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1
Introduction

Electrochemical processes are of importance in topics ranging from batteries to
corrosion to water treatment. The key element is the electrochemical cell, as
depicted in Fig. 1.1. In an electrochemical cell, there is an external circuit that
transfers electronic charge (electronic current), electrodes where this electronic
current translates to ionic current in the electrolyte (for instance, an aqueous
solution, i.e., water containing ions), several ‘bulk’ phases of electrolyte, and
additional layers that can be selective to the transport of one type of species over
another, such as a membrane.i

Electrochemical processes are extremely useful and flexible. This is because
they can do many things such as generate and store energy, provide clean water,
and produce chemicals, and compared to other types of processes, there is an extra
variable to tune the process. This is the electrical energy that we can use to directly
influence reactions on electrodes. For instance, when reactants (such as H+-ions)
are at a low concentration, we can compensate for the resulting low reaction rates
by decreasing the electrode potential in that electrode, and that will accelerate the
reaction. This requires electrical energy but that can be a worthwhile investment.

iIn this book we use the terms ‘species’, ‘solute’, ‘ion’, ‘component’, and ‘molecule’, all as synony-
mous terms to refer to the species that are dissolved in the water, move through it, and often carry
a charge, but can also be neutral.
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V
e-

ion+ion-

Fig. 1.1: An electrochemical cell consists of at least two electrodes, the anode and cathode.
The current running through the external circuit, 𝐼, is equal to the current in the electrolyte
phase. In the electrolyte, ions transport the current, and some react at the electrodes. Often
there are multiple compartments as well as separators and membranes.

Electrode reactions can be very selective for the conversion of one species and
not another, and suitable electrocatalysts or other methods (for instance, selective
membranes placed in front of the electrode) can enhance this selectivity further.

An electrochemical cell would typically have two electrodes. But it is not
necessarily two. An electrochemical process is also possible with one electrode
(though not for very long), and you can also build electrochemical cells with
more than two electrodes. As an example of electrochemical cells with more
than two electrodes, you can consider the electrochemical cell of Fig. 1.1 and
take the electrode depicted on the left, divide it in two separate electrodes and
direct part of the electronic current to the one electrode, and part to the other. Et
voilà, you have a three-electrode system. Other examples are the three-electrode
measurement cell depicted in Fig. 7.1, where the main current runs between
working and counter electrode, and a very small current goes to a third electrode,
the reference electrode.
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Faradaic cells
• Steady-state or dynamic
• Electrode reactions with different Ve (*)
• Fuel cells generate Ee from chemical energy in reactants
• Electrolytic cells require Ee to make products of higher energy

Three types of electrochemical cells
All these cell types can be used to: 1. generate electrical energy Ee, 

2. store electrical energy, and 3. generate product streams of higher energy.

Capacitive cells
• Cyclic, i.e., dynamic
• Electrode reactions with different Ve (**)
• During discharge, Ee generated; during charging, input of Ee

• Electrochemical capacitors reversibly store electrical energy 

*: unless for a symmetric cell near open-circuit (Itot=0), then VA~VC

**: unless for a symmetric cell and equal electrode charge

Concentration cells
• Mostly steady-state
• Electrode potential difference, VA-VC, small relative to Velectrolyte

• Generation of Ee from mixing different solutions
• Input of Ee to separate solutions

Fig. 1.2: Electrochemical cells can be classified in three cell types, and each type can
generate energy from resources, store (and release) electrical energy, and produce streams
of higher energy.
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Another three-electrode electrochemical cell is the process of corrosion of
steel or any other metal, and the cathodic protection of these metal structures. A
corrosion spot on a metal structure (for instance a transport pipe) is already two
very nearby electrodes, one where the metal oxidizes and one where for instance
oxygen in the water is reduced. These two electrodes can be right next to each
other, on the same piece of metal, and the exact position, shape and size of each
electrode can change in time. When we now use a third ‘sacrificial’ piece of
metal (for instance, Zn), place it nearby and connect it to the metal structure, we
end up with a three-electrode electrochemical cell. In this cell the electrode at the
Zn/water interface (often in soil) pushes electrons into the other two electrodes,
and reduces the electrode potential of these other two electrodes.

