms, Γ, are dealt with as follows. For the inert anions and cations, Eq. (17.2)
is used with Γ𝑖 set to zero. For all ions that undergo acid-base reactions, Eq. (17.2) is analysed
per group of ions, in such a way that Γ𝑖 disappears. (Note that this part of the analysis is valid
irrespective of the kinetic rate of the reaction, fast or slow.) In many bioelectrochemical
systems, at least the following groups of acid-base reactive ions must be considered: the
organic material (group a), and carbonic acid species (group c). Taking acetate as a model
species for group a, then we have the species HAc and Ac– , which react according to
HAc −−−→←−−− Ac– . Group c consists of H2CO3, HCO –

3 and CO 2–
3 which react according to

H2CO3
−−−→←−−− HCO –

3 + H+ and HCO –
3
−−−→←−−− CO 2–

3 + H+. As we discuss below, for the
‘water ions’, H+ and OH– , a balance such as Eq. (17.2) does not need to be set up but instead
the more intuitive charge balance is used, which is Eq. (17.4) below.

How does Γ𝑖 cancel out for each group of ions? Let us illustrate this by deriving a mass
balance for group a. Independent of kinetics, at every moment and at every position, the
formation of HAc is equal to the consumption of Ac– , i.e., ΓHAc +ΓAc− = 0, and we can sum
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Eq. (17.2) over HAc and Ac– , to derive a mass balance for group a where the production
terms, Γ𝑖 , cancel out. The combined mass balance becomesii

𝜕

𝜕𝑡
( [HAc]m + [HAc−]m) = −

𝜕

𝜕𝑥
(𝐽HAc + 𝐽Ac− ) . (17.3)

Note that Eq. (17.3) is valid irrespective of the reaction rates, fast or slow. For group C,
we use a similar approach, but with three ionic species, and thus we consider two chemical
reactions. In this case, the three formation rates sum up to zero: ΓH2CO3

+ΓHCO −
3
+ΓCO 2−

3
= 0,

and we derive a mass balance for group c, similar to that of a, where the production terms,
Γ𝑖 , cancel out.

A similar balance describes how the local ionic charge density does not change in time,

𝜕

𝜕𝑡

∑︁
𝑖

𝑧𝑖𝑐m,𝑖 = −
𝜕

𝜕𝑥

∑︁
𝑖

𝑧𝑖𝐽𝑖 (17.4)

where the summation runs over all ions, including H+ and OH– . Because charge cannot
accumulate, the lhs in this equation is always zero, not just in steady state, but also for a
dynamic problem.

Related, at each position in the membrane, local electroneutrality holds,∑︁
𝑖

𝑧𝑖𝑐m,𝑖 + 𝜔 |𝑋 | = 0 (17.5)

where 𝜔 is the sign of the membrane charge (+1 for an AEM and −1 for a CEM) and 𝑋 is
the membrane charge expressed in moles per unit aqueous phase in the membrane. Again,
the summation over 𝑖 includes all ions present in the system.

.
The above mass balances are valid for fast and slow acid-base reactions alike. When we

assume the acid-base reactions to be fast, we can make use of equilibria such as

𝐾a =
[Ac−] [H+]
[HAc] , 𝐾c1 =

[HCO −
3 ] [H

+]
[H2CO3]

, 𝐾c2 =
[CO 2−

3 ] [H
+]

[HCO −
3 ]

,

𝐾w = [OH−] [H+]
(17.6)

which we can solve jointly with the mass balances per group at each position in the membrane.
This membrane model must be solved together with Donnan equilibria at the two

membrane outer surfaces
𝑐m,𝑖 = 𝑐∞,𝑖 · exp (−𝑧𝑖 · Δ𝜙D) (17.7)

iiNote that in this book we use both the notation [..] and the symbol 𝑐 to describe concentrations.
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where subscript ∞ refers to the concentration in solution, i.e., outside the membrane, and
where Δ𝜙D is the Donnan potential, i.e. the potential just inside the membrane, minus that
in solution. Finally, fluxes across the membrane in groups of ions must be evaluated, and
must be related to the ionic current density, as discussed in Dykstra et al, Water Research
(2021). A bipolar membrane (BPM) placed in a bioelectrochemical cell can be modelled
as a combination of an AEM and a CEM placed in direct contact. Thus, the theoretical
framework presented above for transport in an AEM or CEM can also be used to evaluate
ion transport in a BPM.

Steady-state membrane transport. Often the changes in the compartments next to a
membrane are much slower than the timescale of ion transport across an ion-exchange
membrane. Then one can make the assumption of local steady-state in the membrane,
and set the accumulation term, 𝜕𝑐m,𝑖/𝜕𝑡, in mass balances to zero. In that case ion
transport is constant across the membrane for unreactive ions such as Na+ and Cl– .
For these species, to calculate the flux across the membrane, we combine Eqs. (17.1)
and (17.2), integrate across the membrane, and arrive at

𝐽𝑖 = −
𝐷m,𝑖

𝐿m
·
(
𝑐m,1,𝑖 − 𝑐m,0,𝑖 + 𝑧𝑖

∫ 𝜙1

𝜙0

𝑐m,𝑖 d𝜙
)

(17.8)

which can be implemented in the overall ‘stirred tank’ mass balances for the flow
compartments. In Eq. (17.8) subscripts ‘0’ and ‘1’ refer to the very left and very right
sides, just in the membrane, and 𝐿m is the membrane thickness. For the flux of a
group of species (e.g., the HAc and Ac– ions that together form the acetate group),
we can evaluate Eq. (17.8) for each ion and add up. This summation is then the total
flux of that group. Note, for such acid-base reactive species, the individual integrated
expression, like 𝐽Ac− , calculated on the basis of Eq. (17.8), has no physical meaning,
but only the summation of 𝐽Ac− and 𝐽HAc has a physical meaning, as the total flux of the
group of these two ions together. Similarly, we can evaluate for each ion 𝐽𝑖 according
to Eq. (17.8), multiply by the ion valency, 𝑧𝑖 , to obtain the ionic current, 𝐽ch, which is
invariant across the membrane, i.e., 𝐽ch =

∑
𝑖 𝑧𝑖𝐽𝑖 , with 𝐽𝑖 from Eq. (17.8). This ionic

current is the same in each membrane (when area 𝐴 is the same) and directly relates to
the applied current density.
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17.3 Mass balances for the anolyte and catholyte
compartments

To evaluate ion concentrations in the separate compartments in a bioelectrochemical cell, we
can again use the various detailed models including diffusion and dispersion as explained for
instance in Chs. 7 and 12. However, because of the relatively low transport rates through the
membranes in bioelectrochemical systems, concentration gradients in the flow compartments
are small, and we can often model each of these compartments as a single ideally stirred
tank reactor, and then following balances can be used for each ion

·𝑉𝑘 ·
𝜕𝑐𝑘,𝑖

𝜕𝑡
= 𝐴 ·

∑︁
𝑗

𝐽𝑘, 𝑗,𝑖 +𝑉𝑘 · Γ𝑘,𝑖 (17.9)

where
∑
𝑗 refers to the fluxes through the sides of the compartment, which are either

membranes or electrodes, to be discussed below. In Eq. (17.9) 𝐴 is the area of one membrane
(i.e., the cross-area of the compartment, or cell) and 𝑉𝑘 is the volume of aqueous phase in
each compartment. Often the flow channel is fed from a larger exterior volume and its
outflow is fed back there; 𝑉𝑘 then refers to the volume of this complete cycle (exterior
container, tubing, flow compartment).

For each inert cation and anion, Eq. (17.9) is evaluated with Γ𝑘,𝑖 = 0, while for the ions
in the a, b and c-groups the balance is summed over all ionic species in a group, such that
the Γ𝑘,𝑖 terms cancel out, as described in Section 17.2. We can also sum over all species
multipled with their valency, 𝑧𝑖 , to obtain the condition of electroneutrality to be evaluated
in each compartment, ∑︁

𝑖

𝑧𝑖𝑐𝑘,𝑖 = 0 . (17.10)

In each compartment mass balance, Eq. (17.9), two boundary fluxes 𝐽𝑖 must be
implemented. First of all there are the fluxes through the membranes. Note that each
membrane flux will show up in two compartment balances, once as a positive contribution,
once negative. Making use of the coordinate system as in Fig. 17.1, where the coordinate 𝑥-
axis runs from left to right (and thus the fluxes 𝐽𝑖 are defined positive towards the right), then
a (membrane) flux entering the compartment on the lhs is taken as a positive contribution
(‘with a plus-sign’) and a flux leaving on the rhs is implemented as a negative contribution
(‘with minus sign’). Secondly, there are contributions due to the electrode reactions, and
these will be explained in the next section.

Electrolytes in compartments can be in equilibrium with air that can contain an absorbing
species such as ammonia or CO2. Taking CO2 as an example, we can then relate the partial
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pressure of that component, in this case 𝑝CO2
, to the concentration in solution of carbonic

acid, H2CO3, according to Henry’s law

[H2CO3] = 𝐾H,𝑐 · 𝑝CO2
(17.11)

with 𝐾H,𝑐 Henry’s coefficient for CO2-adsorption (𝐾H,𝑐 =33.46 mM/bar). For H2CO3, we
assume that the equilibration between unhydrated CO2 and hydrated H2CO3 in water is fast.
When for a certain group, such as here the carbonate group, an equation such as Eq. (17.11)
is used, then an overall mass balance, such as Eq. (17.9), no longer needs to be evaluated.

17.4 Electrode reactions

We can now proceed to explain how electrode reactions can be included in this theoretical
framework. First of all, for the inert anions and cations, we simply have a zero reaction flux
at each electrode. And the same holds for a group such as HB+B– that does not participate
in an electrode reaction. Thus the flux at the electrode of this group as a whole is zero,
i.e., at the electrode we have 𝐽HB + 𝐽B− = 0. This does not imply that the flux of individual
species, such as B– , is zero there! Far from it. Instead, typically both fluxes have significant
values, and because they are in opposite directions, effectively this b-group as a whole can
‘deliver protons’ to the surface. Thus, in the mass balances for the anolyte and catholyte
compartments for inert ions, and for a group that is not reactive, such as the b-group, the
electrode flux is zero and only a flux of ions through the membrane must be included.

This only leaves us to discuss how the electrode reactions impact the balances for the
c- and a-groups. Note first of all, we do not need to consider which ion is involved in the
electrode reaction. Thus, whether it is HAc or Ac– that is formed at the electrode does not
need to be pre-specified. Instead, the model will tell us the outcome, it will self-consistently
calculate (i.e., predict) in which form the species will form at the surface. Note again that
OH– and H+ do not need to be explicitly considered in relating electrode reaction rates to
the current, as illustrated next.

Here we describe the electrode reactions as considered in Fig. 17.1. First, let us consider
the anode. Here, we assume that the only reaction that takes place is water reacting to protons
and oxygen (gas). Or, equivalently, OH– -ions react to O2 and water. From the point of
reaction stoichiometry, these two reactions are equivalent. In any case, with this reaction on
the anode, there is no involvement of either the c- or a-groups in the electrode reaction. So
for these two groups, the electrode reaction flux 𝐽𝑖 is zero in the anolyte. Because these two
were the only balances remaining that possibly were influenced by the electrode reactions,
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we can conclude that oxygen evolution at an electrode does not explicitly show up in any
of the mass balances. Nevertheless, the calculations certainly predict what are the related
properties of interest, such as pH changes in the anolyte.

Second, we consider the cathode. Let us discuss how the various fluxes are linked
to one another here, and are linked to the electrical current. If we first assume that the
reaction of acetate from carbonate is the only reaction taking place, we can relate the
consumption/production flux of ions in the a- and c-groups to the electronic current, 𝐼 (in
A/m2). This is because we know that for each carbonate ion that reacts away (irrespective
of whether it is H2CO3, HCO –

3 or CO 2–
3 ), four electrons enter into solution (from the

electrode), while for each two carbonate ions that disappear one acetate ion is formed (again,
irrespective of which ion from the a-group). This is quantified as

𝐼/𝐹 · CE = 4 · 𝐽𝑒H2CO3+HCO −
3 +CO 2−

3
= −8 · 𝐽𝑒HAc+Ac− (17.12)

where superscripts 𝑒 are implemented to distinguish this electrode flux from the membrane
fluxes. In the ideal case just discussed, all electronic current is used to convert carbonate
into acetate, and thus the Coulombic efficiency, CE, is unity (CE = 1). However, often also
other reactions take place, involving water and the H+ and OH– ions, or other ions, which
implies the Coulombic efficiency is less than unity. If no other reactions are considered but
the carbonate to acetate reaction discussed above, and if CE is measured to be a number
less than unity, this implies that the remainder of the electronic current is involved in a
reaction with water, H+ and/or OH– . That part of the current does not show up in any of
the mass balances. Instead, it is automatically accounted for because of the assumption of
electroneutrality in each compartment.

17.5 Example of a membrane-electrode assembly with
gas evolution

In this section we provide example results of a calculation of the transport and reaction in
a system with many ions, of which many are an element of an acid-base reactive group,
such as the group of ammonium/ammonia ions. The ions diffuse through an ion-exchange
membrane towards an electrode that does two things at the same time: it is a cathode where
H2 is produced and thus a cationic current is set up directed towards this electrode, and it
allows for evaporation of H2, NH3, CO2 and H2O, i.e., we have a G/L interface and physical
exchange between dissolved molecules and gas phase molecules.
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One prediction of the calculation is that even though the ionic current through the
membrane is fully carried by the ammonium cation moving towards the cathode, where
it fully converts to ammonia, it is not the case that the ammonia evaporation rate is the same
as the current, but instead it is much less. This is because a lot of ammonia formed at the
cathode stays in the aqueous phase and diffuses back through the membrane to the anode
chamber, see Fig. 17.2. This complex example with multiple ions and reactive groups, a
cathode and an evaporating interface, is solved quite easily using the theory outlined in
the present chapter. These calculations are relevant because they clarify the relevance of
membrane charge density, current rates, gas flow rates, etc., for this system, and are helpful
in optimization and design of this and similar (bioelectrochemical) systems.

Similar calculations are possible for many other electrode reactions involving ions that
can undergo acid-base reactions and have an equilibrium with an adjoining gas phase, e.g.,
for (microbial) electrosynthesis, CO2 capture, etc.

Thus, we describe next the theory and illustrate with some calculation results of a particular
example of a bioelectrochemical system, one where hydrogen gas is produced at a cathode
in front of which a cation-exchange membrane is placed. In the system are not only inert
ions and ‘water ions’, but also bicarbonate ions, acetate ions, and ammonia ions. Thus we
must describe ion transport through a membrane of all of these species, and reaction at the
cathode towards H2-gas, as well as the evaporation of H2, CO2, NH3 and H2Ot here, see
Fig. 17.2.

In the cathode, we link the various fluxes (production of H2, evaporation of NH3 and
CO2) to one another, and to the electrical current. Assuming that hydrogen gas formation is
the only electrode reaction, and that the absorption of H2 in the liquid phase is zero, we can
relate the hydrogen gas production flux 𝐽evap

H2
(flow rate per unit membrane area, in mol m-2

s-1) to the current, 𝐼 (A m-2), by
𝐼 = 2 · 𝐹 · 𝐽evap

H2
(17.13)

where the factor ‘2’ is due to the fact that always two electrons are required to form one
hydrogen gas molecule.

The sum of the ionic fluxes (mol m-2 s-1) of NH3, 𝐽C
NH3

, and NH +4 , 𝐽C
NH +4

, through the
membrane, evaluated at the edge with the cathode (denoted by superscript ‘C’ from this
point onward), equals the evaporation flux of NH3, 𝐽evap

NH3
(mol m-2 s-1)

𝐽
evap
NH3

= 𝐽C
NH +4
+ 𝐽C

NH3
. (17.14)

This is quite interesting, that it is the sum of the fluxes of ammonia and ammonium in the
membrane that together are equal to the ammonia gaseous evaporative flux. This relates to
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Fig. 17.2: Schematic view of ion transport through an ion-exchange membrane from a solution
containing many types of ions that are inert or are are part of an acid-base reactive group such as
NH +

4 /NH3. In the cathode H2 forms and H2, CO2, NH3 and water evaporate..
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the use of a model with infinitely fast NH3↔NH +
4 equilibration, leading to the use of mass

balances in the concentration of the total ammonia group. If instead, we would use a model
with finite rates of the reaction of NH3 to NH +

4 , then the flux of NH3 in the water at the
G/L interface must be set equal to the evaporation flux of gaseous NH3, while the flux of
NH +

4 at the interface must be set to zero. Thus, the choice between a finite rate equation
for NH3/NH +

4 vs. the use of an equilibrium, leads to the necessity to have two separate
mass balances (in NH3 and NH +

4 ) in the first case, and setting the evaporation flux equal
to the flux in solution of NH3 only, while when we assume equilibrium between NH3 and
NH +

4 , the evaporation flux of ammonia is set equal to the combined flux of ammonia and
ammonium.

Similarly, the evaporation flux of gaseous CO2, 𝐽evap
CO2

, relates to the membrane fluxes of
H2CO3, 𝐽C

H2CO3
, HCO −3 , 𝐽C

HCO −3
, and CO 2−

3 , 𝐽C
CO 2−

3
, in the cathode

𝐽
evap
CO2

= 𝐽C
H2CO3

+ 𝐽C
HCO −3

+ 𝐽C
CO 2−

3
. (17.15)

Since HAc and Ac– neither react in the cathode, nor evaporate, the sum of their fluxes
equals zero at this interface,

𝐽C
HAc + 𝐽

C
Ac− = 0 . (17.16)

Note that Eq. (17.16) does not imply that the individual fluxes of the ionic species HAc
and Ac– are zero at the cathode (G/L interface) nor anywhere in the membrane. Due to the
acid-base reactions it is possible that one ion diffuses in one direction through the membrane,
gradually converts to the other ion, which diffuses back (see however the box at p. 424). The
only constraint is that at each position in the membrane the sum of the two fluxes is zero (at
least, in steady-state).

Finally, the total ionic current is related to the electrical current, 𝐼, according to

𝐼 = 𝐹 ·
∑︁
𝑖

𝑧𝑖 · 𝐽C
𝑖 (17.17)

where we sum over all ions, including H+ and OH– . At the cathode, the flux of inert ions is
zero and they can be excluded here (and at steady state also at all positions in the membrane),
but this is not the case for ions within a group, even if the group as a whole has a zero flux.
Thus, for instance Ac– must be included in this ionic current statement.

By relating both the hydrogen gas production and the total ionic current to the electrical
current via Eqs. (17.13) and (17.17), we establish the essential relationships between
electronic flow and hydrogen flow, without making any statements about which ions in
solution ‘carry’ the protons through the membrane, the protons which in the cathode are
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converted to hydrogen gas. Thus, a reaction such as 2 H+ + 2 e– ←−→ H2(g) is not explicitly
used in any of the equations. Instead, all ions in solution that can protonate or deprotonate,
potentially participate in carrying the protons to the electrode and G/L-interface where they
are converted to hydrogen gas.

In the cathode, three-phase contact between the electron-conductive matrix, the gas phase,
and the liquid phase is established. We assume that the ionic transport in the electrolyte-filled
porous cathode is much faster than in the membrane. Thus, we do not need to model ionic
transport from the membrane through the cathode to the G/L interface. We relate the partial
gas pressure of the gases CO2 and NH3 to the evaporative fluxes as described by Eqs. (17.14)
and (17.15) according to

𝑝𝑖 = 𝑝tot ·
𝐽

evap
𝑖∑

𝑛
𝐽

evap
𝑛 + 𝐽 inert

G
(17.18)

where 𝑝𝑖 is the partial pressure of gas 𝑖, 𝑝tot the total pressure in the cathode chamber, 𝐽 inert
G

an inert gas flow along the cathode, and where 𝑛 runs over all gases (NH3, H2 and CO2). The
inert gas flow rate 𝐽 inert

G has dimension mol m-2 s-1 by dividing its molar flow rate (mol/s),
by the membrane area (m2). The relation between the concentration of the soluble gases, in
this case CO2 and NH3, in the cathode, and the partial pressure of these gases, is given by
Henry’s law

𝑐C,𝑖 = 𝐾H,𝑖 · 𝑝𝑖 (17.19)

with 𝐾H,𝑖 Henry’s coefficient and 𝑐C,𝑖 the ion concentration in the electrolyte within the
cathode. The concentration of the ions in the cathode follows from the concentration just in
the membrane according to the Donnan equilibrium, as given by Eq. (17.7). Furthermore,
for the electrolyte in this electroneutral cathode layer, we use the charge neutrality equation,
Eq. (17.5). This model for the cathode layer as a charge-neutral ‘virtual’ layer, located
between the charged membrane and the G/L interface, is also used for the virtual layer at
the junction between an anion-exchange and cation-exchange layer in a bipolar membrane
(BPM). Note that we have not considered the evaporation of water in our model, which leads
to about 3 vol% water molecules in the gas phase at ambient conditions.

Many calculations with this model are described in Dykstra et al. (Phys. Rev. E 90
013302, 2014) and compared with data from literature. A typical result is that when a CEM
is used, the ionic current is carried through the membrane completely in the form of the
ammonium ion, which at the cathode ‘releases’ the proton, which reacts to H2 gas. [As
mentioned before, this proton release is not explicitly part of the set of equations; there is no
equation for this release. It is an ‘emergent’ output of the model, a model that only includes
the transport equation described above.] However, the evaporation flux of ammonia, NH3,
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is much less than this flux of NH +
4 , for instance 30%. This implies that about 30% of the

ammonia formed at the cathode (G/L interface) evaporates, and the remainder diffuses back
through the membrane. The same calculation with an AEM gives very different results,
with the flow of OH– and CO 2–

3 leftward, i.e., ‘against’ the current direction. Both these
anions thus have a positive contribution to the transport number. The flux of HCO –

3 is in
the direction of the current and thus contributes negatively. [As a group, the carbonate ions
are not moving much, see the discussion in the box below. Effectively they are immobile
but transfer a proton to the right.] The contributions of these three ions sum up to unity.
At a membrane charge of around X=1.5 M, around 75% of the current is carried by OH–

ions, but at X=4 M, the contribution of OH– has dropped to about 25%, with the remainder
being what effectively is transport of H+, ‘piggy-backing’ with the carbonate ions. These
results are presented to illustrate that many intriguing outcomes are possible, and this goes to
show that the actual outcome of an experiment (or, of a transport model including acid-base
reactions) can not easily be intuited a-priori. Instead, the construction and analysis of a full
transport model including all acid-base reactions is highly advised.