Thus electrochemical cells can have more than two electrodes, but often a
good starting point is an analysis based on two.ii These two can be near one
another on the same piece of metal, i.e., on the same electron-conducting material
(for instance, a Faradaic region on the outside of a porous carbon particle, and
capacitive ion storage inside), or can be well-separated as depicted in Fig. 1.1.

With two electrodes we can classify all electrochemical cells in three distinct
cell types, as summarized in Fig. 1.2. All three cell types can do the same three
things: extract energy from external (environmental) resources (chemical energy),
store electrical energy (and later make it available again), and use electrical energy
to produce chemicals, or otherwise increase the energy of product streams (for
instance, bring a gas to higher pressure, separate a salt solution into fresh water
and a concentrated salt solution).

iiIn Ch. 2, we discuss in more detail two different definitions of the term electrode.
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Let us now discuss in more detail two-electrode electrochemical cells, such as
depicted in Fig. 1.1. The cell consists of an electron-conducting (‘metallic’)
external circuit, and an electrolyte phase, typically water with ions. These two
phases must always be there. In between metal and electrolyte, there is the
electrode, see Fig. 2.1. In addition there can be other elements, such as a gas that
we bubble through. Solid salt phases can develop on the electrode (for instance, an
oxide such as PbO2, or an AgCl layer), or are in solution as insoluble salt particles,
and there can be membranes that allow passage of ions. Such a membrane is also
an electrolyte phase.

In an electrochemical cell, we have generally two phases, electrolyte (which
are all phases with solvent and ions and other solutes; in this book we focus
on the solvent water), and electron-conducting (i.e., metallic) phases such as
the wiring and the electron-conducting parts of the electrodes. This complete
electrochemical cell is electroneutral (EN), but not ach individual phase by itself.
There can be a non-zero electronic charge in the metal, and then we also have a
charge in the electrolyte phase, which is then due to ions, of the same magnitude
but opposite sign as the charge in the metal. This charge is not be in the ‘bulk’
of metal or electrolyte, but is in the electrode, in separate metallic and electrolyte
regions there, see Fig. 2.2.
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Fig. 2.1: The electrode is the interface located between a bulk electrolyte, and a bulk metal
phase. It is a special type of electrical double layer (EDL). Inside the electrode is an
electrolyte region and a metallic region, and between these two regions inside the EDL,
is the electrolyte-metal surface. Just outside the EDL on the solution side, is the location
called ‘s’, separated by a film layer from the real bulk, ‘∞’. The ionic current entering an
electrode at some point is always the same as the electronic current leaving. This is the
case for a Faradaic process where the electrode structure does not change, and is also the
case for a capacitive process where in time the charge that is stored in the separate EDL
regions changes.
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Fig. 2.2: Different models for the structure of the electrode. The electrode EDL structure is
always based on a separation between ionic charge and electronic charge (or more regions
of charge). All charges in the EDL add up to zero, i.e., as a whole the EDL is electroneutral
(EN), i.e., it is uncharged. The electrode potential, 𝑉𝑒, or Δ𝜙𝑒, is the difference between
the potential on the metal-side (just outside the EDL), 𝜙m, and that just outside the EDL on
the solution side, 𝜙s. The electrode potential can have multiple contributions, for instance,
because of a Donnan layer, Δ𝜙D, and a Stern layer, Δ𝜙S.
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Bulk phases everywhere have a local charge density that is zero. Thus at any
point in the aqueous phase, a summation over all ions of their concentration
multiplied by their valency, is zero.i The same holds for any position in the
metallic wires going into an electrochemical cell, i.e., they are EN at any position.ii

The power source (also called: voltmeter, electrometer, or potentiostat), depicted
at the top in Fig. 1.1, we can assume its net charge is zero as well.