How to understand ion transport with simultaneous acid-base reactions. In this
section, when referring to the diffusion of ammonia and/or acetate, we discuss this
topic as if one ion diffuses in one direction (e.g., the acetic acid neutral molecule),
reacts to the other ion (gives off, or takes up, a proton; e.g. to the negative acetate
ion), and then this species diffuses back. Though this sounds reasonable, it is not
entirely correct. This topic was also addressed at length in Ch. 10. The point is that,
for instance for the acetate species, for which the total flux in the membrane of the two
ions together is zero, while the acid-base reactions are infinitely fast, it is very hard to
use the language that one ion (acetic acid) moves left, the other (acetate anion) moves
right. Instead, the acetate entity as a whole basically does not move at all. It might
move in the one form leftward for a very short distance (a few nm?), flip to the other
form (giving off the proton, or taking up a proton), and move in the reverse direction
for a few nm, before it switches back again . . . . Effectively, there is no movement
of the acetate molecules at all. Of course effectively each individual molecule (tracer
molecule) makes a random walk across the membrane, but the language of ions moving
in one form rightward across the membrane, reacting at the rightmost boundary, and
moving in the other form leftward, is to a large extent misleading, even though it helps
in explaining observations and even the output of the numerical code. Thus, we have a
useful explanatory framework, but one that in all honesty is not a proper representation
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of how in the theory we describe ion transport.





18
Transport and reactions in electroactive biofilms

Electroactive biofilms are biofilms located on an electrode that are able to conduct electronic
charge. We present theory for ion and electron transport and the bioelectrochemical
conversions inside a biofilm where organic matter converts anaerobically to CO2 while
producing electrical energy. This chapter describes how to set up a physics-based model
for complex coupled processes in bioelectrochemical systems, including ion and electron
transport and the biochemical molecular conversions inside the micro-organisms.
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Fig. 18.1: Scheme of the coupled biofilm model, which depicts transport and bioelectrochemical
reactions in four steps: (A) ion transport, 𝐽i, across the biofilm, (B) oxidation of substrate in bacteria,
(C) electron transfer to a conductive structure, and (D) charge transport, 𝐽ch, to the anode.

18.1 Introduction

In a bioelectrochemical system, bacteria attach themselves directly to the surface of
electrodes, forming a porous layer called “biofilm”, through which ion transport occurs.
The biofilms have electron-conductive properties, with bacteria performing long-distance
electron transport over tens to hundreds of micrometers, to deliver current to the electrode.
Accordingly, models have so far relied upon empirical knowledge to an important extent. An
important example is the Monod equation, which can be used to calculate rates of substrate
utilization in biological systems. However, the dynamic processes in a BES, including
biochemical reactions, ion and charge transport, can be described in a more fundamental
way by a dynamic system of PDEs. In this Chapter, we present a physics-based dynamic
description of ion transport, bioelectrochemical reactions, and electron transport inside
conductive biofilms on electrodes.

To model an electrochemically active biofilm, we present a mathematical framework that
consists of four elements, as shown in Fig. 18.1: (A) transport of substrate and products
across the biofilm, (B) oxidation of substrate in the bacteria, (C) electron transfer to a
conductive structure, e.g. in the form of pili, and (D) charge transport to the anode.
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18.2 Mass transport across the biofilm
We focus on transport of ions and other molecules across a one-dimensional planar biofilm,
with simultaneous biochemical reactions. Biofilms consist of a dispersed phase (the bacterial
cells) and a continuous aqueous phase (the extracellular space, abbreviated “ES”). We define
the porosity of the biofilm, p, as the ratio of the volume of the extracellular space to the total
volume of the biofilm, and tortuosity, 𝜏, as the ratio of the average transport distance inside
the pores to the geometrical distance. Ion transport across the biofilm is described by the
Nernst-Planck equation

𝐽𝑖 = −𝐷𝑖,𝑒
(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖 𝑐𝑖

𝜕𝜙

𝜕𝑥

)
(18.1)

where 𝐽𝑖 is the molar flux of species 𝑖 (mol m−2 s−1) across the biofilm, 𝐷𝑖,𝑒 the effective
diffusivity of 𝑖 in the biofilm (m2 s−1), 𝑐𝑖 the concentration of 𝑖 (mol m−3 or mM) in the
extracellular space, 𝑧𝑖 the valence of 𝑖 (-), 𝜙 the dimensionless electric potential (-) and 𝑥
the position in the biofilm (m). Potential 𝜙 can be converted to a dimensional voltage by
multiplying with the thermal voltage, 𝑉T=RT/F, where 𝐹 is the Faraday constant (96485 C
mol−1), 𝑅 the universal gas constant (8.314 J K−1 mol−1) and 𝑇 the temperature (298 K).
Transport of components in the biofilm is restricted by the presence of the bacteria and their
extracellular substances. Therefore, the effective diffusivity in the biofilm is only a fraction
of the value in aqueous solution, and is calculated as 𝐷𝑖,𝑒 = 𝐷r 𝐷𝑖 , where 𝐷r = 𝑝/𝜏 is the
relative diffusivity (m2 ES / m2 biofilm) and 𝐷𝑖 the diffusivity in free solution (m2 s−1).
Mass conservation holds everywhere in the extracellular space, and is given by

𝑝
𝜕𝑐𝑖

𝜕𝑡
= −𝜕𝐽𝑖

𝜕𝑥
+ 𝑟𝑖 + 𝛾𝑖 (18.2)

where 𝑟𝑖 is the formation rate of species 𝑖 (mM s−1) due to biochemical reactions in the
biofilm, which are described in more detail in Section 18.3, and 𝛾𝑖 is the formation rate of 𝑖
due to acid-base reactions. For inert species that do not undergo any of these reactions, we
have 𝑟𝑖 = 𝛾𝑖 = 0, and for the phosphate system, we have 𝑟𝑖 = 0.

To describe transport of species that participate in acid-base reactions, we group them in
the following way. In our calculation we consider the group containing acetate species (Ac−)
and acetic acid (HAc) (together also called “substrate”); the group containing bicarbonate
species (HCO −

3 ) and carbonic acid (H2CO3), which are the products of the biochemical
conversions; and the group of phosphate species (HPO 2−

4 , H2PO −
4 and H3PO4) which are

typically used in experiments to buffer the pH in the biofilm. Finally, the solution contains
protons (H+) and hydroxyl ions (OH−), and additional unreactive cations, which we jointly
describe as Na+-ions. We neglect other anions.
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For each group of species, we set up a mass balance equation by adding up all balances
of all species in a group, and as the summation of the 𝛾-terms within a group is zero, these
𝛾-terms cancel each other out, resulting in

𝑝
𝜕

𝜕𝑡
[Actot] = −

𝜕

𝜕𝑥
(𝐽Ac− + 𝐽HAc) − 𝑟a (18.3)

𝑝
𝜕

𝜕𝑡
[HCtot] = −

𝜕

𝜕𝑥

(
𝐽HCO −

3
+ 𝐽H2CO3

)
+ 2 𝑟cat (18.4)

𝑝
𝜕

𝜕𝑡
[H2Ptot] = −

𝜕

𝜕𝑥

(
𝐽H3PO4

+ 𝐽H2PO −
4
+ 𝐽HPO 2−

4

)
(18.5)

where we use the notation [𝑖] for concentration (equivalent to the symbol 𝑐𝑖), again with
dimension mM, and where [Actot] is the total concentration of acetate species, [Hctot] that of
bicarbonate species, and [H2Ptot] that of phosphate species. These concentrations are given
by

[Actot] = [HAc] + [Ac−] (18.6)

[HCtot] = [H2CO3] + [HCO −
3 ] (18.7)

[H2Ptot] = [H3PO4] + [H2PO −
4 ] + [HPO 2−

4 ] (18.8)

The rate of formation of acetate is given by −𝑟a (Eq. (18.17)) and of bicarbonate by +2 𝑟cat

(Eq. (18.18)), as discussed in detail in Section 18.3. After setting up these balances, we
substitute the acid-base equilibria, as given by

𝐾HAc =
[CH3COO−] [H+]
[CH3COOH]

𝐾H2CO3
=
[HCO −

3 ] [H
+]

[H2CO3]

𝐾H3PO4
=
[H2PO −

4 ] [H
+]

[H3PO4]
(18.9)

𝐾H2PO −
4

=
[HPO 2−

4 ] [H
+]

[H2PO −
4 ]

𝐾W = [OH−] [H+]

into the mass balances, Equations (18.3)–(18.5), after which only one ‘master species’ per
group remains to be considered in the numerical code. In this way, the numerical code is
much simplified as kinetic expressions and constants for these acid-base reactions are not
considered. Furthermore, as acid-base reactions are fast compared to diffusion, considering
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these reactions would result in a ‘stiff’ set of equations, which is numerically more difficult
to solve. Lastly, by grouping ionic species, we do not have to make any assumption when it
comes to which ionic species within a group exactly participates in a certain reaction. E.g.,
we do not have to make any assumption whether the bacteria consume HAc or Ac– , and
whether they produce H2CO3 or HCO –

3 .
Besides the mass balances for each group of species, we consider the charge balance in

solution, which describes that, at each position in the biofilm, the divergence of the ionic
current is equal to the rate of charge transfer from solution to the pili, 𝑟ch (mM s−1)∑︁

𝑖

(
𝑧𝑖
𝜕𝐽𝑖

𝜕𝑥

)
= −𝑟ch (18.10)

where 𝑖 runs over all ionic species, including protons and hydroxyl ions.
The elegance of the use of Equation (18.10) is that in our code no balance needs to be

set up related to the “alkalinity”, or to protons/hydroxyl ions. This makes the model very
transparent to set up. Note that even without explicitly setting up an “alkalinity” balance,
local production of protons (or hydroxyl ions) is calculated correctly by the model.

The electroneutrality condition holds everywhere in the biofilm (𝑥 𝜖 [0, 𝐿], where 𝐿 is the
thickness of the biofilm) ∑︁

𝑖

𝑧𝑖 𝑐𝑖 = 0 (18.11)

where 𝑖 again runs over all ions and where we neglect a possible charge of the bacteria or of
the extracellular substances. Next, we define boundary conditions. First, concentrations at
the bulk-biofilm boundary (𝐵/𝐵𝐹) are equal to the fixed bulk concentrations

𝑐𝑖 |𝐵/𝐵𝐹 = 𝑐B,𝑖 (18.12)

where 𝑐B,𝑖 is the bulk concentration of species 𝑖. We neglect any bacterial charge in the
electroneutrality balance, and thus a Donnan potential drop does not have to be considered
across the 𝐵/𝐵𝐹 interface. This is different from models for ion-exchange membranes or
other membranes with charged nanopores. Secondly, at the biofilm-electrode boundary
(𝐵𝐹/𝐸), for each group of ionic species, the sum of the mass fluxes of all species within the
group must be zero ∑︁

𝑗

𝐽 𝑗 |𝐵𝐹/𝐸 = 0 (18.13)

where 𝑗 runs over all ionic species in a group. Eq. (18.13) also holds for the unreactive
cations. Furthermore, at the 𝐵𝐹/𝐸-boundary the ionic current must be zero∑︁

𝑖

𝑧𝑖𝐽𝑖 |𝐵𝐹/𝐸 = 0 (18.14)
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Fig. 18.2: Biochemical conversion of substrate and subsequent electron transfer to the matrix of
conductive pili. Acetate (Ac− or HAc) forms an enzymatic complex, X, with NAD+, which is reduced
to NADH, while bicarbonate species (HCO –

3 or H2CO3) are produced. NADH reduces a cytochrome
on the outside of the cell, which thereafter transfers its electrons to the conductive pili.

where 𝑖 runs over all ionic species evaluated in the model.

18.3 Oxidation of substrate in the bacteria

We present here a simplified description of the biochemical reactions associated with
oxidation of organic matter (acetate) by bacteria under anaerobic conditions (i.e., in the
absence of oxygen), see Fig. 18.2. First, acetate enters the bacterium and forms an
enzymatic complex with NAD+, a redox component found in all living cells that we use
as model electron carrier. Inside the enzyme-substrate complex, that we call “X”, acetate
donates its electrons to NAD+, in a redox reaction yielding NADH (the reduced form of
NAD+), which remains inside the cell, and bicarbonate ions and protons, which all leave the
cell. Next, NADH oxidizes back to NAD+, and transfers its electrons to the cytochromes
(proteins that can accept electrons) located on the outer membrane of the cell. Finally, the
cytochromes transfer the electrons to conductive pili, which conduct the electrons to the
anode. In the following sections, we describe in detail how we model these different steps.

In a bioelectrochemical system, using acetate as a model substrate, the following
stoichiometry of conversion is often assumed: Ac– + 4 H2O −−−→ 2HCO –

3 + 9 H+ + 8 e– .
However, this stoichiometry is only true in a limited pH range. For this reason, we prefer
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the numerical approach explained in Section 18.2 that eliminates the need to choose for
a particular stoichiometry. In our approach, we only have to implement the chemical
information that when one acetate species (Ac– or HAc) is consumed, two bicarbonate
species (HCO –

3 or H2CO3) form, together with 8 electrons.
To describe the oxidation of acetate inside the bacteria, we adapt the Butler-Volmer-Monod

(BVM) model which offers a simplified description of the underlying biochemical reactions.
We modify the BVM model by 1) assuming that the dissociation of the enzyme-substrate
complex is irreversible (we remove the 𝑘4 parameter in their model), and 2) adapting it
to describe the conversion of acetate to bicarbonate, protons and electrons. This latter
modification makes it possible to couple biochemical reactions to the transport of ions. With
this approach, the oxidation of one acetate species (the Ac− ion or the HAc neutral species) is
coupled to the reduction of 4 NAD electron carriers by the formation of an enzyme-substrate
complex X, according to

Actot + 4 NAD+
𝑟a−−−⇀↽−−− 4X (18.15)

while the dissociation of X is described by

4 X
𝑟cat−−−→ 2 HCtot + 4 NADH . (18.16)

In Equation (18.16) the rate of association of Actot and NAD+ into X is given by 𝑟a, and the
rate of dissociation of X by 𝑟cat (both in mM s−1). Note that Equations (18.15) and (18.16)
do not take into account charge neutrality, nor atom balance.

Whereas other BES models rely on empirical expressions such as the double-Monod
equation to calculate reaction rates, in our approach, rates of reactions (18.15) and (18.16)
are proportional to the product of the concentrations of the reactants, following first-order
kinetics

𝑟a = 𝑘a [Ac]tot [NAD+] − 𝑘d [X] (18.17)

𝑟cat = 𝑘cat [X] . (18.18)

The rate constant for association is denoted by 𝑘a (mM−1 s−1), for dissociation by 𝑘d

(s−1), and for “catalysis” by 𝑘cat (s−1). Note that the theory can also be used to model a
biofilm on a cathode by reversing the reaction scheme (the lhs of Eq. (18.15) becomes
the rhs of Eq. (18.16) and vice-versa). Consequently, Eq. (18.17) is replaced by 𝑟a =

𝑘a [HC]tot [NADH] − 𝑘d [X]. No other modification to the theory is required. The three
kinetic constants of reactions (18.15) and (18.16), 𝑘cat, 𝑘a and 𝑘d, are related to the classical
substrate affinity constant, 𝐾s, by

𝐾S =
𝑘d + 𝑘cat

𝑘a
(18.19)
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which is also called the Michaelis-Menten constant. Next, we express the change in
concentration of redox complex X as the difference between the formation rate, 𝑟a, and
the conversion rate, 𝑟cat,

1
4
𝜕 [X]
𝜕𝑡

= 𝑟a − 𝑟cat . (18.20)

Finally, because the NAD electron carriers do not leave the bacteria, the total
concentration, [NAD]tot, is position-invariant and constant over time, and is equal to

[NAD]tot = [NAD+] + [NADH] + [X] . (18.21)

18.4 Electron transfer to the matrix of conductive pili

18.4.1 Intracellular electron transfer to outer-membrane
cytochromes

The mechanism by which electrons are exchanged between the interior of the cell and the
extracellular space involves a cascade of redox proteins, such as cytochromes. For simplicity,
we model the electron transfer between NADH and the outer-membrane cytochromes as a
single step.Cytochromes can be in the reduced state, denoted by Cred, or in the oxidized
state, Cox. As NADH carries two electrons, the redox reaction between NADH and outer-
membrane cytochromes is given by

NADH + 2 Cox + H+
𝐾NAD−−−−⇀↽−−−− NAD+ + 2 Cred . (18.22)

We hypothesize that reaction (18.22) occurs at a much faster rate than the reaction that
produces NADH (reaction (18.16)) and the one that produces Cox (reaction (18.27)).
Reaction (18.22) is thus not considered as a limiting step and we assume equilibrium,
as given by

𝐾NAD =
[NAD+] [Cred]

2

[NADH] [Cox]
2 [H+i ]

(18.23)

where [H+i ] is the intracellular proton concentration, which we assume to remain constant at
a value of 10−4 mM (i.e. pH 7). A balance in NAD+ is given by

2
𝜕 [NAD+]

𝜕𝑡
= −8 𝑟a + 𝑟cyt (18.24)

where 𝑟cyt is the rate of oxidation of cytochromes, to be discussed in the next section.
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18.4.2 Extracellular charge transfer from cytochromes to the matrix
of conductive pili

We now describe the charge transfer from bacteria to pili. Cytochromes located on the
outside of bacteria transfer their electrons directly to the pili at all positions in the biofilm,
as represented in Figures 18.1 and 18.2. Like for NADtot, the total concentration of
cytochromes, [C]tot, is invariant with time and position

[C]tot = [C]red + [C]ox (18.25)

with a balance over [C]ox given by

𝜕 [C]ox
𝜕𝑡

= −𝑟cyt − 𝑟ch . (18.26)

Note that in our model 𝑟cyt is a dummy parameter, which cancels out after summing up
Eqs. (18.24) and (18.26). The charge transfer from cytochromes to pili is described as a
single-electron reaction

Cox + e− + H+
𝑟ch−−−⇀↽−−− Cred (18.27)

where the charge transfer rate, 𝑟ch, relates to the redox reaction of cytochromes according
to the Butler-Volmer equation, a standard model for electrochemical kinetics that has been
shown to be applicable to redox proteins as well,

𝑟ch = 𝑘red [C]ox [H
+] 𝑒−𝛼Δ𝜙 − 𝑘ox [C]red 𝑒

(1−𝛼)Δ𝜙 (18.28)

where 𝑘red (mM−1 s−1) is the rate constant of the reduction reaction, 𝑘ox (s−1) of the oxidation
reaction, where 𝛼 [-] is the transfer coefficient, and where Δ𝜙 = 𝜙bf (𝑥) − 𝜙(𝑥), with 𝜙pili (𝑥)
the dimensionless electric potential in the pili, and 𝜙(𝑥) the potential of the solution.

18.5 Charge transport to the anode
Finally, we must describe charge transport in the matrix of conductive pili. The current
density, 𝐽ch (A m−2), is proportional to the biofilm’s electronic conductivity 𝜎bf (S cm−1)
and the gradient of electric potential across the biofilm, as described by Ohm’s law

𝐽ch = −𝜎bf 𝑉T
𝜕𝜙pili

𝜕𝑥
. (18.29)

Assuming that pili are not capacitive, no charge accumulates inside. Charge conservation in
pili thus implies

𝜕𝐽ch

𝜕𝑥
= 𝑟ch 𝐹 . (18.30)
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By substituting Eq. (18.29) into Eq. (18.30) we obtain a final equation for current transfer
across the biofilm

𝜎bf 𝑉T
𝜕2𝜙pili

𝜕𝑥2 = − 𝑟ch 𝐹 . (18.31)

At the bulk-biofilm boundary (𝐵/𝐵𝐹), no current can pass (𝐽ch = 0), and thus

𝜕𝜙pili

𝜕𝑥

����
𝐵/𝐵𝐹

= 0 . (18.32)

We define the anode overpotential 𝜂 (V) as the potential in the pili at the biofilm/electrode
boundary minus that in the continuous phase at the bulk-biofilm boundary

𝜂 = 𝑉T (𝜙pili |𝐵𝐹/𝐸 − 𝜙 |𝐵/𝐵𝐹 ) . (18.33)

Electrons transferred from cytochromes to pili eventually leave the biofilm at the anode
surface. The current density there is obtained by integrating the charge transfer rate, 𝑟ch,
over the biofilm thickness

𝐼 = −𝐹
∫ 𝐿

0
𝑟ch (𝑥)d𝑥 (18.34)

where 𝐼 is the current density at the anode (A m−2).
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Redox reactions in environmental chemistry

A solution not only has a temperature, pressure, pH, color, ..., but we can also measure its
redox potential, 𝐸h. This potential is a measure of which redox reactions are active. For
a mixture of redox-active components at equilibrium, knowing the various electrochemical
half reactions, the redox-potential can be calculated, and we show how Pourbaix-diagrams
can be constructed.
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19.1 Introduction

Electrochemical reactions not only happen at electrodes, but also in solution. Then at least
two redox-active species must be present, with one serving as electron donor (reductant) and
the other as electron acceptor (oxidant). In water, dissolved oxygen is often the key oxidant,
but in the absence of oxygen other species can be the oxidant, such as SO 2–

4 . Even water
itself can be the oxidant (e.g., forming H2 gas). Organic matter is often the reductant, or a
metal such as iron which is oxidized.

The ions can be in many different forms. First, they can be more or less protonated, as
regulated by acid-base reactions, described by the well-known equilibrium equations that
make use of pK-values. But in addition, ions can be in different ‘oxidation states’, more
or less oxidized. For instance the Fe-atom can exist as Fe2+ and Fe3+, as well as metallic
Fe, and even as hexavalent iron. Dependent on pH these different oxidation states can
associate with OH– into soluble or insoluble iron (hydr-)oxide substances (or iron-sulfide,
or iron-carbonate complexes and deposits).

All of this is regulated by pH and the presence of oxygen (e.g., oxygen ‘activity’, or oxygen
partial pressure), but also other oxidants can play in role in iron oxidation. But instead of
trying to measure the oxygen activity, it is possible to use a different property, that can be
measured well, namely the redox potential. Indeed, it is possible to measure of a solution
with redox active ions the redox potential, similar to how we can measure pH, temperature,
pressure, . . . .

To this end an electrochemical measurement cell is used with a working electrode made of
Pt (WE), and a reference electrode (RE). Some of the redox reactions that can take place in
solution will also take place at the WE of the measurement device (a reaction between Fe2+

and Fe3+, see Stumm and Morgan (1970), p. 361). This reaction will (try to) push electrons
into the WE, thereby changing the electrode potential, and this potential (relative to RE) is
measured and is the redox potential, 𝐸h.

The lower 𝐸ℎ, the more electrons have been pushed into the electrode. Apparently the
force to push them in is strong (because electrons –on the metallic side of the electrode–
do not like negative potentials, so apparently a strong force was present to push them in
there anyway). Thus there is a forceful electron donor, or vice-versa, the electron acceptor
is ‘weak’, for instance because the oxygen activity is low. The low E of the WE can also
be interpreted that at equilibrium (there is no current running to this WE), the solution side
of the EDL must have a high potential versus the metal side, to lure the electrons to come
out (to participate in a reduction). Apparently, they do not want to do this as much as a
reaction that has a higher E (which doesn’t need the large positive potential gain from metal
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to solution). Situations with a lowE, that would be an anaerobic environment. The reverse
is a high value of 𝐸h, and then the oxidizing power of oxidants is strong, for instance there
is a high activity of oxygen because there is a significant concentration of dissolved oxygen.

So how to calculate 𝐸h when we know the concentrations of all redox-active species,
or vice-versa, if we know 𝐸h, what can we derive of (the ratio between) the various
concentrations? This topic is taken up in the next section.

19.2 Calculating the redox potential of a solution
How to calculate the redox potential 𝐸h if we know the composition of a solution? Of course
in reality the practical question would be the reverse: what can we learn from a measured
value of 𝐸h?

If we would have a totally unreactive salt solution, say a NaCl solution, blanketed with
N2-gas, then there just is no 𝐸h to measure. If we now aerate the water (bubble through
O2-containing gas), then a redox potential should establish, which is the Nernst potential
of the reaction of dissolved oxygen gas with water and OH– ions (i.e., dependent on pH),
for which 𝐸0 = +1.23 V (vs. SHE) for the reaction O2 + 4H+ + 4e− → 2H2O, thus
𝐸 = 𝐸0 + 𝑉T

(
1/4 ln 𝑝O2

− ln 10 · pH
)
, with the oxygen pressure in bar. This reaction,

though slow, will establish the redox potential, thus 𝐸h = 𝐸 of this reaction. Thus, the
higher is the oxygen pressure or the lower is pH, the higher is 𝐸h.i

If now Fe2+ and/or Fe3+ ions are added (together with inert anions), what happens next?
Let us assume no further species are formed such as iron oxides. Thus we have the reaction
Fe3++e− → Fe2+ and of this reaction we have 𝐸 = 𝐸0+𝑉T ln[Fe3+]/[Fe2+] with 𝐸0 = +0.77
V.

In solution the two reactions are as it were short-circuited, so 𝐸hc is the same, thus:

𝐸0,O2
+𝑉T/4 · ln

(
𝑝O2
[H+]4

)
= 𝐸0,Fe3+/Fe2+ +𝑉T ln[Fe3+]/[Fe2+] (19.1)

and thus
𝑝0.25

O2
[H+] [Fe2+]

[Fe3+]
= exp

(
𝑉−1

T

(
𝐸0,Fe3+/Fe2+ − 𝐸0,O2

))
(19.2)

with the rhs equal to the numerical value 1.57 · 10−8. Thus the higher the oxygen pressure,
and lower pH, the more Fe will be in the oxidized form, Fe3+. Interestingly, this distribution
between Fe2+ and Fe3+ seems to be independent of the initial ratio of what we added, either

iIn reality, oxygen reduction does not establish this 𝐸0, but a lower 𝐸h is measured, see Stumm and Morgan,
p. 361.
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Fe2+ or Fe3+. But there is an effect. If we start with only Fe2+ and when this is oxidized, and
thus oxygen reduced, then H+ is consumed in this reaction, thus [H+] goes down, and thus
the final ratio of Fe2+/ Fe3+ ends up nearer to Fe2+ than if for instance we would have started
at 50%/50% Fe2+/Fe3+.

Of course, if at the same time we would stabilize pH, by addition of HCl, then the final
ratio of Fe2+/Fe3+ will be independent of the initial ratio of these two ions.

Thus, we know the composition of the solution. But what will the measurement of redox
potential lead to? The redox potential is a mixed potential. It depends on all possible half
reaction, and on how fast and prominent they are on the electrode of the 𝐸h-sensor. [A
reaction can be fast but based on trace ions, it will eventually not contribute much.] In
the system just defined, the Fe2+/Fe3+ have a strong effect on the sensor, and the oxygen
reduction does not. Thus, the redox potential completely depends on the Fe half reaction,
thus 𝐸h = 𝐸hc,Fe3+/Fe2+ . And we know that we can change this ratio between Fe3+ and
Fe2+ by changing the oxygen partial pressure and pH. [This seems to be in contradiction to
the Pourbaix diagrams that we will discuss later, where the ‘line’ between Fe2+ and Fe3+

is horizontal, i.e., independent of pH. But this simply reflects that when we have equal
concentrations of Fe2+ and Fe3+, pH will not influence 𝐸h.]

Let us next introduce the possibility of a third Fe-ion, namely FeO 2–
4 , where Fe is

hexavalent. This ion is predicted for all pH values at high 𝐸h, see Fig. 19.1.

— to be continued —
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Fig. 19.1: The Pourbaix diagram of iron in water showing the predominant species as function of pH
and redox potential 𝐸h.
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Overview of electrochemical water desalination

Many methods to desalinate water can be classified as being part of the field of
electrochemical processes. In this book well-established key methods were discussed
in previous chapters. In this chapter these are briefly summarized focusing on aspects
of application. In addition, we briefly describe other methods of electrochemical water
desalination.
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20.1 Introduction

Water desalination is one of the main applications of the field of electrochemical processes,
and for that reason – and the authors’ personal interest – this is a key part of this book.

When is a process ‘electrochemical’? Or, what is the definition of ‘electrochemical’ in
the context of this book?

As may be inferred from the many topics in this book, to us the definition requires the
presence of freely moving ions, thus an electrolyte phase is formed, and there is an additional
element such as another phase or material that has a physical-chemical interaction with the
electrolyte. This other material is either a charged interface (as a planar wall, or as a porous
structure), or an electrode (planar or porous). In addition there can be additional interfaces
of the electrolyte, such as the liquid-gas interface.

Thus, in the context of our book title ‘Physics of electrochemical processes,’ the
interactions of the ions with one another and with other dissolved species in the electrolyte,
in combination with the processes in or at these aforementioned interfaces, we classify as an
electrochemical process.

Interestingly, for a process to be ‘electrochemical’, in our view the presence of an electrode
is not a requirement. One example is the study of ion exchange, which includes the
description of ion transport into resin particles and the exchange for other ions. This
process is clearly ‘electrochemical’ following the criteria laid out above. The theory for
ion exchange makes of the same concepts as for other electrochemical processes, such as
the Nernst-Planck equation for ion transport, Donnan equilibrium, and electroneutrality.
As another example, also the study of the surface tension of an ionizable surface, due to
formation of a diffuse layer of ions and the dissociation of surface charges, and the resulting
G/L/S contact angle, is part of the field of electrochemical processes.

Indeed, electrochemical processes closely relate to the field of physical chemistry, as long
as dissolved ions play a role, and there are additional interfaces such as membranes and/or
electrodes. The relevant physics is often based on Poisson’s equation applied to electrolytes
and interfaces, and the theory furthermore includes ion equilibria or transport, based on
(modifications of) the Boltzmann equation and the Nernst-Planck equation.

The phase transition of water containing salt, to either a gas or solid phase, as a method
of water desalination (which also includes membrane distillation), can be excluded from the
class of electrochemical processes. It can be part of this field if it is established that in the
evaporation and freezing of (sometimes highly) saline streams, there is a significant role
of the EDL structure or ion transport on the kinetics and thermodynamics of these phase
transitions, requiring use of the aforementioned physical theories.
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For the desalination of water by methods that are primarily driven by pressure, there
is no logical reason to exclude these from fitting under the umbrella of electrochemical
processes. And as the chapter on reverse osmosis and nanofiltration (RO and NF) clearly
shows, the theories discussed there, to describe ion rejection and desalination, are the same
as those used for other desalination methods such as electrodialysis (ED), and ED clearly is
a method of electrochemical water desalination. Thus RO and NF fall under the umbrella of
electrochemical water desalination as well.

20.2 Core technologies for electrochemical water
desalination

The core technologies we identify for electrochemical water desalination are listed in
Table III-1 on p. 284, and are discussed in Chapters 15, 11, and 12. In this section these
methods are briefly discussed focusing of more technological aspects.

20.2.1 Capacitive Deionization (CDI)

Capacitive deionization (CDI) is a method of water desalination where pairs of capacitive
porous film electrodes are used to attract cations into one electrode, and anions in the other,
by charging the electrodes negatively and positively, respectively. While electrodes are
charged, we produce freshwater from the cell (water with a lower salt concentration than
the feedwater). Such film electrodes are typically rather thin, less than 1 mm in thickness,
but have a large area, such as 10×10 cm2 or larger. The capacitive particles in such an
electrode (for instance made of NMO (sodium manganese oxide), NiHCF (an example of
a Prussian Blue Analogue), or activated carbon) are glued together by a polymer additive,
and the electrode structure is furthermore improved by addition of conductive polymer or
graphite (carbon black, graphene, or carbon nanotubes) to enhance electron conductivity.
The electrodes must have a large fraction of open pore space to allow for ion transport.

While building up an EDL in the electrodes, which raises the voltage inside the electrodes,
there is a decay in current across the cell if we work at a constant cell voltage. The decreasing
current in time will also lead to lower desalination rates. When the EDL voltage becomes too
high and the energy costs of further charging becomes too high, or Faradaic leakage currents
develop, the cell voltage is reduced, or the current direction reversed, and cell operation is
now in discharge mode and a salt-concentrated stream is produced. This continues until the
end of the discharge step, after which a new cycle can start. CDI is thus a cyclic process.
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The electrodes in each cell are connected via a ‘current collector’ to the external wiring.
The current collector must be electronically conductive, of which an example is graphite
paper. The same current collector can be used for two electrodes that are in adjacent cells.
Thus a single layer of current collector will have porous electrodes on both sides and each
current collector is connected to the external circuit (one is connected to the positive pole of
the electrometer, the next to the negative pole, etc.). This is different in the ‘floating’ design,
where two adjacent porous electrodes in different cells are electrically insulated from one
another by a non-conducting layer, e.g., made of plastic. This insulator blocks passage of
current from one cell to the other. With these insulator materials in place, we can again
build a stack of many CDI cells, but we only have to charge the end-electrodes, and then
automatically all individual cells will charge up and desalinate the water that flow them. In
this floating design we must take care of ‘stray’ currents that flow around the cells, through
auxiliary stack elements.

Note that when building such a CDI stack, in the design with current collectors between
each two electrodes, each cell has an internal sequence that is a mirror-image of the
neighbouring cells. This is particularly relevant when ion-exchange membranes are placed
in front of the electrodes, and much care must be taken in correctly assembling the cell. For
the floating design, each cell has the same sequence, i.e., is a copy (not a mirror-image) of
adjacent cells.

The typical CDI design has the water flowing along the electrode, but also flow-through
CDI is possible where the water is directed at straight angles through the electrode structure
[1]. In this case the electrodes must be more open (have a higher hydraulic permeability)
by creating larger pores and more porosity, than in the flow-by design. Electrodes can also
flow themselves by making use of slurry electrodes in ‘flow-electrode CDI’. On the level
of the electrode (particle), the charge-discharge cycle is the same here as for standard film
electrodes.

There is a whole range of capacitive materials that can be used in CDI including inorganic
components with special charge-discharge characteristics. As long as the electrode voltage is
a function of ion loading in the electrode (and thus is a function of stored electronic charge),
we can construct an isotherm to describe the data of voltage-charge-salt adsorption (see
Ch. 1), and thus an EDL is formed, and the electrode is capacitive. These capacitive electrode
materials can also be chemically modified to become highly selective to preferentially take
up one ion over another one.

The basic design with two capactive electrodes can be extended by placing ion-exchange
membranes in front of the electrode. In this method called membrane CDI, or MCDI, the
performance of the cell is enhanced because the current efficiency is inceased, as well as the
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salt adsorption capacity. Also longevity of the CDI system is improved. However, the entire
stack design needs more volume (or we have less cells per unit stack volume) and becomes
more expensive.

For a cell design to classify as MCDI, it can have no more than one membrane per electrode.
For more membranes (thus for three membranes per electrode pair or more), two distinct
flow channels emerge (namely a distinct diluate flow channel, and a distinct concentrate
flow channel), both separate from the electrode compartments. We have now entered a grey
zone towards electrodialysis (ED), and we can add more and more membranes, without any
further fundamental changes. For ED, electrode performance is of less relevance, but instead
the focus is on the study of ion transport in an ED cell.

Desalination by non-capacitive (Faradaic) electrodes is discussed later on in this chapter.

Electrodes can be chemically modified in many ways, to make them more selective to
absorb one ion over another. We can also synthesize chemical charge in the electrode. This
can then lead to a special operational mode of CDI where during charging (defined here as
the step where we invest electrical energy) we do not produce freshwater (as in the standard
operational mode), but instead during charging we produce the concentrate stream (ions are
pushed out of the electrode), and when we discharge (no electric energy input, or we recover
energy), we now desalinate the water. This operational mode is called inverted CDI (𝑖-CDI),
and how this works can be understood from the effect of the extra chemical charge in the
micropores on the EDL structure, see Ch. 2.

When we use electrodes that are highly selective for either anions and cations, and this is
the case for many of the intercalation materials that are highly cation-selective, see Ch. 1,
a cell design is possible where each electrode is in direct contact with a flow channel,
and the two channel-plus-electrode constructs are separated by a membrane (an anion-
exchange membrane is used for cation-selective electrodes). In this CDI-design one channel
is producing concentrate while at the same time the other channel produces desalinated
water. When the current direction is reversed, the concentrate-producing channel now
produces diluate, and vice-versa. So this is also a cyclic CDI process, but the freshwater
(diluate) and brine (concentrate) are not produced sequentially, but at the same time, coming
from different channels.

1. E.N. Guyes et al., “A one-dimensional model for water desalination by flow-through electrode capacitive
deionization,” Desalination 415, 8–13 (2017).
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20.2.2 Electrodialysis

Typically commercial electrodialysis (ED) stacks have 10s to 100s of cell pairs (membrane
pairs) and the key element of study is the single cell, which consists of a pair of flow channels,
one to produce the freshwater, the other the concentrate. In between each two channels an
ion-exchange membrane (IEM) is placed, alternatingly a cation-exchange membrane or an
anion-exchange membrane. These membranes are typically 10s of microns thick, are quite
porous with an open porosity of 20-40 vol% and the membrane structure is highly charged;
per unit volume of pore water, the membrane charge density is as high as 5 M for commercial
IEMs.

The use of many cells in a single ED stack implies that ‘end-electrode’ effects are less
relevant. In these end-electrode compartments, often the decomposition of water is used
to Faradaically convert electronic current into ionic current (accompanied by the formation
of hypochlorite, or hydrogen gas molecules), or in laboratory experiments, a solution with
certain dissolved molecules (a redox couple) is used, and this electrode rinse solution is
continuously pumped from the anode to cathode and back. Leakage of these molecules into
the ED flow channels must be avoided.

Another option is to use capacitive end-electrodes, often rather thick (several mm’s or
more), such that the ED process can run (at a given current) for tens of minutes before the
current direction in the stack is switched, concurrently with switching the direction of the
exit flows. This latter option is similar to ‘EDR’ which is the commercial name of an ED
process with switching at this long time scale, to prevent membrane fouling. At the level of
a single cell, after a short switching period of 10s of seconds, operation of the cell quickly
resumes to continue as before, in steady state. The rinse solution which is continuously
pumped between the two end-electrode can also be a slurry of capacitive particles. Then
periodic switching of current is not required, but robustness of pumping of a slurry must
now be ascertained.

20.2.3 Ion exchange

The method of ion exchange (IEX) was not yet discussed in this book, but is a very relevant
water desalination method where ion exchange resin particles exchange ions, for instance
cations absorb and protons desorb. This would bring the pH of the water down, i.e., the
water is acidified. In a sequel column, or a mixed bed column, anions are exchanged for
hydroxyl ions, and in this way the water is no longer acidic, and now (almost) all ions are
removed. The absorption column must be replaced or regenerated when it is saturated with
anions and cations.
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20.2.4 Reverse Osmosis

The No. 1 technology in electrochemical water desalination is reverse osmosis (RO). RO is
widely applied worldwide to provide potable water from brackish water sources and from
seawater, for human use, industry and agriculture. RO uses asymmetric membranes where
a thin toplayer is on top of a supporting structure which provides strength against the several
MPa’s of pressure that are imposed on the membrane.

The design of an RO installation involves the optimization of membrane transport, module
operation, and then the design of the layout of many modules in an optimized RO desalination
plant. Pressure recovery devices are a key enabling technology to minimize the energy
consumption in RO. For seawater desalination the energy consumption of an RO plant can
now be limited to a value less than twice the thermodynamic minimum.

Current research of RO does not focus on the reduction of energy, but on many other
relevant topics. These topics include: the application of RO for micropollutant removal from
surface water; membrane robustness against cleaning; the prediction and optimization of ion
selectivity in RO related to sub-optimal rejection of ions that participate in (de-)protonation
reactions (ammonia, boric acid); and RO for the treatment of hypersaline streams for zero
liquid discharge applications.

20.2.5 Nanofiltration

Nanofiltration (NF) is closely related to reverse osmosis. Many modern NF membranes are
made in a similar way as RO membranes, but only the pore size of the material ends up being
a little larger. Therefore in NF the rejection for monovalent ions is moderate (for instance
50%) while the rejection for divalent ions is much closer to 100%. However, this difference
between the rejection of monovalent and divalent ions cannot define NF, or delineate NF
from RO, because in RO this difference between the rejection of mono- and divalent ions is
just as distinct. For instance in a study by Zhang et al., ES&T Lett. (2020), the rejection
by an RO membrane for monovalent cations is between 97.0 and 98.5% while the rejection
for divalent cations is 99.98%. Thus also here for RO we have a desalination effectiveness
(defined as 100% minus rejection) that is a factor 100 different between monovalent and
divalent cations.

Most distinct is that NF and RO have gone through a very different history. Whereas the
study of RO has always been closely related to seawater desalination and developments in
polymeric (thin film) membranes and the design of working desalination plants, the field
of NF considered a wider range of materials, for instance inorganic membranes of silica
and 𝛾-alumina, while membrane materials of recent interest are polyelectrolyte multilayer
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membranes, and focused more on lab-scale experiments with ideal salt solutions (with
well-defined concentrations of the mixtures of monovalent and divalent ions).

Theoretically, for RO simple black-box theories have traditionally been used, often based
on the SD-model or models based on irreversible thermodynamics. NF used physics-based
models such as the Teorell-Meyers-Sievers (TMS) model and extensions thereof to include
advection (uniform potential model), and further extensions to include special Donnan effects
at the pore entrance and exit. Also the extension to include the radial direction of the pore in
more detail by the space-charge model was taken up. These physics-based models used in NF
describe performance on the basis of microscopic properties such as diffusion coefficients,
membrane charge, etc. Instead, the classical RO models have phenomenological parameters
as input, parameters that can be quickly derived from measurements but might not have a
direct correlation to fundamental properties of the membrane, the ions, and their interaction.

Thus, until recently, at least in the academic field, the two fields were quite distinct in
experimental and theoretical approaches.

20.3 Non-electrochemical methods of water desalination

For completeness, let us briefly summarize water desalination methods that use phase
transitions as the primary driving force, either by evaporation of water, or by freezing.

20.3.1 Distillation

Multi-effect distillation, multi-stage flash distillation

20.3.2 Membrane distillation and pervaporation

20.3.3 Freezing

incl. eutectic freeze crystallization

20.4 Non-core methods of water desalination

In this section we discuss in no particular order water desalination methods that can be
considered to have a niche application or still are in the investigative stage.
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20.4.1 Mosaic membranes for water desalination

20.4.2 Forward Osmosis

20.4.3 Shock electrodialysis

20.4.4 Faradaic electrode desalination

A pair of Faradaic electrodes can be used to desalinate water by a Faradaic electrode process
[1]. In Faradaic electrodes ions are not stored in the electrode itself, but in a solid salt nearby.
The two systems that have been used for this purpose are Ag/AgCl and Zn/ZnCl2. These
Faradaic processes are not described by an isotherm or a capacitance, and there is no EDL
formation that relates to the desalination performance.