So the only locations with a charge excess, are the electrodes. On the metallic
side of the electrode, which is the region at the very surface of the metal, there
is electronic charge, while there is ionic charge nearby in the water, in a region
extending a few nanometers away from the surface, see Fig. 2.1. Both charges can
be of either sign, for instance the electronic charge can be positive or negative.

This electronic charge on the metal-side in an electrode is compensated exactly
by the ionic charge in the water, in the same electrode. This is a second EN-
statement, next to the ‘overall’ EN statement presented above, that each electrode
in itself, is overall electroneutral. It has regions with charge of one sign (on the
metallic side) and region with charge of the other sign (on the side of the ions).
This condition applies to all electrodes in an electrochemical cell.

An electrode can have more than two regions with charges. For instance, on
the ionic side, we can have ‘free’ ions in the diffuse layer, and besides, there can
be adsorbed ions, chemically bound to the metallic surface. Then the three types
of charge are electronic charge, chemically bound charge, and free ion charge (or,
diffuse charge). These three contributions together add up to zero.

This is a good point to discuss the word ‘electrode.’ This word can be confusing
because there are two different meanings, first the theoretical meaning, and second
a convention that has a technological origin. In many cases both meanings apply,
i.e., they are valid at the same time, but sometimes a conflict arises. We will
discuss the second meaning at the end of this chapter, and propose that when

iAnd if this is inside a charged membrane (or other charged structure), also the membrane charge
is included in the charge balance, as if the membrane is another type of ion with a certain
concentration of charged groups per volume.

iiAn exception would be consideration of ‘transmission line’ effects, of how electronic charge in
metal wires interacts with countercharge just outside those wires. This leads to a distortion of
electronic signals and can be analysed in RC-network models, by assigning (many) capacitors to
represent this net charge of the wires.
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Fig. 2.3: A schematic from Mohilner (1966) illustrates that the EDL is the region between
two bulk regions. In an electrochemical cell, one of these bulk phases is an electrolyte,
and the other an electron-conducting phase, typically a metal.

there is a conflict, we call it electrodeTC, with TC for ‘technological convention’,
with the theoretical meaning of electrode not requiring this addition.

Theoretically, the word electrode refers to an interfacial structure, namely
the interface between a bulk metallic phase and a bulk electrolyte phase. This
interface is overall electroneutral, and includes the electrons on the metallic side
of the electrode as well as adsorbed ions, and free ions in the diffuse layer on
the ionic side, see Fig. 2.2. [Vetter (1967): ‘An electrode can be, perhaps, best
defined as consisting of several conducting phases in series, with one terminal
phase being a metal and the other one an electrolyte.’] This charge-neutral
interfacial structure also has another name, which is the electrical double layer
(EDL). Thus, an electrode is a special type of EDL. An EDL is a structure that
contains multiple regions that each have a different charge density, but overall is
electroneutral, and is in between two ‘bulk’ phases, see Fig. 2.3.iii,iv Therefore
across an EDL, just as across an electrode, a voltage difference develops, for
electrodes called electrode potential, for which we will use the symbol𝑉𝑒 or Δ𝜙𝑒.
This electrode potential is the difference in potential between the metallic side of
the electrode and the electrolyte (just outside the electrode), see Fig. 2.2.