In Faradaic desalination there is no continuous change in electrode voltage during
desalination and thus no finite capacity of the electrode itself. Instead, in this process,
as long as bulk metal is available, the Cl– -anion can be removed from the water. Thus,
these processes are Faradaic because they do not store ions at or in the electrode itself (the
outer surface of the Ag or Zn metal in this case), do not have an isotherm describing their
characteristics (instead, the electrode potential is described by the Nernst equation, i.e., only
dependent on Cl– -concentration), and they do not have a capacitance. They can run forever
without changes in the electrode potential.i

In Faradaic electrode desalination, during Cl– absorption, one or more electrons flow
away from the the metallic phase, which in the examples discussed here is either Ag or Zn,
and a metal atom is turned into a cation which then becomes part of the AgCl or ZnCl2 solid
salt that surrounds the metal phase, allowing for one or two Cl– ions from solution to also
become part of the solid salt.

Thus a metal ion is oxidized and becomes part of the solid salt phase. Ions in the solid
salt must have a (tiny) mobility relatively to one another because Ag+ or Zn +

2 cations are
continuously inserted on one side (near the metal) while Cl– ions are continuously inserted
on the other side of this layer. To keep electroneutrality near these outer interfaces, inside
the solid salt the two ions must be allowed to have a (very small) velocity relative to one
another.

Of course many hybrid methods are possible where one Faradaic electrode is coupled with
one capacitive electrode [2], and many other modifications are possible, such as including
one or two ion-exchange membranes.

iIn the examples discussed here, the voltage across the salt layer that covers the electrode will increase when they
get thicker (also dependent on current).
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20.4.5 Phase-transition electrode desalination

A further modification is water desalination by using phase transition electrodes, or
conversion electrodes. The material BiOCl is often used for this purpose, and it can take
up Cl– -ions while transforming into another phase. Because of the differences in shape and
volume between the two phases, upon repeated cycling there is severe loss of cohesion of the
electrode and loss of electronic connectivity, and thus repeated cycling of such an electrode
can be problematic.

20.4.6 Chemical energy driven spontaneous generation of
freshwater and electricity

20.4.7 Ion concentration polarization



21
Numerical methods in electrochemical processes

In electrochemical processes, many problems require numerical evaluation. This can be for
steady state problems, as well as for dynamic calculations. With the right approach, such
numerical calculations are robust and precise. The codes can be easy to set up and are a
pleasure to work with. Setting up such models and evaluating numerical calculations is
then a highly gratifying endeavour. Of course this is only the case when the right numerical
approaches are used.
In this chapter we explain how to solve mathematical problems in electrochemical processes
by methods that can even be programmed in widely available spreadsheet software. We
also provide downloadable example files. We demonstrate how to solve ordinary differential
equations with mixed boundary conditions using finite difference methods, important for one-
dimensional steady state problems. For dynamic problems described by partial differential
equations, we describe first-and second-order differentiation methods. We explain how to
include in the numerical code information from overall balances and averaged flux equations.
Of special interest are methods to include acid-base reactions in solution and electrodes.
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21.1 Introduction

Numerical methods are of great use for the theoretical study of electrochemical processes,
because there are so many processes of interest that are too complicated to be described
by analytical equations. Or, these analytical equations exist, or may exist, but are difficult
to derive and/or to interpret. Often analytical solutions are valid in certain ranges, and it
must be carefully checked if they are used in the right range. For these reasons, a numerical
calculation can be easier to do, and more robust. Ideally, numerical and analytical equations
are compared (in limiting situations where this is possible), and only when they give the
same outcome, do we accept that they were correctly evaluated (in that limit).

Electrochemical processes are considered more complicated than other processes in
chemical engineering where the charge of species does not play a role. Even though
that is perhaps true, in this chapter we will nevertheless provide effective and simple tools
that enable the modeling of electrochemical processes in a robust and insightful way.

In this chapter we will explain how to write out a numerical problem as a set of algebraic
equations (AEs) and show how to solve them. We do not focus on linearization of this
set of equations, which is not needed anyway. The only requirement is that there is an
equal number of unknowns as there are equations. Of course any physically correct model
(when formulated as a set of AEs) has equal numbers of unknowns as equations. Because
otherwise the problem is over- or underspecified, which means that either important physical
information is missing, or redundant information is provided (a certain equation is already
‘included’ in other equations), or the model is internally inconsistent, i.e., there are multiple
different equations that deal with the same aspect of the model. Interestingly, in setting up
the model, much time is invested in finding the exact set of equations for a certain problem.
This is especially so because of charge neutrality requirements, constant current, etc. The
methods we outline below are the ones that provide the minimum in time lost in finding
the right equations that are not redundant, neither miss information. Sets of non-linear
AEs will likely have multiple mathematical solutions, but in the physics of electrochemical
processes there typically is only one physically realizable solution. If the solution has all
concentrations positive, has the various state variables varying gradually from point to point,
then you have probably found that one solution. Though this does not prove you did not
make an error in the model, at least the first step, to set up and solve a model that at least
gives a realistic output, that step you successfully made. The most difficult part is behind
you. Now comes the detective work to figure out by looking very critically at the model
output if there isn’t some error. Every method you can come up with to check your model in
yet one more creative way, you must apply (e.g., compare with some simpler model, ideally
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also derive analytical equations to compare with.)
Steady-state and equilibrium problems are described by a set of AEs (after discretization

along a coordinate direction). The other type of problem we often deal with is dynamic (time-
dependent). The partial differential equations (PDEs) that describe a dynamic problem can
be discretized in space and then the resulting set of ordinary differential equations (ODEs)
together with the auxiliary AEs can be solved in time using the Method-of-Lines by a DAE-
solver. (This is a solver for sets of differential and algebraic equations.) Though we have
used DAE solvers and still do, in this book we promote a simpler methodology whereby
we discretize both in space and in time but in different ways. For the discretization with
time there are first and second order methods, but we prefer the first order methods (Crank-
Nicolson, and implicit Euler). Of these two methods, we have a preference for the implicit
Euler method.

General to all of these methods is that we advise the use of finite difference methods,
which are precise and insightful and elegant. This is at least the case when we have a single
𝑥-coordinate to consider, and in that case we can make maximum use of overall balances
and other integrated properties, as we will explain below.

For calculations in multiple dimensions, finite difference methods will also work fine
when the shape of boundaries is ideally suited for the numerical analysis (e.g., the domain
is a perfect rectangle), for equilibrium, and for steady state without convection. But in other
cases, such as with complicated geometries, convection, and/or for time-dynamic problems,
the finite difference method is generally replaced by finite element/finite volume methods.

In this chapter, and throughout this book, we describe many problems that are both
position- and time-dependent, also including convection. In all cases the mathematical
structure is that the space coordinate is primarily one-dimensional, and we can then use the
finite difference method. We also make calculations for flow channels and we then consider
two dimensions (and in §12.4 we also refer to a 3D calculation), but in these calculations
each of the various space coordinates is treated differently. For instance, in a channel for
water desalination by ED or RO, a typical model structure that we set up evaluates the short
direction towards the membrane as the key space coordinate for which we solve a set of
AEs, while we solve for transport in the long direction (along the membrane) by a sequence
of steps in that direction (implicit Euler). That works when in that direction we only need
to consider convection, and not diffusion and electromigration. In this way, a 2D or 3D
physical problem is solved primarily as a 1D mathematical problem solved sequentially. We
will explain below in more detail how we deal with such 2D transport problems, but we first
discuss problems that only have one positional coordinate, 𝑥, i.e., problems that in space are
one-dimensional.
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21.2 Solving a set of algebraic equations for a steady
state transport problem

A problem that is described as a set of algebraic equations (AEs) can be solved by various
methods or approaches (e.g., Schwalbe et al., 2006). In the next box we explain how one
such numerical approach can be programmed in readily available spreadsheet software.

Solving multiple algebraic equations in spreadsheet software. We can easily solve
N coupled algebraic equations which have an equal number N of unknown variables,
𝑥𝑖 . For instance, we have two unknowns, 𝑥1 and 𝑥2, and the two equations

sinh (𝑥1) = 𝑥2 + 2

𝑥1 = 2 · 𝑥2

then, to solve for 𝑥1, 𝑥2 using spreadsheet software (such as Microsoft Excel), we do
the following:

1. In two cells we enter guess values for 𝑥1 and 𝑥2.

2. We rewrite the equations to

sinh (𝑥1) − 𝑥2 − 2 = 0

𝑥1 − 2 · 𝑥2 = 0

and program this left side (‘the function’) in two cells, as function of the guess values
for 𝑥1 and 𝑥2 (see 1.).

3. In two additional cells, we evaluate the square of each function.

4. These two squared numbers are added up in a new cell.

5. This sum-of-squares must become zero, i.e., it must be minimized. To that end
we use the ‘Solver’-routine in Excel, and minimize this cell under variation of 𝑥1 and
𝑥2. The example Excel file is available here. The calculated values for 𝑥1 and 𝑥2 turn
out to be: 𝑥1=1.78... and 𝑥2=0.89...

http://www.physicsofelectrochemicalprocesses.com/supp_mat/numerical_methods_1/numerical_methods_1.xlsx
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In the remainder of this chapter, what was just discussed we call the ‘solution route’
to find the values of the unknowns, the 𝑥 𝑗 ’s.

A summary of what we did is as follows. We haveN AEs andN unknowns 𝑥 𝑗 . And
in a spreadsheet we provide N cells with guess values for the unknown 𝑥 𝑗 ’s. And in
N other cells the N AEs are programmed, i.e., the ‘functions’ (which each ultimately
must equal zero, but as long as the 𝑥 𝑗 ’s are not yet optimized, don’t). These functions,
(i.e., the left sides of AEs written as ... = 0), are squared and the squares are added
up. That summed term is minimized under variation of the guess values of 𝑥 𝑗 . This
works fine in Microsoft Excel, where we worked with up to 50 or so unknown 𝑥𝑘’s (we
never tried more). This method is very powerful in solving many problems that can
be formulated as sets of AEs, and as we show below, a small extension also allows us
to solve dynamic problems. Of course it is relevant to have reasonable good guesses
for the 𝑥 𝑗 ’s; if the guess values are completely off, the solver may not converge to the
required solution. Afterwards, check if the values for 𝑥 𝑗 that you found are realistic.

What is interesting, very interesting, is that it is not the case that always each of the
𝑦 𝑗 equations has a direct tie to one particular unknown variable 𝑥 𝑗 . I.e., it is not the case
that equation 𝑦3 is there to solve for parameter 𝑥3. No. All equations are there to solve
for all unknowns, in one ‘global’ calculation. Of course, often there is a connection,
that a certain mass balance in component 𝑖, solved at position 𝑗 , is there to calculate that
concentration at that position, 𝑐𝑖, 𝑗 , but this link is not always there. Indeed, equations
and unknowns can be quite ‘disconnected’ – it can be the case that we solve for the
concentrations of a species 𝑖 (at multiple positions), even though there are no mass
balances explicitly formulated in that species 𝑖. This typically is the case for problems
with acid-base equilibria. Neither is it the case that ‘we first solve for 𝑥2, then 𝑥3’. No,
all functions and unknowns are calculated ‘in one go’ and there is no sequence, or order,
or hierarchy. All unknowns are equal.

Then the question is, how to come to a problem formulation in terms of AEs? Let us
consider an 𝑥-domain that runs from 𝑥 =0 to 𝑥 = 𝐿. We make use of the parameter np, this
is the number of gridpoints minus 1. We assign the index 𝑗 = 0 to the left-most gridpoint,
which corresponds to the left boundary, at 𝑥 = 0. Thus this left-most gridpoint is the left
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boundary of the domain, the left edge. It is right there, at the edge.i The gridpoint 𝑗 =np is
the right-most position in the domain, it is the right edge. These two gridpoints are the outer
gridpoints. All other gridpoints {1...np-1} are the inner gridpoints. The distance between
gridpoints is Δ𝑥=𝐿/np.

Often, on the outer gridpoints we formulate boundary conditions, but not necessarily
so. But what is always the case is that at all inner gridpoints we solve all differential and
algebraic equations that may apply. For instance we have the following three equations (mass
balances in cation 𝑖 = 1 and anion 𝑖 = 2 in a membrane, and as a third equation we have
electroneutrality), that all apply at all inner gridpoints,

0 = 𝐷𝑖
𝜕2𝑐𝑖

𝜕𝑥2 + 𝑧𝑖𝐷𝑖
𝜕

𝜕𝑥

(
𝑐𝑖
𝜕𝜙

𝜕𝑥

)
(21.1)

𝑐1 − 𝑐2 + 𝑋 = 0 (21.2)

which could also include chemical reactions, convection, etc., that can be implemented
easily.

Interestingly, in this steady-state problem, we can divide all terms in the mass balance by
the diffusion coefficient 𝐷𝑖 , and then (when there is no reaction or convection) it seems that
this problem is independent of the diffusion coefficient. But we will see further on that the
two 𝐷𝑖’s are in at least one of the boundary conditions, and thus the complete problem most
certainly depends on the 𝐷𝑖’s.

It is imperative to understand that such mass balances, based on second order ODEs, are
only solved at inner gridpoints, never at the outer gridpoints of a numerical domain. Such
differential mass balances apply to a volume, i.e., are valid ‘away’ from edges. There is no
information about conditions at edges incorporated in such a differential mass balance. The
edges (outer gridpoints) are described by other physical information.

Returning to the ODEs solved at inner gridpoints, the next step is to first evaluate the
migration term using partial differentiation, leading to

𝜕

𝜕𝑥

(
𝑐𝑖
𝜕𝜙

𝜕𝑥

)
→ 𝑐𝑖

𝜕2𝜙

𝜕𝑥2 +
𝜕𝑐𝑖

𝜕𝑥
· 𝜕𝜙
𝜕𝑥

(21.3)

iIf we have multiple adjacent domains, i.e., numerical domains that are ‘in contact’, this point at 𝑗 = 0 will also
be the rightmost point of a domain that is to the left of the domain we just considered. So the same physical
position is represented by a gridpoint 𝑗 =0 in one domain and 𝑗 =np in an adjacent domain. Numerically, these
two points must be tied to one another by information such as equality of concentration or potential. Often a
nanoscopic Donnan layer is ‘in between’ the two domains, which leads to several AEs tying these two numerical
positions to one another. Often also information about equality of fluxes is included, which leads to relations
between gradients in concentration or potential in the one and in the other domain.
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and then discretize the mass balance by first- and second-order central differencing, resulting
for Eq. (21.1) in

0 =
𝑐𝑖, 𝑗−1 − 2𝑐𝑖, 𝑗 + 𝑐𝑖, 𝑗+1

Δ𝑥2 + 𝑧𝑖𝑐𝑖, 𝑗
𝜙 𝑗−1 − 2𝜙 𝑗 + 𝜙 𝑗+1

Δ𝑥2 + 𝑧𝑖
𝑐𝑖, 𝑗+1 − 𝑐𝑖, 𝑗−1

2Δ𝑥
·
𝜙 𝑗+1 − 𝜙 𝑗−1

2Δ𝑥
.

(21.4)
If there is a convection term in the balance, the resulting term 𝜕𝑐𝑖/𝜕𝑥 can be discretized by
central differencing, or by an upwind or downwind scheme, i.e.,

𝜕𝑐𝑖

𝜕𝑥
→

𝑐𝑖, 𝑗+1 − 𝑐𝑖, 𝑗−1

2Δ𝑥
or

𝑐𝑖, 𝑗 − 𝑐𝑖, 𝑗−1

Δ𝑥
or

𝑐𝑖, 𝑗+1 − 𝑐𝑖, 𝑗
Δ𝑥

. (21.5)

The above equations together are most of the AEs that we need, with at each gridpoint three
resulting equations, ‘solving for’ 𝑐1, 𝑗 , 𝑐2, 𝑗 and 𝜙 𝑗 at all points 𝑗 from 1 to np-1.ii

What can now be quickly observed, is that if we can make the electroneutrality AE explicit
in one of these parameters, that we can reduce the number of unknown variables per gridpoint
by one; thus per gridpoint one unknown drops out of the numerical solution route. Thus,
we want to insert the electroneutrality AE in the other two AEs. For instance, assuming 𝑋
is a constant, we can rewrite this equation to 𝑐2, 𝑗 = 𝑐1, 𝑗 + 𝑋 , and substitute it for 𝑐2, 𝑗 in
the discretized mass balances. We have now removed per gridpoint one equation and one
parameter (𝑐2, 𝑗 ), and only 𝑐1, 𝑗 and 𝜙 𝑗 remain.

Let us stress that we suggest to substitute all values of 𝑐2, 𝑗 using this electroneutrality
equation after we discretized the differential equations. It is also possible to do this before
discretization, and then go through the required manipulations of the equations, but often
the easiest and most robust method is to substitute one equation into another afterwards.

Note that this substitution does not always have to be made explicitly. In the spreadsheet
software that we use, there is no need to explicitly substitute the EN-equation in the other
ones. Instead, concentration 𝑐2, 𝑗 has its own computational ‘spreadsheet cell’, and is directly
calculated from the (initially unknown, i.e., guessed) value of 𝑐1, 𝑗 by the electroneutrality
balance. In this way only 𝑐1, 𝑗 and 𝜙 𝑗 are unknown variables (at each gridpoint), and
an additional calculation provides 𝑐2, 𝑗 at each gridpoint based on (the guess for) 𝑐1, 𝑗 .
Concentration 𝑐2, 𝑗 (‘slaved to’ 𝑐1, 𝑗 ) is used in the discretized mass balance equations as an
intermediate parameter.

This finalizes the evaluation of equations at all inner gridpoints. On the outer gridpoints,
the AEs also apply, but not the ODE mass balances. With one AE (in the example the

iiInteresting is that in these discretizations, if the argument is a combination of factors, say 𝛼 𝛽, both dependent
on x, then we don’t necessarily have to do a partial differentiation. That would result in a summation of a term
𝛼 𝜕𝛽/𝜕𝑥 and a term 𝛽 𝜕𝛼/𝜕𝑥, and then one discretizes each term. Instead we can just as well discretize based
on the original argument 𝛼 𝛽, for instance to

(
𝛼𝛽 | 𝑗+1 − 𝛼𝛽 | 𝑗−1

)
/2Δ𝑥.
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electroneutrality constraint), that is two extra equations. But the differential mass balances
are not solved at the edges; they are only evaluated at inner gridpoints. Thus we are still in
need of finding 4 remaining equations. The first one is easy, because working with electrical
potentials, it is always the case that we can set the potential to a fixed value at some random
point in a domain. For instance, at position 𝑥 = 0 we set the potential to zero, thus 𝜙0 = 0.
Now we are down to 3 equations that are still required. To start, if the problem was based
on a certain applied current, 𝐽ch, that will lead to one more equation, as we discuss next.

To find this equation, we need to analyze the expression for current 𝐽ch, and this current
is the same at each position, and is given by a summation over the individual fluxes times
the charge number of the ions, thus

𝐽ch = −
∑︁
𝑖

𝑧𝑖𝐷𝑖

(
𝜕𝑐𝑖

𝜕𝑥
+ 𝑧𝑖𝑐𝑖

𝜕𝜙

𝜕𝑥

)
. (21.6)

Now, one can decide to discretize this equation, and solve it at some position in the membrane,
either at one of the inner points or at one of the edges. Especially evaluation of such an
equation at a boundary is very common, certainly when the flux only involves a diffusional
contribution such as 𝐽 = − 𝜕𝑐/𝜕𝑥 |𝑥=0.

However, our experience is that ideally we should avoid as much as possible a direct
discretization of a flux equation such as Eq. (21.6). Numerical stability of a scheme where
we directly discretize Eq. (21.6) is generally poor, and the code is less precise. In addition,
solving this flux-equation at one particular position is arbitrary: which position to take? And
the calculation becomes ‘asymmetric’, because this position is given more ‘importance’ than
other positions. Thus, if we can avoid it, we propose to not discretize a flux equation such
as Eq. (21.6) directly. Instead, we integrate Eq. (21.6) one more time, see Dykstra et al.
(Water Research, 2017) and Tedesco et al. (J. Membrane Sci., 2018). We then obtain

𝐽ch · 𝐿eff = −
∑︁
𝑖

𝑧𝑖𝐷𝑖
©­«𝑐𝑖,np − 𝑐𝑖,0 +

𝑧𝑖

2

∑︁
𝑗=1..np

(
𝑐𝑖, 𝑗−1 + 𝑐𝑖, 𝑗

)
·
(
𝜙 𝑗 − 𝜙 𝑗−1

)ª®¬ (21.7)

where in the integration of the electromigration-term we implemented the Trapezoid-rule.
We replace membrane thickness 𝐿 here by 𝐿eff for reasons we will explain below. Note that
here the diffusion coefficients, 𝐷𝑖 , show up, thus they are part of the numerical solution, as
predicted.

This gives us 1 more equation. Thus there are 2 equations left to find. If this was a
model for a membrane (with fixed charge density 𝑋), then likely both boundaries relate
via a Donnan balance to a salt concentration just outside the membrane. If these outside
concentrations are known, then via these Donnan balances and Boltzmann’s law, we know
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the concentrations at positions 0 and np just in the membrane. This gives us the final 2
equations. Note that we only have to provide such an equation for one of the ions, because
the electroneutrality constraint gives us the concentration of the other ion on these positions.
If we would evaluate the Boltzmann relation for both ions, and then also the EN balance,
then the problem is overspecified. Instead, one Donnan and one Boltzmann relationship is
evaluated at position 0, and the same at position np. Using the standard Donnan balance,
and knowing the outside concentration, 𝑐∗∞, then we can calculate on each side the Donnan
potential Δ𝜙D by Eq. (2.9) and we then calculate the concentration of one of the ions just
in the membrane by the Boltzmann equation 𝑐∗

𝑖
= 𝑐∗∞ exp (−𝑧𝑖Δ𝜙D), where ∗ refers to the

edges of the membrane, either on the very left (𝑥 = 0) or very right side (𝑥 = 𝐿). Thus
we introduce two auxiliary variables, Δ𝜙D, and two additional equations. We now have
implemented all information and have exactly enough equations to solve for all unknowns.