iiiAlso a third phase is possible, such a gas.
ivA bulk phase in this case can also be the film layer in front of the electrode, see §7.5.
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An example of an electrode is when we place a non-charged copper wire in
water containing Cu2+-ions. Dependent on the concentration thereof, a certain
number of Cu2+-ions will deposit (‘plate out’), or instead will dissolve from the
metal piece. Let us assume the latter occurs. Thus, for each Cu2+-ion which
dissolves, two electrons are ‘left behind’, and these electrons go to the metallic
side of the electrode (i.e., they will reside on the very top surface of the Cu-wire).
Then on the electrolyte side of this electrode a slight positive charge develops.
This we can call the countercharge, and this countercharge is due to an extra
adsorption of cations and a slight desorption of anions. Thus a positive ionic
charge develops. The negative charge in the metal, because of the left-behind
electrons, and the positive charg in the electrolyte, when taken together add up to
zero, i.e., the electrode as a whole is overall electroneutral. Note that the electrode
is not the piece of copper by itself, and neither is it only the upper part of that
piece of copper. Instead, the electrode is the full interfacial structure here, located
at the outer surface of the copper, which in this example contains an excess of
electrons, together with the ionic countercharge (=diffuse layer) right next to this
surface.v These two regions of charge together are the electrode (and as a whole
are EN), see Figs. 2.1-2.3.vi

The statements in this example are also correct when this reaction continues
to run. Then we have Cu2+ continuously plating out from solution, with the
electrode remaining at the top surface of this metal piece that slowly becomes
more thick.

With two electrodes we can build an electrochemical cell. Of the entire system,
we can define the cell voltage, 𝑉cell. This is the measurable voltage difference
between the two wires coming out of an electrochemical cell that has two elec-
trodes, see Fig. 1.1. If there are no resistances in the wires, the cell voltage is the
difference in voltage (i.e., potential) between the outsides of the metallic regions
in the two electrodes, 𝜙m. In each electrode there is a certain electrode potential,
𝑉𝑒, which is the electrical potential in the bulk of the metal, 𝜙m, minus that in
the electrolyte just outside the electrode, 𝜙s, see Fig. 2.2, i.e., it is a potential

vWe do not claim that a piece of copper in water is always negatively charged. That depends on the
concentration of Cu2+-ions and other ions in the water.

viThere can also be other regions of this EDL structure, such as adsorbed ions.
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difference, 𝑉𝑒/𝑉T = Δ𝜙𝑒 = 𝜙m − 𝜙s.vii The different EDL models in Fig. 2.2 are
discussed in detail in Ch. 5. A final potential difference in the cell is that across
solution, i.e., the electrolyte phase, which in the geometry of Fig. 1.1, defining a
difference as ‘right’ minus ‘left’, is𝑉sol. Thus we end up with the formal definition
of the cell voltage

𝑉cell = 𝑉in metal, A −𝑉in metal, C = 𝑉A −𝑉sol −𝑉C (2.1)

where we introduce index ‘A’ and ‘C’ for anode and cathode, which are names of
the two electrodes located left and right. Thus,𝑉A and𝑉C are electrode potentials
(in general, 𝑉𝑒), thus are a potential difference between the bulk metal and the
electrolyte. It is customary to always draw the anode (A) left, and cathode (C)
right, and Eq. (2.1) is based on that choice, in line with the drawing in Fig. 1.1.
In this figure the current always flows left to right across the electrolyte (across
the solution).

Of course Eq. (2.1) can have more contributions, for instance, the metallic side
of the electrode is material X and it connects to a wire of material Y. Then there
is an additional potential change there at the X/Y interface, which is called a
(metal-metal) junction potential, or ‘work function’. The electrolyte term, 𝑉 sol,
has many contributions, including resistances in the bulk electrolyte, and if there
is a membrane, then potential changes at the edges of the membrane and inside
the membrane, etc...

Kirchhoff’s law. Eq. (2.1) is often called Kirchhoff’s law, describing that all
voltage steps add up to zero, i.e., one can travel along any trajectory through
the cell, starting at some position and when returning there, all voltage steps
along that path add up to zero.