One extra thing we can now calculate, ‘afterwards’, is the flux of ions through the
membrane, 𝐽𝑖 , and thus also the transport numbers, 𝑇𝑖 . Focusing on the cation (ion type 1,
or +), then the steady-state cation flux, given by the Nernst-Planck equation, after working
through the integration approach that was also used in Eq. (21.7), becomes

𝐽+ · 𝐿eff = −𝐷+
©­«𝑐+,np − 𝑐+,0 +½

∑︁
𝑗=1..np

(
𝑐+, 𝑗−1 + 𝑐+, 𝑗

)
·
(
𝜙 𝑗 − 𝜙 𝑗−1

)ª®¬ . (21.8)

We can now also afterwards calculate the transport number as 𝑇+ = 𝐽+/𝐽ch. This calculation
is provided as worksheet 1 here.

—

In an extended calculation we add transport in the boundary films that are on each side of
the membrane, using Eqs. (7.13) and (7.41). Now the calculation of 𝐽+ and 𝑇+ can no longer
be done afterwards, but becomes part of the set of AEs that must be solved. For 𝑧+= |𝑧− |=1,
Eq. (7.41) becomes

𝐽ch = − 2𝐷+𝐷−
𝐷− (1 − 𝑇−) − 𝐷+ (1 − 𝑇+)

𝜕𝑐

𝜕𝑥

����
𝑥=0

(21.9)

which we can combine with Eq. (7.13) to arrive at the equation

𝐽ch = ± (𝐷hm𝜏)−1/2 · 2𝐷+𝐷−/(𝐷− (1 − 𝑇−) − 𝐷+ (1 − 𝑇+)) ·
(
𝑐∞ − 𝑐∗∞

)
(21.10)

which becomes part of the calculation, relating (for a given 𝐽ch), the unknown concentration
in the boundary film, 𝑐∗∞, just at the membrane surface, to the transport numbers, 𝑇𝑖 .iii Due
iiiThe +-sign is used for the boundary film left of the membrane, and the - is added for the boundary film on the

right side.
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to this new calculation, the parameter 𝜏, which describes the degree of convection/stirring
outside the membrane, becomes part of the full calculation scheme.

Interestingly, in this particular problem, because all fluxes are constant across the
membrane, and thus the 𝑇𝑖’s as well, then when 𝜏 is the same on the two sides of the
membrane, we immediately see that the two terms 𝑐∞ − 𝑐∗∞ that we must evaluate (one on
each side of the membrane) are equal in magnitude but opposite in sign. This information
can immediately be implemented in the numerical code, and we then only have to solve
Eq. (21.10) on one side of the membrane.

Note that the diffusion coefficients in Eq. (21.10) are those in solution. In the equations
for the membrane the diffusion coefficients are those inside the membrane, which are lower
than in solution. But for steady state, the effect of this reduction can be implemented by
using a value of 𝐿eff that is larger than the real membrane thickness 𝐿. Namely, to account
for various effects that reduce the transport rate in the membrane, summarized in a factor
mrf, we can use 𝐿eff = 𝐿 · mrf. Then the 𝐷’s in Eq. (21.7) and (21.8) can be the same as in
solution.

Thus we now have implicit relationships on the boundaries involving 𝑐∗∞, 𝑐∗+, the current
𝐽ch, and the transport numbers,𝑇𝑖 . The transport numbers are not preset constants, but follow
from the numerical calculation. We can solve this full model, as we show in worksheet 2
here. Interestingly, this entire steady-state problem of current-driven membrane transport,
including two diffusion boundary layers on either side, does not require numerical evaluation
of a gradient at the edge of a domain.

Evaluation of gradients on domain boundaries. In some cases, certainly for dynamic
calculations, we often do have to evaluate gradients on domain boundaries directly,
because they relate to a flux J, without being able to resort to integrated equations or
overall balances. We try to avoid such gradient-expressions as much as possible (unless
they are zero, which is the case for symmetry at a midplane, or for impermeable walls),
but when necessary, we strongly advise the 2-step Backward Differentiation Formula
(BDF2). For a left boundary, at a position 𝑥 = 0 (where 𝑗 = 0), after discretization, we
then have

𝜕𝑦

𝜕𝑥

����
𝑥=0
→ −3𝑦0 − 4𝑦1 + 𝑦2

2Δ𝑥

while for a right boundary at 𝑥=𝐿 (where 𝑖=np), we have

𝜕𝑦

𝜕𝑥

����
𝑥=𝐿

→
3𝑦np − 4𝑦np−1 + 𝑦np−2

2Δ𝑥
.
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When this gradient is zero, such as is often the case for an impermeable wall, or for a
symmetry plane, for instance the midplane of a channel, then these equations are zero
(i.e., the expressions above can be set equal to zero) and can be simplified by multiplying
with 2Δ𝑥.

In the Excel file provided here, the membrane model is implemented with np=10. In the
worksheet, the current 𝐽ch can be varied, as well as the two external salt concentrations, 𝑐∞,
the membrane charge density, 𝑋 , the two ion diffusion coefficients, the effective membrane
thickness, 𝐿eff , and the solution ‘stirring parameter’, 𝜏.

Thus, as this example shows, we can rather easily solve steady state transport problems
using a self-programmed AE-solver in commercial spreadsheet software, and obtain a code
that can handle many different parameter settings. Next we discuss how to deal with dynamic
problems.

21.3 Solving a dynamic problem

To solve a dynamic (time-dependent, transient) problem, let us again consider the mass
balance of ion 𝑖, but now dynamically

𝜕𝑐𝑖

𝜕𝑡
= 𝐷𝑖

(
𝜕2𝑐𝑖

𝜕𝑥2 + 𝑧𝑖
𝜕

𝜕𝑥

(
𝑐𝑖
𝜕𝜙

𝜕𝑥

))
(21.11)

Based on the previous section we know that we can evaluate this equation at all inner
gridpoints (after discretization with position), and we know how we can evaluate the right
side of this equation at any moment in time, 𝑡𝑘 , if the left side would be zero. But also when
the left side is some explicit function of concentrations, potentials, at that same time, 𝑡𝑘 , we
can just have this term join the terms on the right side, and the solution methods of the last
section can be applied unchanged. The only question is, how to deal with the left side of this
equation to arrive at the situation that we can use the AE solution method already discussed.

Let us first simplify this equation, by replacing the entire right side by 𝑓 , the ‘function’,
which we can evaluate at discrete moments in time, thus we write 𝑓𝑘 (with 𝑘 a ‘time-
counter’). When in the Crank-Nicolson method this 𝑓𝑘 is evaluated at two moments in time,
and averaged, it is the entire right side, the function, that is evaluated and then averaged as
a whole. Thus it must be stressed that we do not average the concentration or potential, etc.
We only average a complete function 𝑓 that is evaluated at times k-1 and k.

http://www.physicsofelectrochemicalprocesses.com/supp_mat/numerical_methods_2/numerical_methods_2.xlsx


466 Numerical methods in electrochemical processes

Thus, in general this equation becomes, after discretization in space,

𝜕𝑐𝑖, 𝑗

𝜕𝑡
= 𝑓 𝑗 (21.12)

where the counter 𝑗 as before refers to a position between 1 and np-1. After discretization,
the function 𝑓 𝑗 is the same as the expression in Eq. (21.4). Thus we can evaluate the right
side of Eq. (21.12) at all inner gridpoints.

To deal with the left side, the changes in time, we can use the same BDF2 method that we
used for the spatial boundary conditions described in the box above, and discretize in time,
resulting in

3𝑐𝑖, 𝑗 ,𝑘 − 4𝑐𝑖, 𝑗 ,𝑘−1 + 𝑐𝑖, 𝑗 ,𝑘−2 = 2Δ𝑡 𝑓 𝑗 ,𝑘 (21.13)

where Δ𝑡 is the time between different timelines, which we call the timestep. This equation
shows that when all concentrations (and other state variables) are known at timelines k-2 and
k-1, we have now an equation with variables only to be evaluated for the ‘present’ timeline 𝑘 .
All parameters at this timeline we can solve with the AE solver discussed in the previous
section. We just have as extra terms the left side of the equation above, which includes
constants (concentrations calculated in previous timelines), and an additional term related to
concentrations at time 𝑘 , which we can shift to the right side of the equation, and we can then
follow the solution route explained in the box on p. 458. We start with an initial situation
that is known at time zero, and then for the first timeline we must use one of the methods
that we will discuss below, and from time 𝑘 =2 onward, we can use this BDF2 method.

This method works well and is accurate. However, the disadvantage is that we cannot easily
change the timestep while we go. Thus if at some moment the calculation becomes unstable
because the timestep is too large, we can’t just redo the last timeline with an arbitrarily
different timestep. And vice-versa, we can’t increase the timestep when the changes in
time become very gradual. These limitations can be remedied within the BDF2-method but
they require extra programming. Without these adjustments, the BDF2 method requires the
timestep to stay the same, which makes it less flexible.

Two methods that are more simple and don’t have this disadvantage, are as follows. In
both these methods we can freely change the timestep from one timeline to the next. These
two methods are the Implicit (or Backward) Euler method, and the Crank-Nicolson (CN)
scheme. CN is more precise with respect to the time-integration, but in our experience is
more prone to have difficulties with sharp changes such as shocks. We find that the Implicit
Euler method is extremely robust, even when sharp changes develop.

Implicit Euler is actually BDF1, where the previous function was BDF2, and can be
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presented as

𝑐𝑖, 𝑗 ,𝑘 − 𝑐𝑖, 𝑗 ,𝑘−1

Δ𝑡
= 𝑓 𝑗 ,𝑘 → 0 = Δ𝑡 𝑓 𝑗 ,𝑘 −

(
𝑐𝑖, 𝑗 ,𝑘 − 𝑐 𝑗 , 𝑗 ,𝑘−1

)
. (21.14)

Thus, the equations that we must solve with an AE solver are just slightly different from
before, with now an addition term 𝑐𝑖, 𝑗 ,𝑘 and a constant term 𝑐𝑖, 𝑗 ,𝑘−1. This method can be
used right at the first timeline after an initial condition at 𝑡 =0. While the calculation steps
from time 𝑡𝑘 to 𝑡𝑘+1, we can easily change the timestep and make it longer and shorter as we
go.

This implicit (backward) Euler method is also the first of the Adams-Moulton methods
(𝑠=0). The next Adams-Moulton method (𝑠=1) is Crank-Nicolson, which is given by

𝑐𝑖, 𝑗 ,𝑘 − 𝑐𝑖, 𝑗 ,𝑘−1 = ½Δ𝑡
(
𝑓 𝑗 ,𝑘−1 + 𝑓 𝑗 ,𝑘

)
(21.15)

which on the left side is the same as Implicit Euler, but the right side is now an average of
the function 𝑓𝑘 at the present (new) timeline, and the function at the previous timeline, 𝑓𝑘−1.
This requires extra programming because this old function must be explicitly calculated and
stored, and on a next timeline correctly retrieved and implemented. These extra programming
steps are not necessary for the implicit Euler scheme.

Thus, though Crank-Nicolson is a wonderful method, we actually mostly use the Implicit
Euler method for time integration. If we must improve on precision, we make smaller steps
in time and take more positional gridpoints.

To illustrate the use of the Implicit Euler method, we analyze the dynamics of diffusion
and electromigration across a planar layer, just as in the previous example, though now we
set the charge density 𝑋 to zero, thus it is an uncharged layer, and on the right side (where
𝑥=𝐿, 𝑗 =np) –as if it is an electrode– we impose a transport number for cations of𝑇+=1, i.e.,
only cations react away at this surface, i.e., an electrode which is impermeable to anions.

On the left side of the layer (where 𝑥=0, 𝑗 =0), one option is to consider that it is in contact
with a bulk phase, and thus we can assume/impose a fixed salt concentration there, thus 𝑐𝑖,0,𝑘
is known at all times 𝑘 . Anions and cations can freely move across this left interface, thus
between bulk and the transport layer. The other option is to make the calculation considered
in §7.6, where the system was assumed to be closed off and the total amount of anions was
fixed. This is actually equivalent to stating that also at the left boundary we have T+=1.
Because the current is constant across the layer, also the cation flux entering on the left side,
is equal to that leaving on the right side.

Most of the elements that were used in the previous steady state calculation can be
retained in a dynamic model, such as that at each point we have 𝑐2, 𝑗 ,𝑘 = 𝑐1, 𝑗 ,𝑘 because of
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electroneutrality. The integrated expression for current 𝐽ch is also the same, because current
is invariant across the layer, also when the problem is time-dependent. However, this is not
the case for the integrated ionic fluxes, 𝐽+ and 𝐽− . These individual fluxes are only invariant
with position in steady state, but not in a dynamic situation.

An interesting overall balance can be used to calculate the ionic fluxes at each position.
We set up here a balance for the anion to calculate 𝐽𝑖 . The cation flux is at each point then
simply the current 𝐽ch minus this anion flux 𝐽− . The particular equation that follows is only
valid because the anion flux at 𝑥 = 𝐿 is zero. For the anion we evaluate a certain average
concentration

𝐿 𝑗
𝜕

〈
𝑐𝑖, 𝑗

〉
𝜕𝑡

= 𝐽−, 𝑗 (21.16)

where
〈
𝑐𝑖, 𝑗

〉
is the average concentration in the layer with thickness 𝐿 𝑗 = 𝐿 · (np − 𝑗) /np

that is to the right of a certain gridpoint 𝑗 . The change of this average concentration equals
the anion flux at that position 𝑗 . This average concentration at a position 𝑗 is calculated in
a numerical scheme by averaging over the layer from 𝑗 to np, making use of the Trapezoid
rule, that in this case is

〈
𝑐𝑖, 𝑗

〉
= 1/(2 (np − 𝑗)) ∑𝛼= 𝑗+1..np

(
𝑐𝑖,𝛼−1 + 𝑐𝑖,𝛼

)
.

In a numerical scheme, we can implement this overall balance to calculate 𝐽− , either when
using the CN method or the Implicit Euler scheme. When we use the latter, this results in〈

𝑐𝑖, 𝑗 ,𝑘
〉
−

〈
𝑐𝑖, 𝑗 ,𝑘−1

〉
= Δ𝑡/𝐿 𝑗 · 𝐽−, 𝑗 ,𝑘 . (21.17)

This method shows that also in this dynamic calculation, using an overall balance (in this
case over part of the transport layer), we can calculate both fluxes, 𝐽− and 𝐽+, and thus also
calculate the transport numbers, 𝑇𝑖 , at all positions and at all times, and we still did not
need to explicitly solve the flux of either of the ions by the Nernst-Planck equation evaluated
at that particular point. An Excel file that makes this calculation is provided here. This
latter example illustrates how much is possible with overall balances of all kinds, integrating
fluxes, and making extensive use of the Trapezoid method to numerically integrate across
domains. This is a very powerful method to obtain a robust and accurate numerical code.

21.4 Including Acid-Base equilibria

In Chs. 10 and 17 we described in detail how to include acid-base reactions, and also
provided details of an example calculations, for CO2 adsorption in an amine solution, and
for acetate and ammonia diffusion across charged membranes. The key aspect for numerical
programming is that when we have two ions between which there is chemical equilibrium,
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described for instance by 𝑐1 · 𝑐2 = 𝐾 , then we can use this equation, evaluated at each
gridpoint, just like an electroneutrality balance, to remove one concentration from the
set of unknown parameters. And with more than one such reaction, more and more ion
concentrations can be removed from the numerical code. For instance when we have the
proton and hydroxyl ion, and bicarbonate acid, H2CO3, and the bicarbonate ion, HCO –

3 ,
with two reactions and two associated 𝐾-values, we quickly reduce the number of unknown
concentrations that must be found by the numerical solution route from 4 to 2 (see box on
page 458).





22
Experimental methods

To characterize processes and materials, a range of useful experimental methods is available
in the study of electrochemical processes. In this chapter some of these methods are explained
in more detail.
For charged membranes, one of the most common methods to characterize a membrane, is
measurement of the membrane potential.
For electrode processes, important is measurement of the polarization curve, which relates
current to voltage for a steady state Faradaic process, either for a single electrode or for an
electrochemical process, and for capacitive processes we have the galvanostatic intermittent
titration technique (GITT) to measure electrode charge versus voltage for equilibrium
conditions.
Cyclic Voltammetry (CV) is an experiment that is easy to do but not easy to analyze because
it is neither steady state nor equilibrium but it is a dynamic experiment, with all parameters
time-dependent. Therefore it is more difficult to extract fundamental knowledge from a CV
experiment.
Electrochemical impedance spectroscopy (EIS) is a further extension because a large range
of frequencies is probed, at a certain voltage off-sets (but always for a small voltage window).
In CV and EIS only the charge-voltage characteristic is probed. These two methods can
be applied both for Faradaic and capacitive processes, as well as for mixed-type electrode
processes.
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22.1 Membrane Potential

One of the most common methods to characterize charged membranes, is measurement of the
membrane potential. Here two ‘Luggin’-capillaries are placed on either side of a membrane,
in two different electrolyte solutions. Inside the capillaries are two reference electrodes.
There is a zero current across the membrane. In the standard method two 1:1 solutions
are used with a factor of 10 difference in salt concentration. The system will generate a
potential across the membrane with two components. The first is the diffusion potential set
up inside the membrane, to ensure that counterions are slowed down and coions made to
go faster, such that they have equal fluxes, to ensure that the current through the membrane
is zero. In addition, on both membrane/solution interfaces a Donnan potential develops
because of the high membrane charge. For a highly charged membrane, one that does not
allow coions to go through, and as a consequence neither allows transport of counterions,
the ‘ideal’ potential that develops is equal to 𝑉T · ln (10), which is around 𝜙m,ideal = 58
mV for a factor 10 concentration difference. The ‘permselectivity’, 𝛼, is now defined as the
measured membrane potential, 𝜙m, over this ideal value,

𝛼 = 𝜙m/𝜙m,ideal . (22.1)

The value measured for 𝛼 is always below unity, but often quite close to it, and this is taken
as evidence that the membrane must be highly selective to allow counterions passage and
block coions. However, this is far from true, as analysed in detail in Tedesco et al. (2017).
In an actual process, with currents running through the membrane, and also solvent flow,
coions can permeate the membrane much more than the measured permselectivity suggests.

Nevertheless, this is an important experiment, relevant to characterize a (new) membrane.
Because, if we measure that the permselectivity is well below unity, then the membrane may
be leaky or in any case not very selective. However, the reverse is not necessarily the case:
if the permselectivity is measured to be close to unity, this does not imply the membrane
will retain its ion selectivity in an actual process.

Here we give a brief description of how 𝛼 can be related to one property of the membrane,
namely its charge density, |𝑋 |. In this analysis we set other contributions to the partitioning
coefficient to unity, and only consider electrostatics. We only consider the Donnan potentials
on the two faces of the membrane and neglect the internal diffusion potential.

Thus for all ions, on both outer surfaces of the membrane, we have the Boltzmann
relationship, 𝑐m,𝑖 = 𝑐∞,𝑖 exp

(
−𝑧𝑖Δ𝜙D, 𝑗

)
, where 𝑗 refers to either of the two sides of the

membrane (below denoted by sides 1 and 2).
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When evaluated for both ions of a 1:1 salt, we know that

|Δ𝜙D, 𝑗 | = sinh−1 |𝑋 |
2 𝑐∞, 𝑗

. (22.2)

The membrane potential has contributions from these two Donnan potentials, and from
the diffusion potential in the membrane. If we first neglect the latter, and only consider the
Donnan potentials, then the membrane potential is given by 𝜙m =

��Δ𝜙D,1 − Δ𝜙D,2
��. Instead

of using the sinh-functions, this same expression for 𝜙m based only on Donnan potentials,
is given as the first part of Eq. (22.5).

For a very high membrane charge, the expression for the membrane potential simplifies
to

𝜙m,ideal =
��ln (

𝑐1,∞/𝑐2,∞
) �� (22.3)

and thus the permselectivity can be calculated as

𝛼 =

����� sinh−1 (
𝑋/2 𝑐∞,1

)
− sinh−1 (

𝑋/2 𝑐∞,2
)

ln
(
𝑐1,∞/𝑐2,∞

) ����� . (22.4)

If the two salt concentrations are a factor 10 different, the denominator here is ln 10.
The calculation in this section is provided as an Excel file and can be downloaded here.

As an example, with 𝑐1,∞ = 50 mM and 𝑐2,∞ = 500 mM, from Eq. (22.3) we obtain
a dimensionless potential of 𝜙m,ideal = 2.30 and thus with 𝑉T = 25.6 mV, we obtain
𝑉m,ideal = 58.9 mV. If the membrane charge is |𝑋 | = 2 M, we obtain for the two Donnan
potential Δ𝜙D,1 = 3.69 and Δ𝜙D,2 = 1.44, and thus 𝜙m = 2.25 and 𝑉m = 57.5 mV, and the
permselectivity is 𝛼 = 0.975.

—

A well-known extension of this theory is to include the diffusion potential, i.e., the potential
drop across the inner part of the membrane that develops to speed up the slowest ion, with
the aim to to equalize the two fluxes, which is required to make sure the current through the
membrane is zero. This diffusion potential depends on the ratio of diffusion coefficients in
the membrane. As discussed in detail in Galama et al. (2015), care is required to correctly
evaluate the various ±-signs, relating to the sign of the fixed charge. The equation below
uses the |..|-notation to indicate that |X| must be used as a positive quantity. Furthermore the
parameter 𝜔 is the sign of the fixed membrane charge, which is positive, i.e., 𝜔 = +1, for an
AEM, and for a CEM, it is negative, and then we have 𝜔 = −1. For both these membrane
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types we obtain for the membrane potential, defined as the potential in solution 2 vs. in
solution 1.