Alternatively, we don’t use differences, but consider the (electrical, or
electrostatic) potential, for which we use the symbol 𝜙 for dimensionless

viiNote that 𝑉’s are sometimes ‘the’ voltage at some point, and sometimes refer to voltage differences.
The ‘voltage at some point’, a state variable that can gradually change through a phase, is generally
not called a ‘voltage’, but called the (electrical, or electrostatic) potential, and then typically written
without a subscript. This local potential, ‘𝑉’, is often divided by the thermal voltage, 𝑉T, to obtain
the dimensionless potential, 𝜙.
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potential. These potentials can be multiplied by a factor 𝑉T, the thermal
voltage, to obtain a dimensional voltage, with unit V. Thus, 𝜙 = 𝑉/𝑉T. The
thermal voltage is given by 𝑉T = 𝑅𝑇/𝐹, or equivalently, 𝑉T = 𝑘B𝑇/𝑒. At
room temperature 𝑉T is around 25.6 mV. Similar to Kirchhoff’s law, we
can now start at some position, at a certain potential 𝜙, and then follow a
path through the cell, moving through regions where the potential goes up,
and other regions where it goes down, and then we ultimately return at the
same point at the same potential. This of course seems completely obvious,
because how could it be otherwise. In this regard, these potentials 𝜙 are no
different than other state variables, such as temperature, which can also vary
in a system, and following any kind of trajectory through a system, starting
at a temperature 𝑇0 at position 𝑥0, after coming back at 𝑥0, the temperature
is of course again 𝑇0.

Kirchhoff’s law is nevertheless useful, because it helps to stress the point
that this analysis applies to every possible trajectory that we can follow
through an electrochemical cell, irrespective of how complicated it can get
(including multiple electrodes, and complex geometries).

At this point, it is useful to describe the words ‘open circuit’ and ‘short circuit’.
In an open circuit, the flow of electrons through the wires is blocked. Thus, the
current is zero. For a short period of time, there can still be a reaction in the
electrodes, but after that the system goes to equilibrium, and electrode reaction
rates go to zero. The cell voltage is now the open circuit (cell) voltage, 𝑉cell,OC.

The other operational mode is to short-circuit a cell, which means that the cell
voltage is zero. We can achieve this condition by directly connecting the anode
and cathode wires, i.e., by ‘shorting’ them.viii

Thus, through an electrochemical cell a current runs. Current is a number with
symbol 𝐼 and unit A (Ampère). If an electrode has surface area A, and all of the
current 𝐼 goes through that area, then the current density is 𝐼/𝐴 (unit A/m2) (if

viiiA corrosion spot on a piece of metal can be described as a pair of short-circuited electrodes, because
the metallic side is at one potential, which is because the electronic current that runs between
those two very nearby electrodes, is very small.
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the total current is distributes evenly). In a text about current densities, such as
in Ch. 7, the symbol used is also I. Thus, the symbol I can be a total current with
unit A, or a current density with unit A/m2.

From the metal side of the cell this current I flows into (or out of) the electrode
as electronic current. And on the electrolyte side it enters or leaves as ionic
current, with the same numerical value, see Fig. 2.1. So the symbol I can be used
both for the electronic current (density) on the metal side of the electrode, and
for the ionic current (density) on the electrolyte side, because they have the same
numerical value.

But ‘are’ they they the same? So even though the two currents, an electronic
current in the metal, and an ionic current in the electrolyte, are the same in
the sense that their numerical value is the same, they can be very different
in a physical sense. In a purely capacitive process, they are indeed different.
Electronic current arrives in the electrode and is stored on the metal-side,
and ionic charge that was stored on the electrolyte-side now flows out of that
region into the electrolyte. (This does not mean that ions leave the electrode.
It can just as well be that ions go into the electrode, or it is ‘50/50’ with the
flow of ionic charge for 50% by ions of one type going in, and for 50% by
ions of the other type leaving the electrode.)