𝜙m = 𝜔 ln


𝑐2,∞

𝑐1,∞

·
|𝑋 | +

√︃
𝑋2 + 4𝑐2

1,∞

|𝑋 | +
√︃
𝑋2 + 4𝑐2

2,∞

 +𝑈 ln


−𝑈𝜔 |𝑋 | +

√︃
𝑋2 + 4𝑐2

1,∞

−𝑈𝜔 |𝑋 | +
√︃
𝑋2 + 4𝑐2

2,∞

 (22.5)

where𝑈 is a ratio of ion diffusion coefficients in the membrane,

𝑈 =
𝐷+ − 𝐷−
𝐷+ + 𝐷−

(22.6)

where the 𝐷𝑖’s refer to ion diffusion coefficients in the membrane. This equation derives
from the Nernst-Planck equation, without consideration of convection or ion-ion friction.

As Eq. (22.5) shows, when the anion and cation have the same diffusion coefficient in the
membrane (irrespective of being counterion or coion), the diffusion potential is zero. This is
certainly remarkable: without a current, the system will always help the slower ion, even if
it is the counterion, the concentration of which is many magnitudes larger than of the coion.

We make a specific calculation based on the same conditions as in the earlier example,
and we now chose a CEM, thus 𝜔 = −1, and assume the anion to be twice faster than the
cation, then we have𝑈 = −0.333, and we calculate a diffusion potential of 1.38 mV based on
the second half of Eq. (22.5), see the Excel file via the link above. The sign of this potential
is such that it always helps the slower ions, which in this case are the cations, to move from
the high-salinity side to the low-salinity side of the membrane. This is remarkable, that the
potential has this sign irrespective of whether the slow ions are the coions or counterions.
Thus it is even the case when they are counterions and thus in much higher quantities in
the membrane than the anions. One might instead think the diffusion potential should be
such as to help the coions, if the aim is to arrive at a zero current, because there are far
fewer of them. But that is not how diffusion works: diffusion depends on concentration
gradients, not on the magnitude of the concentration, thus coions can easily have the same
flux as counterions. Now, for this membrane problem, because of the fixed charge 𝑋 , and
electroneutrality, inside the membrane the concentration gradient for anions and cations is
always the same. Thus, if they have the same 𝐷𝑖 , they have the same flux, without the
necessity of a potential gradient. Only when the 𝐷𝑖’s are different, does a potential gradient
need to step in to help the slower ion along (and retard the other ion). These results relate
to this particular case of there being just two ions. In multi-ion systems –as mentioned at
many points in this book– the situation is generally much more complex.

What is also interesting, is that the diffusion potential is low, much lower than the potential
that is built up by the Donnan potentials. However, even this potential of 1.38 mV will
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significantly affect the derived permselectivity. In the calculation here, we drop from
𝛼 = 0.975 to 0.952, which is a value ‘two times as bad’. Thus stated differently, when the
cation is twice as slow as the anion, for a CEM, the measured permselectivity may be a
significant underestimate of the ‘real’ permselectivity (the one we would obtain if we would
only measure the Donnan potentials). In the reverse situation, when the cation is faster than
the anion, the membrane potential will be higher, and thus the permselectivity closer to
unity. Thus, in a CEM, when cations have a higher diffusion coefficient than anions inside
the membrane, the permselectivity that is measured will ‘look better’ than for equal diffusion
coefficients, thanks to the diffusion potential that is inside the membrane. Interestingly, when
we make the cation much faster than the anion (for a CEM), then the membrane potential
approaches the ideal value, given by Eq. (22.3), but it never goes beyond it. Thus, numerical
analysis shows that the limit of Eq. (22.5) for𝑈 →∞ when 𝜔 = −1, results in Eq. (22.3).

—

The question may be raised if relevant information can be obtained if we measure the
permselectivity 𝛼 for other salts than a 1:1 salt, for instance a 2:2 salt, or a 2:1 or 1:2 salt, or
even for salt mixtures with more than two ions of different valencies.

We provide an Excel file here that provides a method to calculate 𝛼 for arbitrary
compositions of the salt solution on the two sides of the membrane, considering only
the two Donnan potentials. For a certain membrane charge 𝑋 (a signed quantity, i.e., can
be both positive or negative), the Excel file provides the value of the membrane potential,
the ideal value (if the membrane charge is very high), and the ratio of these two potentials,
which is 𝛼. The equation used on each side of the membrane is Eq. (2.5), with 𝜎w replaced
by 𝑋 .

A calculation using this Excel file of a 1:1 salt with one extra divalent ion, results in the
observation that ... 𝛼 can be higher than unity ! This is an interesting result. However, it also
suggests that when the aim is to check whether the membrane is intact and charged, there
does not seem to be a good rationale for measuring the membrane potential in salt solutions
other than a 1:1 salt.

—

Calculation of the membrane potential for an asymmetric (2:1 or 1:2) salt solution
including the diffusion potential is more complicated than for a 1:1 salt, and a numerical
calculation is required (see Excel file provided).

http://www.physicsofelectrochemicalprocesses.com/supp_mat/methods_electrochemistry_1/membrane_potential.xlsx
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To calculate the diffusion potential for an asymmetric salt, we use the Nernst-Planck
equation. The condition of zero current for a 2:1 salt, like CaCl2, leads to

−2𝐷+
(
𝜕𝑐+
𝜕𝑥
+ 2𝑐+

𝜕𝜙

𝜕𝑥

)
+ 𝐷−

(
𝜕𝑐−
𝜕𝑥
− 𝑐−

𝜕𝜙

𝜕𝑥

)
= 0 . (22.7)

Local electroneutrality for a 2:1 salt is 2𝑐+− 𝑐− +𝜔 |𝑋 | = 0, and thus 2 𝜕𝑐+/𝜕𝑥 = 𝜕𝑐−/𝜕𝑥.
We can then rewrite Eq. (22.7) to

2 (𝐷− − 𝐷+)
𝜕𝑐+
𝜕𝑥

= (𝜔 |𝑋 |𝐷− + 2𝑐+ (𝐷− + 2𝐷+))
𝜕𝜙

𝜕𝑥
(22.8)

which can be differentiated to

2 (𝐷− − 𝐷+)
𝜕2𝑐+
𝜕𝑥2 = 𝜔 |𝑋 |𝐷−

𝜕2𝜙
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𝜕
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(
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𝜕𝜙

𝜕𝑥

)
. (22.9)

We also use the integration of Eq. (22.8), which is

2 (𝐷− − 𝐷+)
(
𝑐2
+ − 𝑐1

+

)
= 𝜔 |𝑋 |𝐷−

(
𝜙2 − 𝜙1

)
+ 2 (𝐷− + 2𝐷+)

∫ 2

1
𝑐+d𝜙 (22.10)

where 1 and 2 refer to positions at the very edges of the membrane, just inside the membrane.
The integral term at the very right is solved numerically using the Trapezoid rule.

Taking the flux expression for the divalent cation, which because of steady state and thus
∇𝐽 = 0 results in

𝜕2𝑐+
𝜕𝑥2 + 2

𝜕

𝜕𝑥

(
𝑐+
𝜕𝜙

𝜕𝑥

)
= 0 . (22.11)

We combine this last equation with Eq. (22.9) to arrive at

3
𝜕2𝑐+
𝜕𝑥2 = 𝜔 |𝑋 | 𝜕

2𝜙

𝜕𝑥2 . (22.12)

These two PDEs are solved at all inner gridpoints to solve for the profiles in 𝑐+ and 𝜙.
Results of calculations for the membrane potential for asymmetric salt solutions are

presented in Fig. 22.1, which includes the Donnan potentials at the two membrane faces
and the diffusion potential that develops inside the membrane. We make calculations for
a CEM with two values of the membrane charge, of |X|=2 M and 3 M, and consider a 2:1
salt such as CaCl2 where we assume that the cation diffusion coefficient is half that of the
anion. We evaluate the membrane potential for a factor 10 difference between the high
salt concentration, 𝑐H, and the low concentration, 𝑐L. We notice in Fig. 22.1 that at low
concentrations the membrane potential is in the range of 10-30 mV, to decrease at higher salt
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Fig. 22.1: Membrane potential for a cation exchange membrane in a 2:1 salt solution like CaCl2 with
a factor 10 difference in salt concentration for two values of the membrane charge X and as function
of the low salt concentration.

concentration, and at sufficiently high salt concentration the membrane potential switches
sign. [This sign change can also occur for a 1:1 salt, and is then actually more pronounced.]
This switching point shifts to lower salt concentration when the membrane charge density
goes down. Note that the membrane potential in Fig. 22.1 is that in the low salinity solution
minus in the high salinity solution.

Measuring membrane potentials in symmetric and asymmetric salt solutions can be
interesting but the data which come out may be somewhat limited in applicability, for
instance because also convection can play a role, driven by the osmotic water transport
between the two salt solutions at different concentration. This becomes especially relevant at
even higher salt concentration ratios and can lead to the membrane potential even decreasing
when the ratio of salt concentrations is beyond 100 (Fig. 8 in Galama et al., 2015). Very
thin membranes (less than 10 𝜇m) are also especially prone to excessive water flow through
the membrane, which then also modifies the salt solution concentration just outside the
membrane, changing the Donnan potentials.

22.2 Polarization curve for Faradaic processes

Faradaic processes can be characterized in a straightforward and clear way by running a
current through the electrode and measuring the electrode voltage. Doing this experiment at
many currents, or voltages, results in a complete current - voltage curve, which traditionally
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is called the polarization curve. [Note that the same curve is obtained if the experiment is
done at various voltage values, and the current measured, or vice-versa, when the current is
varied in steps, and the voltage measured. Both lead to the same result, because there is just
one current-voltage curve.] The voltage of the electrode is generally measured relative to a
reference electrode that is placed near the electrode. The current runs between the electrode
under study (the working electrode) and some auxiliary electrode, the counter electrode.
The nature of this last electrode is irrelevant, as long as it does not influence the working
electrode and reference electrode. Also a full electrochemical cell can be tested, without
a reference electrode, and the measured voltage is then the cell voltage, i.e., the voltage
between the two electrodes, anode and cathode (no longer is now the vocabulary of working
and counter electrode used). Often additional ‘indifferent’ salt is added to reduce voltages
across bulk electrolyte phases, and thus to more closely measure the voltage (and changes
in it) in the electrode, and not measure mass transport resistances. Because each data point
(one current and the corresponding voltage) is indepedent of other data, this polarization
curve can be constructed bit by bit, with more and more data collection as one goes, in
regions of interest. One does not have to measure the data in one rigorous sequence, e.g.,
from low voltage to high.

22.3 Galvanostatic titration for capacitive processes
Capacitive processes cannot be operated in steady state, thus a polarization curve cannot
be recorded, which demonstrates the clear distinction of a capacitive process relative to
a Faradaic process. Instead, we can titrate the electrode: we can inject a certain amount
of charge (for a certain duration we apply a certain current), let the system equilibrate,
and measure the new electrode potential. This is the GITT method which stands for the
Galvanostatic Intermittent Titration Technique. GITT can also be reversed: we increase the
electrode potential in discrete steps, and after each potential step change we measure the
current vs. time (until current goes back to zero). We integrate this current to calculate how
much charge flowed into the electrode in response to this step in voltage.

From many such data points we can set up an equilibrium voltage vs. charge curve
(titration curve). In such a curve, one reports data points for the charge injected into the
electrode as function of voltage (after letting voltage equilibrate). This experiment measures
equilibrium properties of the electrode, the EDL, and transport outside the electrode does
not influence these equilibrium values of charge and voltage. [Of course the dynamics after
each voltage step, or during and after each period of current injection, these can be analyzed,
which provides information on the dynamics of the process.]
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Ideally, the electrode is purely capacitive for this method to work in an optimal fashion.
In that case, after each step change in voltage, the current starts high and then levels off at
zero. If it indeed levels off at zero, there is no Faradaic reaction taking place. If it doesn’t go
back to zero, there is some Faradaic leakage current operating in parallel to the capacitive
process. It is possible to separate out the Faradaic process from the capacitive process, but
an assumption must then be made, such as that during the entire period at the new voltage
the same Faradaic current was running ‘in the background’.

One can decide to continue to make steps in voltage or charge, e.g., go to 0.1 V relative to
the starting voltage, wait, increas the voltage to 0.2 V, wait, goto 0.3 V, etc., but one can also
start at a certain voltage, increase the voltage to 0.1 V, then return to the starting voltage,
next go to a voltage of 0.2 V, go back to the starting condition, go to 0.3 V., etc. Thus one
returns to some standard situation after each single data point has been measured. This has
several advantages, such as that errors in each individual experiment do not accrue. We also
have now a check on our own data. Because after having increased the voltage from say 0
V to say 0.2 V and measuring a certain charge that flows to bring the system to equilibrium,
when we reduce the voltage again to 0 V, we can evaluate if the same charge now flows back.
If these numbers are close, this gives a check that the experiment was done well and Faradaic
reactions were minor. (The ratio of these two values of charge, is the Coulombic efficiency.)

Just like for the polarization curve, also with GITT, we don’t have to obtain the data points
in a predetermined fashion. Instead, we can measure data at will, i.e., we can decide on the
fly which voltage or charge to test next. Thus, we do not have to make a rigorous sequence
of 0.1 V, 0.2 V, etc., but any random order is fine, collecting more and more data points
for this titration curve, based on intermediate data analysis which provides feedback about
where more data are of interest.

This experiment can be performed in several very different ways. For instance, it can be
done for a certain electrode under study, with the voltage measured relative to a reference
electrode, at artificially high salt concentrations. Typically here the method is used where we
inject for a certain duration a certain amount of charge, and after relaxation check how much
the voltage relative to a reference electrode has changed. A very different approach is to
take a complete cell with two electrodes that are considered appropriate for the process (e.g.,
two porous capacitive electrodes for energy storage or water desalination). Then the voltage
between the two electrodes, i.e., the cell voltage, is changed in discrete steps, and the total
charge that flows between the two electrodes is measured until equilibrium is established
again. In this way an equilibrium charge-vs.-voltage curve for the entire electrochemical cell
is measured.

Note that instead of presenting data for electrode charge versus voltage, it can be more
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useful to take each increment of charge, when we move from one voltage point to the next,
and divide the charge increment by the voltage step.i We then have obtained data for the
capacitance (expressed in F/g or F/mL) at that value along the curve, and we can then plot
capacitance versus charge or versus voltage, see the example of Fig. 1.1 in Ch. 1.

Both methods are commonly used for water desalination with porous electrodes, a method
called capacitive deionization (CDI). With the first method, where only a single electrode is
tested, typically only the charge is measured versus voltage. However, in a fully operational
desalination cell, in addition to measuring the charge, also the total amount of salt removed
from the water is measured. In this way important additional information is obtained that
can be used to validate an EDL model that is set up to describe the capacitive electrode
process.

Thus, in this way not only information is obtained for the voltage-vs.-charge relationship,
but also for the dependency of salt adsorption on charge. With these data simultaneously
measured, we also obtain information on the equilibrium EDL property called charge
efficiency, Λ, which is the ratio of salt adsorption over charge. It must be noted that
when a complete cell is measured, all these measured properties are ‘cell-based’ and can
only be converted to information pertaining to individual electrodes when an assumption
is made. For unmodified microporous carbons a common, and successful, assumption is
that of symmetry: the assumption is that for a 1:1 salt the anion behaves similar in the one
electrode, as the cation in the other electrode. Or, a very different assumption can be made
for cation selective intercalation materials, because here we know that only cations adsorb.
With such an assumption in place, information obtained for a full cell can be converted to
information on the EDL structure of each separate electrode.

Note that this titration method can be used for any capacitive material, including
intercalation materials, or microporous carbons modified with redox functionalities, or
secondary batteries (where ions phase-separate inside the electrode). In all these cases the
GITT method is an indispensable tool for the characterization of electrodes.

[An interesting phenomenon in CDI is that after a step change in cell voltage, the charge
signal rather quickly returns to zero, so it seems that equilibrium is reached. However, the
salinity in the flow channel responds much slower and in such an experiment we must wait
until the salt concentration levels off before we can take an equilibrium data point (of salt
adsorption and charge versus cell voltage).]

Testing of a secondary battery by GITT ideally results for many steps in charge increments,
in obtaining the same voltage. This means we are then in the horizontal plateau that is so

iIt is not necessary that these data points were measured in chronological order. They are just an ordered sequence
from low to high voltage.
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indicative of such a battery, depicted in Fig. 15.2. When after several injections of charge
one of the end-points of this plateau is reached, yet more injection of charge now results
in the voltage changing to a quite different value. In this plateau, this unvarying voltage
–which would also be obtained if we very slowly inject a steady current– might resemble a
Faradaic process, as if we could be able to operate the electrode for an infinite time. But this
is not the case and the resemblance is only superficial. Because, while in a Faradaic process
the electrode in steady state does not change its composition and we can run the process
ad infinitum, here, inside the battery electrode, there are dramatic changes under way, with
more and more charge and ions stored, like in any capacitive process. It is just that due to the
internal phase separation the output voltage is constant in a certain range of charge. Thus,
the electrode behaves in what seems to be a Faradaic manner, if only for a brief period of
time. This pseudo-Faradaic behavior is discussed more on p. 15.2.1.

22.4 Cyclic Voltammetry
For Faradaic processes, we advise the measurement of the polarization curve, while
capacitive processes are described by the equilibrium charge-voltage curve obtained by
the GITT method. The first of these two experiments is a steady-state process (no time-
dependence on time, but there is transport), the latter is pure equilibrium (no dependencies
on time, and no flows).

An experiment that in its analysis is more complicated, is cyclic voltammetry (CV), and
that is because it is dynamic. There are flows, and the flows change in time. In CV a certain
current is applied for some time after which the current switches and for the same duration
the current runs in the opposite direction. While this takes place the electrode potential is
measured (the basis of the name voltammetry).

An alternative approach is more common which is to apply a voltage which goes up and
then down in a see-saw fashion. In other words, the change in voltage is imposed with a
certain ramp, or scan rate (in so many mV/s), first positive (the voltage goes up), and then
the scan rate is turned to negative, which makes the voltage go down. In this way many
cycles are scanned sequentially. If the voltage is fixed at one or both of the end points of the
window that is scanned, a set of curves is obtained that have the same voltage end points.
The current is measured as function of time, and plotted versus the voltage (not versus time).

There are many variables that can be changed in such an experiment: there are the two
voltages that limit the voltage window, and there is the scan rate by which the voltage is
ramped up and down. As function of these three choices, very different curves will be
obtained.
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Fig. 22.2: Example diagram of a CV diagram of charging and discharging of a capacitive intercalation
electrode.

An important advantage of the CV experiment is that it is easy to do, and available in
many laboratories. But a disadvantage is that rigorous analysis of CV curves requires careful
analysis, based on a dynamic theory that also includes accumulation of ions and charge near
and in the electrodes, also for a purely Faradaic process. This is a reason why analysis of
CV curves –and how resulting curves depend on the conditions of the experiments (such as
the scan rate and voltage window)– must be undertaken carefully, supported by appropriate
mathematical-theoretical tools. Instead, often CV diagrams are heuristically analysed, and
information about the electrode process is extracted from several features in the CV diagram,
such as its overall shape and the presence of peaks.

In Fig. 22.2 we present examples of the typical rectangular shape for the CV curves of
a capacitive material such as the PBA intercalation material discussed in Chs. 1 and 15,
using the same parameter settings as in Fig. 1.1. We model the electrode without internal
mass transfer limitations. In series to the EDL electrode capacity, described by Eq. (1.23),
a linear resistance is placed, as if due to a transport resistance outside the (thin) electrode.
The EDL voltage in the electrode and the voltage over the external resistance add up to the
measured voltage (which is the 𝑥-axis in Fig. 22.2). The entire problem can be described
by a single nondimensional parameter, P = 𝛾 · 𝑅 · Σ /𝑉2

T , where 𝛾 is the scan rate (in V/s),
𝑅 is the external resistance (in V/A), and Σ is the maximum charge of the electrode (if we
could cycle between 0 < 𝜗 < 1; unit C). We do the calculation at two values of P, and of
the voltage window. The CV curve that has the larger window in Fig. 22.2 leads to cycling
in intercalation degree in a window of 0.20 < 𝜗 < 0.80 (P = 10). In the smaller window
we cycle between 0.33 < 𝜗 < 0.67 (P = 5). The cycle is run through clockwise.
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22.5 Electrochemical Impedance Spectroscopy (EIS)

In the method of electrochemical impedance spectroscopy (EIS), a low-amplitude
sinusoidally varying voltage signal is imposed to an electrochemical cell, superposed on
‘steady’ voltage signal (constant, or slowly varying), and the response is recorded, which
is the magnitude and phase-shift of the current trace. The period of the response signal
(current) is the same as that of the input voltage, i.e., the frequency of the input and output
signals are the same. This experiment is done at many frequencies from slow to very fast,
and in this way data are obtained that can be plotted in various ways such as a Nyquist plot.
Below we will show some examples thereof. EIS is an extremely relevant method for the
characterization of all kinds of electronic devices, and electrodes. A novel application is the
use of EIS to materials not directly connected to an electronic circuit, such as ion-exchange
membranes (IEM). Interestingly, EIS applied to the study of an IEM requires consideration
of the changing Donnan layers on the two membrane edges. Neglect thereof results in an
effective membrane resistance which decays at low external salt solution. This effective
membrane resistance is only representative of the real membrane resistance (which is largely
independent of external salt concentration) when tested at high salt concentration, around
1 M salt solution (Díaz and Kamcev, 2021).

When an IEM is placed between two salt solutions and a voltage signal with a certain
frequency is applied, the following transport elements must be considered. Unless we are
at very high salt concentration, the membrane has a constant conductivity 𝜎m and we can
assume (for now) that the membrane only allows counterions access, i.e., at the membrane
outer surfaces we can assume a transport number for counterions of 𝑇+ = 1. In the layer in
front of the membrane we must solve the dynamics of the salt distribution in the last microns
in front of the membrane, by any of the film models discussed in Ch. 7. Here we will use
the simplest model and neglect any dispersion effects. We assume a film layer thickness
that is large enough that at its ‘outside’ at all times the concentration is equal to the bulk
salt concentration, 𝑐∞. We assume equal ion diffusion coefficients for the cat- and anion.
At the solution-membrane interface, the Donnan equilibrium is established (Donnan EDL
model at solution-membrane interface), and the solution salt concentration in this equation
is changing throughout the EIS experiment, down in one part of the cycle, up in the other.
On the other side of the membrane the same happens, but counter-cyclically. This leads to an
additional voltage drop, especially at very low 𝑐∞ which in interpretation of this experiment
can be translated as an effective membrane conductivity, steadily dropping the lower the
external salt concentration. This effective conductivity must not be confused with the real
membrane conductivity which is independent of external salt concentration (below 𝑐∞=1 M
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for an IEM with |𝑋 | larger than approx. 2.5 M), see p. 166.
Thus, in conclusion, when EIS is applied to materials not directly part of the electrical

circuit, care must be taken in interpreting the data. Counterintuitive results (such as that
the membrane resistance is a function of external salt concentration) are best taken as an
indication that further system analysis is useful. Or in other words: EIS can provide much
useful information of (ion transport in and around) such materials, information that may not
be accessible otherwise.
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⊙ Anode - The electrode to which the anions move, and where cations move away from, i.e.,
the electrode to which electronic charge flows from the external circuit, i.e., the electrode that
‘produces’ electrons, i.e., electrons are flowing out of this electrode through the conducting
phase (i.e., wires). This definition suffices for a steady state process. In a cyclic process, the
definition is very tricky.ii

⊙ Anode-/cathode-/working-potential - The potential as measured (often in a thee-
electrode setup) between a metal wire connecting an electrode under study and a reference
electrode.
⊙ Battery - A battery is a technological term for all devices that store electrical energy.
The first battery was a capacitive device, the Leyden Jar, and (to describe that several were
put together) was called a battery by Benjamin Franklin in 1748. Other batteries that are
capacitive are the modern-day Li-ion battery. Also Faradaic energy storage devices can be
called a battery, such as the lead-acid car battery.
⊙ Binary salt (solution) - A salt or electrolyte solution with only one type of cation and one
type of anion. The valencies of the two ions and their diffusion coefficients can be different,
i.e., if a solution only contains Ca2+-ions and Cl– -ions, this is a binary (salt) solution. A
solution prepared from NaCl only, is also a binary salt. See entries for symmetric salt and
1:1 salt.
⊙ Bulk (phase) - The phase located next to an interface that is in some sense ‘larger’ than the

iiIn a cyclic process we must define the key process step. In CDI this is the salt removal or charging step. (For
a more detailed discussion of terms such as ‘charging step’, see entry below.) In this step we define which
electrode is the anode, and which is the cathode. When we now go to the discharge step, we do not change
around the anode/cathode definition. Instead, the physical object (‘piece of material’) that was the anode during
charging, we also call the anode during discharge. For a battery or supercapacitor, discharge is the key step,
and we define anode/cathode based on the discharge step.
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interface and in which the concentration and potential show smaller changes with position
and time than in the interface. Often to describe the bulk phase, the symbol ‘∞’ is used,
referring to ‘of infinite extent’, which (from the point of view of the interface or layer next
to which bulk is located) is indeed how the bulk phase is perceived. In a bulk phase at each
position we can assume local electroneutrality. See website for more information.
⊙ Capacitance of an EDL, of an electrode - The slope of the curve of electrode charge
with electrode potential. Capacitance is a function of electrode potential and charge, it is not
just a single number. The capacitance is an equilibrium property of the electrode, thus to be
measured in an experiment that approaches equilibrium (for instance using the galvanostatic
intermittent titration technique).
⊙ Capacitive Deionization, CDI - A method of water desalination using cycles of
charging and discharging a pair of capacitive porous electrodes. Can also be called Battery
Deionization (BDI) or Battery Desalination.
⊙ Capacitive electrode process - An electrode process in which the electrode structure
(gradually) changes when current flows across the electrode. Thus (except for the case of
phase separation inside the EDL), one will see the electrode potential continue to change.
⊙ Capacity of an EDL, of an electrode - The measurable property of a capacitive electrode
as the change in charge of the electrode when the electrode potential is changed from one
to the other value (potential window), often divided by volume or mass of the electrode. If
reference is made to ‘the’ capacity, this refers to the maximum, or limiting, value, i.e., an even
larger potential window will not change the measured capacity. Measured for equilibrium.
⊙Capacity of an electrode pair - The measurable property of a pair of capacitive electrodes
as the charge (in one region of one of the electrodes) at one non-zero value of the cell voltage
relative to the charge when the cell voltage is zero.
⊙ Cathode - The electrode where cations flow to, and where anions move away from, i.e.,
the electrode where electrons arrive at. This definition suffices for a steady state process.
For cyclic processes, see an earlier footnote.
⊙ Cell voltage - The measurable voltage between two electrodes. For a constant current,
the cell voltage changes in time when the composition of the electrolytes or other phases
changes, or because the electrode structure changes.
⊙ Charge - An amount, often with dimension C(oulomb). By dividing with Faraday’s
number, 𝐹 (𝐹 = 96485 C/mol), charge expressedin C is converted to charge expressed in
mol(es). Charge can be positive and negative, and charge can flow. The flow of charge is
called a current. Part of an ionic solution (electrolyte) can contain charge, ionic charge, and
likewise in a metal there can be charge. This charge would then be called ionic charge or
electronic charge, respectively. Important to note is that a positive electronic charge in some

http://www.physicsofelectrochemicalprocesses.com/supp_mat/conventions_1
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region, means there is a deficit of electrons there. And the statement that at some position
‘the electronic charge goes up,’ means electrons leave this region. See also entries EDL
charge and Electrode charge.
⊙ Charge tranfer electrode - An electrode where electrons or ions (i.e., charged particles)
are transferred across the full electrode in an ongoing electrode reaction, where at least one
reacting species (ion, atom, electron) is transferred from one bulk phase outside the electrode
to another bulk phase outside the electrode. A better term would have been charged species
transfer electrode. In any case it is an electrode in a Faradaic electrode process.
⊙ Charging step / Discharge step - In cyclic electrochemical processes, such as water
desalination by CDI, in a full cycle there is a period of charging the cell, and a period where
the cell is discharged. These periods can be called ‘steps’, as in: charging step, and discharge
step. A certain electronic condition is changed at the moments we go from one step to the
other, such as changing the current direction, or a change in the setpoint of the cell voltage.
For certain CDI designs it is not so obvious what part of the cycle is to be defined as the
charging step and which as the discharge step. It is then customary that the charging step is
when the electrical energy input is larger than in the discharge step. Note that the time frame
(starting time to end time) of a charging step does not coincidence with the time period that
desalinated water flows out of a CDI device. With more than two steps in a cycle, multiple
of these steps can be called charging, other discharge.
⊙ Chemical equilibrium - Equilibrium related to transport or reactions of species (such as
ions). For instance referring to an EDL structure where it can be assumed that the structure
of the EDL (as defined by concentration and potential profiles) does not depend on transport
processes, e.g., the EDL structure does not depend directly on how much current runs
through the EDL. Such an EDL structure quickly adapts to external changes to form a (new)
equilibrium structure. The advantage of being able to assume an equilibrium structure, is
that the equations describing the structure significantly simplify compared to those required
for transport. ∥ That an EDL is at equilibrium does not mean ions do not exchange between
the EDL and adjacent bulk phases. Instead, there is certainly mobility and exchange, but for
each 𝑛 ions of one type leaving the EDL, 𝑛 ions of the same type also come back.iii Chemical
equilibrium also relates to chemical reactions between species, at some position in solution,
being described by an equilibrium reaction. Note that under the Chemical Equilibrium
assumption there can still be a transport or conversion with reactions going from reactants

iiiIf an EDL has say Na+ cations as counterions, and it is at equilibrium, and we now bring it in contact with a
solution with K+-cations, the Na+ ions in the EDL are exchanged for K+. But if K+ and Na+ behave in the same
way, have the same properties, even then we can say that during the exchange, in some respects the EDL always
was at chemical equilibrium.
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A to products B. Only in The Equilibrium State are these transport processes or conversions
zero.
⊙ Coion (also written as co-ion) - The ion of the same charge sign as the charge of the
surface or porous structure. Often at a lower concentration compared to outside the EDL or
porous structure.
⊙ Conductivity - The (ionic) conductivity, or conductance, of an ionic solution is often
described by the symbol 𝜎 or 𝜅, and has the unit S/m (with S for Siemens) or (Ω.m)−1,
where S = 1/Ω = A/V. Often Ω is called (and written as) ‘Ohm’. The volumetric resistance
𝜌 of an electrolyte solution is 𝜌 = 1/𝜎 with unit Ω.m, see p. 165 and p. 248. Conductors
(metals) have a certain electronic conductivity.
⊙ Conductor, or metal - A conducting phase, or conductor, conducts electrons not ions.
It will be the wires connecting electrodes to a power source or other type of electrometer.
There is no background charge. || The terms ‘Ion conductor’, and ‘ion conductivity’ relate
to the electrolyte phase.
⊙ Convection - Convection is the mechanism by with solutes, such as ions, are dragged
along with the moving fluid.
⊙ Coulombic efficiency - For a cyclic process of charging and discharge, such as in CDI,
the ratio of ‘returned charge’ (the charge expressed in C, transferred between the electrodes
during the discharge step), over ‘charge input’ (the charge transferred between the electrodes
during the charging step). A dimensionless number, less than unity.
⊙ Counterion - The ion of opposite charge sign to the (fixed) charge of a surface or porous
material. Often therefore at an enhanced concentration compared to outside the EDL or
porous structure.
⊙ Current efficiency - For a membrane the ratio of the total molar flow rate (of all ions
added together), over the current density. A dimensionless number. Only used when all ions
are monovalent.
⊙ Dielectric - A dielectric (material) is a material, or a layer, that does not contain any type
of charged species, neither electrons nor ions. In the context of the dielectric capacitor, it
is also implied that it does not conduct any type of charge. The Stern layer, a theoretical
approach in EDL modelling, in some regards is considered in the same way, i.e., to block
transfer of ions or electrons. However, in electrode reaction modeling (Frumkin-equation) it
nevertheless is looked upon as the layer across which ions or electrons hop from one phase
to the other. A synonymous term is insulator or insulating layer.
⊙ Dialysis - This is a process where a selective membrane is placed between two solutions
with different solute composition (e.g., different salt concentration), and solutes (salts) and
water flows through the membrane only because of concentration differences, without an
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applied pressure difference or current. Also call the osmosis experiment.
⊙ Diffuse double layer - An erroneous term, conflating diffuse layer and EDL. What is
meant is: diffuse layer.
⊙ Diffuse layer - A theoretical element of an EDL model, relating to the profiles in ion
concentration and electric potential in an electrolyte that develop because of a balance of
electrostatic and entropic forces. The thickness of the diffuse layer relates to the Debye length,
which decreases with increasing salt concentration, and also decreases with increasing
valency of the ions.
⊙ Diffuse layer potential, Donnan potential - Both these potentials are denoted by 𝜙D

In a Gouy-Chapman-(Stern) model, this is the electric potential across the diffuse layer,
thus the potential at the Stern plane relative to outside the EDL. In an extended Donnan
model for ion-containing micropores, 𝜙D is likewise the potential inside the micropore
volume, relative to outside the EDL/micropore. For membranes, at the solution/membrane
interface, Donnan potential refers to the electric potential difference between inside the
membrane (micro-)pores and just outside the membrane, thus across the full EDL that is the
solution/membrane interface.
⊙ Dynamic - A dynamic process is not at steady state, thus some or all process elements
change in time. Note that for many processes it is often the case that certain elements are
in chemical equilibrium (for instance the EDL structure), other elements are in steady state
(transport through a microporous membrane, or a mass transfer film), and yet other elements
are dynamical (accumulation of salts in reservoirs). Which modelling approach to choose,
and how to combine these elements, are key aspects of electrochemical process modelling
and design.
⊙ EDL, or electrical double layer - The EDL is the structure at the interface between bulk
phases (i.e., it is the interface), in situations where at least some charged species such as
ions are involved. Across the EDL there is a voltage difference, and within the EDL are
regions of opposite charge. On the two sides outside the EDL there are two charge neutral
bulk phases. These phase either contain charge carriers (ions in an electrolyte, or electrons
in a conductor) or do not (insulator). When we compare the field strength, 𝐸 , in the EDL
(very dependent on position in the EDL) with that in bulk, then we note that in the two bulk
phases 𝐸 is very low, or zero, and it is much higher in the EDL. The EDL as a whole is
charge neutral.
⊙ EDL charge - If an EDL is overall charge neutral, how can it be we generally use the
term ‘EDL charge’ and related concepts such as the capacitance of an EDL? The answer is
that these terms, such as EDL charge, refer to one of the regions of the EDL. For instance,
it refers to the region that can be associated with the (electron-)conducting phase (inside the
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EDL), thus related to the electronic charge stored in the EDL. See also entries Charge and
Electrode charge.
⊙ Electrical field (strength) - see Field strength.
⊙ Electrochemical water desalination - The group of water desalination methods that
makes use of elements of electrochemical processes, such as ion transport, charged
media, and electroneutrality. Examples are reverse osmosis, capacitive deionization, and
electrodialysis.
⊙ Electrode - A special type of EDL, namely formed at the interface of a (semi-)conductor
and electrolyte. The EDL is an interface (see entry about Interface) and includes several
regions of opposite charge that are within this region where conductor and electrolyte are
in contact. On one side of the electrode is the charge-neutral bulk metallic phase, and on
the other side the charge-neutral bulk electrolyte. The processes at an electrode can be
capacitive or Faradaic. A Faradaic process involved transfer of ions or electrons across this
interface. This is the formal, theoretical, definition of an electrode. In an oxidation reaction,
an electron is liberated from ions all within the electrode, and the electron then leaves the
electrode to go into the bulk metal phase. In all electrodes current flows across the electrode
(across the EDL) and is unchanged in ‘numerical value’. However, its nature changes, from
ionic to electronic (or the reverse). [That we can assign a direction is only because it was
decided that a flow of electrons relates to a negative current; a flow of cations a positive
current, etc. Other than because of this arbitary convention, there is no ‘real’ direction to the
current and there is not an intrinsic physical reason to say that in some experiment electronic
current became ionic current, or the reverse. We can only do that because we decided that
a flow of anions or electrons contributed to a negative current.] Thus an electrode is an
interface that changes the nature of a current flow, from ionic to electronic (or vice-versa),
but the current remains unchanged in a numerical sense.
⊙ ElectrodeTC - The technological convention (TC) of the word electrode refers to the
piece of metal that is brought in contact with electrolyte. In this convention, in an oxidation
reaction an electron ‘goes into the electrode.’ In this book we will not use the index ‘TC’
and thus the word ‘electrode’ can have both meanings.
⊙ Electrode charge - The charge in an electrode, by which is meant the charge in one or more
of the regions of the electrode. It does not refer to the electrode charge as a whole, because
the electrode as a whole is always charge-neutral, and thus the total charge is zero. Often
refers to a difference in charge between two situations (e.g., moments in time; ‘the charge was
increased by 5 C’), and generally refers to the charge on the metallic (electron-conducting)
side. See also entries EDL charge and Electrode charge.
⊙ Electrode potential - The potential across the electrode. Note, the electrode is the EDL
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structure at the interface of (multiple) phases, at least one of which conducts electronic
charge and at least one of which conducts ions. The electrode potential is a function of the
electrode (EDL) charge.
⊙ Electrode reaction - The reaction in an electrode, which involves electrons, and atoms
and molecules coming from nearby non-metallic bulk phases, of which one phase at least is
an electrolyte phase. Often the electrode reaction involves reactant species adsorbed to the
surface and the reaction product is also an adsorbed species, which subsequently desorbs. An
example is the oxidation of an adsorbed H-atom, to a proton, H+, while releasing an electron
into the electrode. Reactions in an electrode (e.g., between adsorbed species) that do not
involve electronic charge are not called an electrode reaction. We do not need two electrodes
to have an electrode reaction. When we have a single electrode, for instance a reference
electrode, or even just a piece of metal, and we bring it into contact with an electrolyte,
an electrode reaction may occur and charge builds up in the EDL. So for a brief period an
electrode reaction took place. Also in a dynamic process with two electrodes (with possibly
one electrode capacitive) we can have electrode reactions. The two electrode reactions on
the two electrodes can have different rates. The two electrode reactions do not need to add up
perfectly from two half-cell reactions into one overall reaction, see also §14.1. An important
distinction is between the (rate of the) ‘electrode reaction in the direction of reduction’, 𝑅𝑅,
and ‘reduction (reaction)’, 𝜚𝑅, and similarly for the difference between ‘electrode reaction
in the direction of oxidation’, 𝑅𝑂, and ‘oxidation (reaction)’, 𝜚𝑂, see Eq. (15.4) for the
difference, which is that 𝑅𝑅 =−𝑅𝑂 = 𝜚𝑅 − 𝜚𝑂.
⊙ Electrolyte - A phase that contains ions, ions that move around because of diffusional
and electrostatic forces. In a liquid electrolyte there is also convective transport of ions. In
contrast, in a solid electrolyte, or solid salt, like AgCl that forms a crystal structure, anions
and cations can move relative to one another. There is only a frictional factor that describes
the resistance of this movement of cations relative to anions. There is no solvent in such a
solid electrolyte. In between these two cases are electrolyte phases that do contain solvent
but the solvent and ions are highly restricted in their motion. For instance, inside the pores
of an intercalation material, or inside the pores of other (micro-)porous structure, such as in
porous carbons, or inside the pores of a hydrated ion-exchange membrane or other gel-like
structure built up of charged polymer, there is solvent through which ions can pass, but
similar to a solid salt we have a rigid structure of charged atomic constituents. Perhaps these
materials should be called semi-electrolytes.
⊙ Electrometer - The name for all devices that can impose and record currents and voltages
applied to an electrochemical cell. The term captures specific terminology such as voltmeter,
power source, battery, load, potentiostat, galvanostat, etc.
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⊙ Electron acceptor - a species that (is able to) take(s) up an electron, thereby being
reduced; its charge becomes more negative. So before the reaction happens, it is in the
oxidized state, afterwards it is in the reduced state. This could be at an electrode, but this
terminology more generally refers to redox reactions in solution. Then, while species A is
the electron acceptor, another species D donates the electron. While species A is reduced,
species D is oxidized. Thus, species A is the oxidant (the reaction leads to another species
being oxidized).
⊙ Electron donor - a species that (is able to) give(s) off an electron, thereby being oxidized;
its charge becomes more positive. So as long as the reaction hasn’t happened yet, it is in
the reduced state, afterwards it is in the oxidized state. This could be at an electrode, but
this terminology more generally refers to redox reactions in solution. Thus, while species D
is the electron donor, another species A accepts the electron. While species D is oxidized,
species A is reduced. Thus, species D is the reductant (the reaction leads to another species
being reduced).
⊙ The equilibrium state - A situation where there are no net flows, no fluxes, no net
reactions. Reactions can go back and forth, but there are no net conversions.
⊙ Faradaic electrode process - An electrode process that with current flowing, can go on
forever, because the structure of the electrode does not change in time. Ions and electrons
entering the electrode (the EDL) from one bulk phase adjacent to the electrode, also leave
the EDL again to the same, or to another, bulk phase. Thus, ions or electrons transfer across
the EDL in a Faradaic process.
⊙ Faradaic reaction - An electrode reaction, a ‘half-reaction’ where participating ions,
atoms, molecules, on the reactant side and product side, all potentially can come from
outside the electrode, and leave the electrode again (possibly after further (non-electrode)
reactions in the electrode).
⊙ Field Strength - The field strength, E, is a vector quantity that is the negative of the
gradient of the electric potential, E = −∇𝑉 . When only one spacial coordinate needs to
be considered, 𝑥, we have 𝐸 = −𝜕𝑉/𝜕𝑥. In this book we general use the dimensionless
potential 𝜙 = 𝑉/𝑉T, where 𝑉T is the ‘thermal voltage’ given by 𝑉T = 𝑅𝑇/𝐹 and thus
𝐸 = −𝑉T 𝜕𝜙/𝜕𝑥.
⊙ Flux - The flow of a species divided by the perpendicular surface area through which the
flow is directed, thus with unit mol/s divided by m2, resulting in the unit mol/(m2.s). In
transport studies with porous materials careful attention is required to distinguish interstitial
and superficial flow rates, fluxes, and velocities.
⊙ Hydrostatic (hydraulic) pressure - The pressure at some point in an electrolyte phase.
The hydrostatic pressure can be measured as the pressure required to create a small extra
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volume inside the phase at that position. The difference in hydrostatic pressure between
inside and outside a charged (polymer) network exerts an expansive force on the network.
⊙ Interface - The region formed when two different phases or materials are brought in
contact. The interface is not an ‘mathematical’ infinitely thin 2D layer, i.e., it is not a
surface. Instead, it has an extension, a thickness. Others have then proposed the term
‘interphase’ but we stick to using the more common term ‘interface.’
⊙ Ionic current (density) - The current carried by ions. Current (density) can have unit A,
A/m2 or mol/m2/s.
⊙Mechanical equilibrium - The (near-)equality of the forces responsible for flow of fluid.
In bulk solution this would be constancy of hydrostatic pressure. In an EDL this would
be constancy of the total pressure (hydrostatic pressure minus osmotic pressure). When
EDLs are at chemical equilibrium, it is reasonable to assume they are also at mechanical
equilibrium, see entry Chemical equilibrium.
⊙Migration or Electromigration - The movement of an ion or other charged solute inside
an electrolyte phase or charged porous structure because of a local non-zero electrical field.
One of various driving forces that can act on an ion.
⊙ Osmotic pressure - Not really a pressure in the sense that the hydrostatic pressure is.
Nothing happens in a solution at high osmotic pressure. One can create a small ‘cavity’ or
‘bubble’ of volume inside an electrolyte, at a cost unrelated to the local osmotic pressure.
The osmotic pressure in a phase is simply a function of the concentrations of all freely
moving solutes (and a function other contributions to the chemical potential of the solutes,
such as excess, volumetric, effects).
⊙ Oxidant, oxidizing species - see entry electron acceptor.
⊙ Partition coefficient - The partition coefficient, Φ𝑖 , also called solubility, 𝑆𝑖 , describes
the concentration of a species (solute, ion) 𝑖 in a phase/environment 𝑗 =1 relative to another
phase 𝑗 = 2, thus Φ𝑖 = 𝑐𝑖,1/𝑐𝑖,2. Here for instance 𝑗 = 1 is a membrane and 𝑗 = 2 an
electrolyte solution. The calculation is based on equality of chemical potential, 𝜇𝑖 , for the
species between two positions on either side of the interface. Thus a difference in a certain
contribution to 𝜇𝑖 matters. (A difference for species i between phases 1 and 2.) Three
possible contributions are discussed next, leading to Φ𝑖 = Φaff,𝑖 · Φexc,𝑖 · ΦD,𝑖 . When one
of these Φ𝑖-values is larger than unity, then apparently that term results in a preference for
the solute or ion to be in phase 1 rather than in phase 2. Vice-versa, a value less than unity
implies there is an energetic penalty for the ion or solute to be in phase 1 (instead of in phase
2), and thus it will still be there, but at a lower concentration. These three contributions are:
1. the effect of ‘affinity,’ described by Φaff,𝑖 , which is the result of a difference in chemical

interaction of the solute with the two phases, with the local environments.
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2. the effect of volume of the solutes, described by Φexc,𝑖 , which is the excess contribution,
due to volumetric interactions of a solutes with one another and with solid constituents
fixed in place (e.g., the polymer structure of a membrane, or another matrix). Interestingly,
the solute under study, 𝑖, may be infinitely small (‘volumeless’), but still the presence of
other solutes, or the matrix can influence this excess contribution for species 𝑖.