For a purely Faradaic process, however, charged species will transfer
between the two regions, for instance the electron. In this example, an
electron entering the electrode is picked up by a molecule that arrives there,
and this new molecule leaves the electrode again. In this case in some
sense we can say that the electronic current ‘becomes’ ionic current, i.e.,
there is real transfer of a charged particle across the interface, in this case
the electron. It can also be other charged particles that transfer across the
electrode. For instance in metal plating it is ions that physically transfer
across the electrode. This is why Faradaic electrodes are also called charge-
transfer electrodes. (This terminology of a charge-transfer electrode refers to
the transfer of physical particles such as ions or electrons across the electrode.
This is important to note because in any electrode process electronic current
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arriving from one side is ‘transferred’ to ionic current on the other side. In a
capacitive process this does not mean that physical particles are transferred
across the electrode, but still there is ‘continuity’ of current from one side of
the electrode to the other.) With this transfer of charged particles (electrons
or ions) across the electrode (from bulk metal to bulk electrolyte, or vice-
versa), the electrode itself does not change, and as far as the electrode is
concerned, such a charge transfer (Faradaic process) can go on forever.

In all cases just discussed, capacitive and Faradaic, the electrode as a
whole always remains electroneutral, and the two currents, one entering the
electrode on one side, and the other exiting on the other side, are ‘numerically’
the same, and we can use the symbol 𝐼 for both.

Thus, there are different types of charge carriers in an electrochemical cell. In
a metallic phase (or semi-conductor), electrons carry the charge. And electrons
are negatively charged, thus a positive current in a certain direction implies that
it is electrons that are moving in the other direction. In electrolyte solutions, a
current in some direction can be carried by cations moving in that same direction,
or by anions moving in the opposite direction. But generally it is a combination
of both, and all ions in solution participate to some degree in transporting the
current across an electrolyte phase.

In an electrolyte phase, current density 𝐼 is not the same everywhere. In the
geometry of Fig. 1.1, 𝐼 might have a certain value at the electrode, but the local
current density in the electrolyte phase, a vector, I, can have all kinds of directions
and magnitudes. Typically, the current is highest along the shortest path between
the electrodes, and it decreases the further we are away from this center region,
but current also runs there. Thus the current that leaves an electrode first fans out,
and then later converges again to the other electrode.

Nevertheless, for each cross-section across the electrolyte, the total current
passing that cross-section, will be the same. If we draw any arbitrary surface
S across the entire electrolyte phase, a surface through which all ionic current
passes, then the integral over that surface of the local current density I multiplied
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by the normal vector, n, is equal to the total current, 𝐼, as described by

𝐼 =

∫
𝑆

(I · n) d𝑆 (2.2)

which is valid for any plane that intersects the electrolyte phase completely (the
intersection may include membranes, etc.) with one electrode now on one side,
and the other on the other side. This is valid in steady state process, but also in a
dynamic problem.

The only restriction to the above analysis is that it is valid for a cell with two
electrodes such as in Fig. 1.1. A more general analysis is needed when we have
more than two electrodes. Then we can envision, or draw, a closed surface fully
enclosing a certain volume –let us call this volume a bubble– and the total current
across the surface of this bubble (with contributions from electronic currents
through the wires that pierce through this surface, and contributions from ionic
currents in the electrolyte), i.e., all contributions combined, is zero, i.e., the
enclosed volume stays electroneutral. This analysis requires that each electrode
is either completely in or completely out of this bubble. This is because inside
an electrode there is charge separation between different regions, so electrodes
cannot be located ‘half-way’ at the bubble-surface. ix

Thus, in this approach, the current entering the bubble through wires is equal to
the ionic currents leaving the same bubble through the surface of the bubble. This
is valid for any bubble one can draw, including ones that include zero electrodes,
or ones that contain any number of them. If we make the bubble very small, only
encompassing a small region of bulk electrolyte (or metal bulk phase), then the
result is that the divergence of the current density vector is zero, i.e., ∇ · I = 0.
This is sometimes called Kirchhoff’s second law.