3. the Donnan effect which is due to the requirement of electroneutrality in both phases,
where typically one of the phases also has a permanent charge. The Donnan effect,
described by ΦD,𝑖 , influences the distribution of an ion between phases, and is generally
described by a Boltzmann-type electrostatic term, exp (−𝑧𝑖Δ𝜙), replacing the more
general ΦD,𝑖-notation.

⊙ Porous electrode - A porous electrode is a multi-phase material of the following
constituting phases: an electroneutral region of water and ions (electrolyte); an electron-
conducting (and electron-containing) phase; and a structural matrix to provide mechanical
strength. The interface of electrolyte and conductor, i.e., the EDL, is often formed inside sub-
nm diameter ‘micropores’, which are electrolyte-filled pores inside an electron-conducting
matrix.
⊙ Potential - Often referring to the electric potential at some position relative to another
position, then with symbol 𝜙, often dimensionless (i.e., multiplication with the thermal
voltage leads to a ‘voltage’ with unit V). But potential can also refer to the chemical potential
of an ion or other solute, often denoted by 𝜇𝑖 . Chemical potential refers not just to an ideal
entropic term ln 𝑐𝑖 , but instead is a summation over all sources that can change the ‘potential’
of a molecule, including volumetric and affinity effects, charge, and also gravitational effects
can be included in the chemical potential of a solute. One can add the adjective ‘total’ to
make it clear a summation of many contributions to the chemical potential are considered.
⊙ Reductant, reducing species - see entry electron donor.
⊙ Round trip efficiency - An efficiency number between 0 and 1, describing how much
energy (unit J) is provided by an energy storage device during use (discharge), relative to the
energy required to recharge the device.
⊙ Semi-conductor - Like a metal, a semi-conductor also has electrons as charge carriers,
but in addition the material has fixed charges (‘p-doping’ or ‘n-doping’). The conductivity
is much lower than in a metal.
⊙ Space-charge region - The same as diffuse layer, often applied for the diffuse layer inside
a semi-conductor.
⊙ Stern layer - A theoretical element of an EDL model. The Stern layer is a constant-
capacitance element envisioned to be located between the diffuse layer and the charged
surface. It does not contain charge itself. Its thickness can be assumed to relate to the
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(hydrated) radii of counterions, because that represents the closest-approach distance of the
centers of the counterions to the surface. A typical value used in colloid science would be
𝐶 = 0.2 F/m2. Also called Helmholtz layer.
⊙ Stern plane (Outer Helmholtz plane) - Also a theoretical element of an EDL model,
being the surface, the theoretical dividing plane, between the Stern layer and the diffuse
layer. It is not a plane that contains counterions, as it is unfortunately often depicted in
textbooks. It is simply the closest approach distance for the centers of ions to approach the
charged surface. (In very advanced EDL models, there can possibly be consideration of
specific adsorption of ions in this plane.)
⊙ Surface - Mathematical two-dimensional plane without a thickness.
⊙ Steady state - A very important word describing how in a process there are flows and
reactions, but at any location there are no observable (macroscopic) changes in time of state
variables such as concentration, pressure, and temperature. In a theory, this means that
accumulation terms 𝜕/𝜕𝑡 in mass and heat balances can be set to zero.
⊙ Symmetric salt (solution) - This is a salt solution where all ions are monovalent, or all
are divalent, or all trivalent. Out of all cations, there can be several types of cations (all with
the same valency), and the same for all ions in solution. The 1:1 salt (solution) describes
a symmetric salt where all ions are monovalent. See entries binary salt (solution) and 1:1
salt (solution).
⊙ Transference number - The ratio of an ion’s 𝑧2

𝑖
𝐷𝑖𝑐𝑖 over the sum of that term evaluated

for all ions in the system, at a particular position (e.g. different in a membrane, compared
to in solution). The symbol 𝑡𝑖 is used. Each ion’s transference number is between 0 and 1.
The summation over all 𝑡𝑖’s is unity.
⊙ Transport number - The ratio of flux of ion 𝑖 times its valency 𝑧𝑖 , over the ionic current
density, see p. 170, for which the symbol 𝑇𝑖 is used. The transport number is dimensionless
(the current density is expression in mol/m2/s). It will depend on position and time. Inside
a (one-dimensional, planar) membrane, operating in steady-state, and without reactions, the
𝑇𝑖’s are invariant across the membrane. Transport numbers can be less than zero and larger
than one. The sum of all transport numbers of all ions in the system, is unity. Sometimes
transport numbers and transference numbers are the same.
⊙ Valency - The valency of an ion, 𝑧𝑖 , or an ion’s charge, is a discrete number, such as
+1, +2, or -1 or -2, etc. It does not have a unit. And it is ‘signed’, that is, it is a positive
number for a cation, and a negative number for an anion. In some problems it makes sense
to include the possibility that an ion has valency 0, and still call it an ion. Thus bicarbonate
is a monovalent anion and when protonated becomes the uncharged carbonic acid ‘ion’.
⊙ 1:1 salt (solution) - A salt solution where all ions are monovalent. A 1:1 binary salt
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(solution) has a more restricted meaning because a 1:1 binary salt (solution) contains only
one type of anion and one type of cation, and both are monovalent). Examples are KCl and
NaCl. [Or, there may be more than one type of cation in a real solution, but we treat it in a
theoretical model as if it is a 1:1 salt.] See entries binary salt (solution) and symmetric salt
(solution).
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In this book the following conventions are often followed:

1. Two parameters x and y are linearly related when they relate according to 𝑦 = 𝑎 · 𝑥 + 𝑏, with a
and b constants. In addition, variables x and y are proportional to one another when 𝑏 = 0. Thus a
proportional relationship is a special type of linearity, i.e., a proportional relation is also linear, but a
linear relationship is not necessarily showing proportionality between x and y. When x and y relate
according to 𝑦= 𝑥+𝑏, i.e., 𝑎=1, this is a specific type of linearity, for which there is no specific term
but we can write ‘are the same (i.e., are equal) but for a constant offset b’, or ‘are linearly related with
slope 1.’ See below at item 26.

2. Often we define an axis, a positional coordinate, which we generally give the symbol 𝑥. By default
this coordinate axis runs ‘left to right’ in the descriptions that we use, i.e., it points ‘to the right’.
To us the following three statements mean the same thing, namely that a flux, or velocity, or current
(density), is positive, or that it has a positive value, or that it ‘points to the right’.

3. If we then define a difference in a parameter, 𝑌 , often denoted by Δ𝑌 , this is generally the value
of the parameter on a position (more to the) right, minus its value at a position more to the left, i.e.,
a Δ𝑌 is always defined ‘right minus left’ in the axis convention just defined. Potentials in an EDL
model, such as for the Donnan, diffuse layer, or Stern potential, are always defined more inside the
EDL or more inside the porous structure (membrane) relative to ‘more outside’, which in the end is the
outside electrolyte phase. Thus always defined as ‘(more) inside minus (more) outside.’ The electrode
potential,𝑉𝑒, is the electric potential inside a metallic phase relative to (i.e., minus) that in the adjacent
electrolyte phase (between two positions that both are outside the EDL).

4. The words ‘electric’ and ‘electrical’ can refer to the electron-conducting phase (e.g., metal), as well
as to electrolyte. i.e., they have a broad meaning also encompassing the electrolyte. Thus ‘electric(al)
current’ can also refer to the ionic current in solution.

5. However, the word ‘electronic’ does refer to the electron-conducting, metallic, phase. Thus
electronic charge or electronic current is charge or current in the ‘wires’ or other external circuit
elements. Note that ‘electronic charge’ or ‘electronic current’ is not defined as the flux of electrons,
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i.e., the negative charge carriers. Instead, all currents, ionic and electronic, describe the flow of charge.
Thus with a coordinate axis 𝑥 pointing ‘to the right’ (see point 1 above), a positive current means that
there is a net transport of positive charge carriers to the right, or negative charge carriers to the left.
This goes both for ionic current, as well as for electronic current. Thus when we write that there is
a certain electronic current of 𝐼 = 5 A flowing from left to right through a wire to an anode, we can
mentally depict this is as a flow of 𝐼/𝐹 ∼ 50 𝜇mol/s of electrons flowing in the opposite direction, out
of this anode through the wire.

6. Note that we use both the terms current and current density to refer to a current in A/m2. Sometimes
a current (density) is also in mol/(m2.s) (with symbol 𝐽ch or 𝐽𝐹 then often used), and multiplying by
Faraday’s number converts this current to A/m2. Sometimes current has the unit of A for the overall
(integrated) current running across an electrode (from a connecting wire into electrolyte). In all these
cases the symbol 𝐼 is often used.

7. We use the word adsorption and absorption somewhat interchangeably without sticking to a formal
distinction where adsorption is at a surface, and absorption inside a volumetric medium. This
distinction is not always easy to make, and therefore we use both words in a flexible way.

8. When writing ordinary and partial differential equations, we prefer the use of 𝜕 over 𝑑 if only for
aesthetic reasons. We do not switch from 𝜕 to 𝑑 when we go from a PDE to an ODE.

9. When we use the word ‘potential’ this most often refers to an electric(al) potential, i.e., a voltage,
often in dimensionless units.

10. In many sections we discuss energies and pressures with units of mol/m3, while chemical potentials
are dimensionless. All these quantities can be multiplied by 𝑅𝑇 to return to the usual dimensions of
Pa=J/m3 and J/mol. Sometimes a dimensionless chemical potential, 𝜇𝑖 , is described as: ‘the chemical
potential of species i is 5 kT’ but note that formally this means 𝜇𝑖 =5.

11. A word we very often use is ‘ion’, which is a dissolved and charged species in water (or in another
electrolyte). It will be hydrated (when in water), i.e., have for instance 4 or 6 tightly bound water
molecules surrounding it (especially for cations; for anions, ion hydration and the structure of this
water shell is less pronounced). This entire entity is what in most cases we call the ion. For instance,
if we refer to the volume of an ion in water, it is that of the ion plus its hydration shell, i.e., of the
hydrated ion.

12. In general the water (which is the electrolyte that we focus on), contains anions (negatively charged
ions) and cations (positively charged ions), and in addition there can be neutral species of all sorts.
One example is when bicarbonate, HCO –

3 , is protonated to the neutral carbonic acid, H2CO3. In
this book, because so much of the theory equally applies to charged as well as such neutral species
(solutes), please understand that ‘ions’ then not only refers to anions and cations, but also to species
with a charge equal to zero. Thus, also H2CO3 can be called an ion, it just happens to have a zero
charge, exactly in between the charge of anions and cations.

13. We use the term proton, or H+, as shorthand for the hydronium ion, H3O+. Thus, where officially
a reaction of H3O+ and OH– involves two water molecules, in this shorthand method it seems to be
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just one. This has no effect on resulting equations, because the concentration of water is not part of any
of the equations anyway. (There are thermodynamic equations in relation to Gibbs formation energies
where care is required, with the Gibbs energy of the proton set to zero, and the Gibbs energy of H2O
included.)

14. Charge is often in C or C/m2 or C/m3, sometimes in mol/m2, or mol/m3. The Faraday number
makes the conversion between the C-based and mol-based charge.

15. Concentrations are denoted as 𝑐 or as [...], and both notations have the same meaning. For
volumetric concentrations the official unit is mol/m3 which is the same as mM. We also use M, and
remember this is mol/L. When we present theory and calculation results, we are not introducing
factors such as 103 to address that a concentration in M or 𝜇M must be converted correctly, for
instance to mol/m3. (We neither do that for other conversions for instance between nm and 𝜇m.)
Concentrations can also be in (𝜇)mol/m2 for a concentration per surface area. When using these
‘mol-based’ concentrations, in theory we then often make use of the gas constant, R, and Faraday’s
constant, F. It is possible to translate to concentration in numbers per volume or area, by making
use of Avogadro’s number, 𝑁av (unit mol-1). These concentrations are often denoted by 𝑛 and for
energies we then use the Boltzmann constant 𝑘B, and the electronic charge 𝑒, instead of 𝑅 and 𝐹, i.e.,
𝑛∞ = 𝑐∞ · 𝑁av, 𝑘B = 𝑅/𝑁av, and 𝑒 = 𝐹/𝑁av.

16. We use the words ‘unit’ and ‘dimension’ interchangeably.

17. A multiplication between scalar quantities, or a scalar and a vector, is often denoted without an
operator, such as in: 𝑎 𝑏. Alternatively, also the operators *, × and · are used in this book. In addition,
we use the operator · to describe the inner product of two vectors, such as in I · E.

18. When we include acid-base reactions, involving (de-)protonation of ions, ions can be neutralized.
For instance the bicarbonate ion can be protonated to a neutral carbonic acid molecule. In problems
involving such neutralized species, we call all species ions. Thus some types of ions have a charge
(valency) that is positive or negative, and for some ions valency is zero.

19. In water the concentration and fluxes of H3O+- and OH– -ions are often of relevance. Instead of
writing H3O+ for the hydronium ion, we often use the shorthand of writing proton, or H+-ion.

20. The words increase, decrease, lower, higher, up, and down, are ambivalent for properties that can
be both negative and positive. For all these words two meanings are possible, either referring to: 1. the
numerical value moving left or right on the number scale, for instance a change from +1 to -2 is then a
decrease, but 2. these words can also refer to a change in the magnitude of a numerical value. In that
second meaning a change from -2 to -1 is a decrease. We try to avoid ambiguities and for instance in
the latter case use the terminology ’becomes less negative’. A useful term to indicate that a parameter
(still a scalar quantity) can be both positive and negative, is to write that it ‘is signed’ or ‘has a sign’.

21. The words larger, smaller, more, less do not have the ambiguity just pointed out. They refer to the
magnitude of a property going up or down, without consideration of a change in sign or direction. I.e.,
to write that a velocity becomes smaller, or becomes less, would never mean that it goes from +2 m/s
to -1 m/s.
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22. Interesting is what it means when we write or say ‘there is no current’ or ‘in the absence of current’.
Most likely the intention is to convey there actually is information, namely that the current is zero. A
transport model will use this information somewhere in the (numerical) solution. So there certainly
‘is’ a current conceptually, it just happens to have the numerical value of zero (it is zero). Similar is
’We assume there is no Stern capacitance.’ or ’We neglect the Stern capacitance.’ In this case we do
not set the value of this capacitance to zero, but to infinity because only then is it ineffective. Thus in
this case stating ‘we assume there is no capacitance’ relates to assigning an infinitely high value to it.

23. Somewhat different is a statement such as ‘the EDL has no volume.’ Here the intention is probably
to inform that a proposed theory or model does not make use of volume as a relevant concept (but
perhaps something else, such as area).

24. An interesting problem is the fact that pK and pH are both used as symbols for certain properties,
in the same way that T is used as symbol for temperature, but at the same time pH and pK are the
‘written-out’ names of that property, i.e., ‘pH’ is both equivalent to ‘temperature’ and to ‘T’. Thus we
could end up with a sentence such as: ‘In the vicinity of the surface, pH is around pH 7.5.’ This is
not ideal, but we are not the ones who created this situation, so we consider it to be allowed to write
it in this way. An alternative could be ‘..., the acidity is around pH 7.5.’ You may notice that with pH
(and pK, and likewise other non-dimensional properties such as Re or Pe) one can leave out the =-sign
between symbol and numerical value as in the above examples. This one would not do in general. For
instance, for temperature, for instance, one would keep the =-sign, as in ‘..., temperature is 𝑇 = 30 ◦C.’
For pK we have a similar situation, and can end up writing ‘.. pK is pK 12.’ This is not ideal, but again,
we are not the ones who created this situation. Other options could be ‘... the pK-value is pK 12’ or ‘...
the equilibrium constant is pK 12.’ In all cases we desire to avoid a situation where a numerical value
is not preceded by its associated symbol. Thus, we advise against writing: ‘The temperature was 12
◦C’ or ‘... pH was 7.5.’

25. It is also ambivalent if we should use ‘the’ in relation to pH or pK. Our advise is to try and avoid
the use of ‘the’ and thus we advise against writing ‘The pH ...’ This is because of the double meaning
of pH as ‘written-out name’ and as symbol. In the same way we also wouldn’t write ‘The T is going
up.’ But it cannot always be avoided, for instance at the start of a sentence, where we might have to
use ‘The pH ...’ A way out can be ‘The pH-value’ or ‘the pK-value’. Nothing is ideal in this regard,
which is something we have to live with. We did not create this situation.

26. Another intriguing problem in explaining physical theories is to describe that two sides of an
equation are different, or are the same, or likewise that a parameter 𝑥 and a parameter 𝑦 ‘are the same’.
A specific example we use on p. 170 is that we explain how transference numbers and transport numbers
are fundamentally different physical properties, but still ‘can be the same’. This sound contradictory,
parameters are different but also the same. Of course the meaning is that for certain conditions, these
different entities have the same numerical value. Sometimes we do use this latter phrasing, that ‘they
have the same (numerical) value’ but for readability we can also write ‘are the same’ or ‘they are equal’
when for a dedicated reader the intended meaning is clear.



Technical conventions

27. If we have an equation 𝑎=𝑏, and if we arrive at physical information that tells us that the factor ‘a’
is zero (or because we make this assumption), then it is common to say that ‘we set the left side of this
equation to zero’ and continue with 0= 𝑏. Of course with this new information it is the case that we
set both sides of the equation to zero, because each side is the same, that is why it is an equation. And
actually, with the knowledge that 𝑎=0, we indeed typically continue the derivation based on 0=𝑏, i.e.,
what we effectively do is set 𝑏 to zero, not 𝑎! Now that we have pointed out that the standard way of
phrasing how equations are manipulated is somewhat ambiguous, we can continue using it nonetheless.
Thus with a mass balance 𝜕𝑐/𝜕𝑡 = 𝐷 𝜕2𝑐/𝜕𝑥2, we can say that we assume steady state, thus set the
left side to zero, and continue with 𝐷 𝜕2𝑐/𝜕𝑥2 = 0. Note also that the following terminologies can all
be used to mean the same: ‘the left side,’ ‘the left-hand side (LHS)’ or just ‘on the left’ or even ‘left’
(and of course the same for the right side, etc.).

28. ‘Amphoteric’ is a complicated word. In the context of charged surfaces the meaning is quite
clear as a surface that can be charged positive and negative, see a box on p. 83. However, for ionic
solutions the situation is much more ambivalent, where it has been associated with the capability ‘of
a compound’ or ‘of a substance’ to act both as base and as acid. And it is not clear if by ‘compound’
and ‘substance’ reference is made to a family or group of ions (such as the entire group of three
carbonate-related species), or whether reference is to a specific ion, such as the bicarbonate ion. The
definition is only clear if it refers to specific ions, such as the bicarbonate ion, which indeed can react
as acid and as base, and thus is amphoteric, while for instance the carbonate ion is not. In this book
we do not use the term ‘amphoteric’ for ions or groups of ions in solution, but only use it to refer to
materials or surfaces that can charge positively and negatively (as function of pH), see box on p. 83.

29. In science, the word ‘problem’ does not relate to something problematic, but instead it refers to
the situation in front of one that must be dealt with, and that has been transformed into something
tangible, tractable, doable, like a puzzle that hopefully can be solved. Merriam-Webster defines this
meaning of the word as ‘a question raised for inquiry, consideration, or solution.’ Thus in this book we
use the word ‘problem’ to describe many of the theoretical tasks that we first lay out and then tackle.
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Hyperbolic functions

In the theory of electrochemical processes, the hyperbolic functions are used very frequently.
Therefore we summarize in the figures below their most important characteristics, including
limits for 𝑥 → 0 and 𝑥 → −∞,∞.
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