ixNote that also in bulk electrolyte there can be regions with local charge separation, such as at the
very edges of ion-exchange membranes, where also an EDL is formed (‘Donnan layer’). These
EDLs are a few nm in width across. The bubble cannot cut ‘halfway’ through these Donnan layers.
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Anode and Cathode. We did not yet define the words ‘anode’ and ‘cathode’.
These names are very easy. If we have a solution with only one type of
anion and one type of cation, then the anode is the electrode to which anions
move, or cations move away from (often a combination of the two). Or more
generally, irrespective of electrolyte composition, the anode is the electrode
where electrons leave from, to go into the external circuit. Or more officially,
the anode is the electrode where the electronic current that arrives from the
external circuit has a positive numerical value. The cathode is the other
electrode, where cations move to, anions move away from. And now the
electronic current arriving in it from the external circuit is negative, i.e.,
‘real’ electrons arrive in the cathode. This definition is correct irrespective
of whether we operate a cell as a fuel cell or electrolytic cell, or in any
other case. For reversible electrochemical cells, which change the current
direction every so often, see a discussion on p. 30.

When we draw an electrochmical cell, the anode is always left, and the
cathode right, see the frontpage of this book.

Oxidation and reduction. If there are electrochemical reactions on the elec-
trodes, and if it is only one, then on the anode, this reaction is an oxidation
(for instance the OH– -ions that arrive react to oxygen gas and electrons).
Electrons are then formed and they go into the metallic phase, the external
circuit. Thus in this example, an anion reacts at the anode to become a
neutral species and an electron is pushed into the metal.

On a cathode, the reaction is a reduction, for instance a cation, say Fe3+,
picks up an electron from the external circuit, and leaves as a Fe2+ ion. That
an oxidation takes place on the anode, and a reduction on the cathode, is
valid irrespective of what type of cell is used (irrespective of whether we
have a fuel cell or electrolytic cell). Note that in these examples, an anion
reacted on the anode, and a cation on the cathode, but it can just as well be
that in both cases an anion reacts away, or a neutral species, or cations in both
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cases, or even that a cation reacts on the anode, and an anion on the cathode.
Then the ion is charged even higher, for instance, when an anion reacts on a
cathode and picks up an electron, it becomes an anion with a more negative
charge.

In the examples just discussed, the ion that reacted away ended up with a
higher valency when it was involved in an oxidation reaction (for instance,
from negative to neutral), and ended up with a lower valency during a
reduction (for instance, from more positive to less positive). However, even
that is not necessary, because as we will point out later –see also B&F,
Eq. (1.5.15) there– a reaction can be O + 𝑛 𝑒1− + 𝑛H+ ↔ R, i.e. a certain
molecule O is reduced to a species R, but stays neutral, because it takes up
electrons and protons.

What ‘is’ current? We did not yet discuss what carries the current, and what
‘is’ a current. The latter question is almost of a philosophical nature, and
difficult to answer . . . Nevertheless, there are things we do know. We know
that the concept of current exists, that we can measure it, and we can use
it in theory. But what it ‘is’, is perhaps a question of a different order.
Nevertheless, for a metallic phase all of this is rather straightforward: we
simply have the electrons that carry the current and they move according to
Ohm’s law. But for an electrolyte phase, the situation is more complicated,
with both anions and cations moving, often in opposite direction, with fluxes
related in some way that at each point the local charge density 𝜌 stays zero.
Current can be carried by all ions but locally there is no accumulation of
current, which means that at each position the divergence of the current
density vector I is zero (except on electrodes). Interestingly, in a steady state
process without mixing, even with many types of ions, often only one or
two ions carry most of the current, with other types of ions not taking part.
But if we start mixing, more of them participate. The degree to which each
ion participates in the local current density relates to the topic of transport
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numbers, 𝑇𝑖 , see B&D.
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The technological convention of ‘electrode’. Until now we stressed that the
word electrode refers to the complete interface between metal and electrolyte,
and on the same ‘piece of metal’ there can be multiple electrodes, with dif-
ferent interfacial structures. This is the important conceptual, or theoretical,
meaning of the word electrode. But there is also another meaning, one that
is more technological. When confusion can arise, we will sometimes write
electrodeTC, where TC stands for ‘technological convention’. According to
this convention, an electrodeTC is the piece of metal that we insert in water,
or for instance a piece of porous carbon that we can connect with an external
circuit and that will adsorb ions when it is electrified. So electrodeTC refers
to the solid structure that can be handled and modified, and that we can con-
nect to the electronic circuit. This meaning of electrodeTC often slips into
a discussion that is actually about the electrode in its theoretical meaning,
which we try to follow more closely in this book.

So electrodeTC is the ‘piece of metal’, or metal structure, on which there
can be more than one ‘theoretical’ electrode. With corrosion, the steel
structure is an electrodeTC, but it has multiple ‘theoretical’ electrodes on
its surface, where these –two, or more– electrodes form an electrochemi-
cal cell. Connecting with the Zn electrodeTC, we obtain a three-electrode
electrochemical cell, as discussed before.





3
Types of electrochemical cells

Electrochemical cells can be classified in three different types, see Fig. 1.2. Within
each type, operation in three modes is possible. And all three types can have the
same three applications. Eq. (2.1) plays an important role in analysing these cells
and their operational modes.

In this chapter we focus on electrochemical cells where both electrodes are
Faradaic, or both are capacitive, but in reality it can be much more complicated:
we can also design a cell with one Faradaic electrode and one capacitive electrode,
or we can have a porous electrodeTC that is Faradaic in one region, and capacitive
in another, or for instance in time the same electrodeTC gradually changes from
capacitive to Faradaic. In the next chapters we do not go into these complications
but focus on a two-electrode electrochemical cell where both electrodes are either
100% Faradaic or 100% capacitive. See the box on p. 36 for more discussion on
the combination of these types of electrodes.

3.1 Faradaic cells

The first type of electrochemical cell is the Faradaic cell, of which we show
the current-voltage characteristic in Fig. 3.1. In a Faradaic cell we have two
electrodes that both are Faradaic, i.e., there is transfer across the electrode of
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Fig. 3.1: Faradaic cells are characterized by a curve of cell voltage versus current. This
polarization curve, or i–V curve, of the entire electrochemical cell identifies a fuel cell
regime and an electrolytic cell regime. In the fuel cell regime, electrical power is produced
by the cell, while in the electrolytic cell-regime, an input of electrical energy is required.

ions or electrons, see a box on p. 14. In a Faradaic electrode, one option is that
incoming reactants pick up, or shed, an electron and then leave the electrode
structure again, to go back to the same bulk phase as where they came from, or
they go to another bulk phase. So an electron transferred across the electrode.
The other option is that an ion transfers across the full electrode, exchanging
between bulk electrolyte and a bulk metal phase. In both cases, in steady state
operation the electrode structure remains unchanged.

We see in Fig. 3.1 that a Faradaic cell can be operated in any of three operational
modes, namely the electrolytic cell-regime on the very left, the fuel cell regime
(also called Galvanic cell) in the middle, and an impractical super-galvanic oper-
ational mode on the very right. We will not consider this last mode of operation.
It is possible that the polarization curve runs through the origin, then operation is
always as an electrolytic cell, i.e., energy must be supplied to the cell to make it
run. The fuel cell and electrolytic cell are analysed in more detail in Fig. 3.2.
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current.
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Here, in Fig. 3.2, we show profiles of the electrical potential across the elec-
trochemical cell. We start with the electrolyte phase in the middle, go left to the
anode, then to the power source, PS, or load, L, even further left, and via the wire
from PS or L we go round to the other side, to the cathode on the very right. To
extract electrical energy, 𝐸𝑒, in the load, the cell voltage𝑉cell must be negative.i , ii

In the fuel cell mode, the reacting components coming from any of the bulk
phases (metal, electrolyte, gas) will reduce their chemical (Gibbs) energy when
they react to product species. This reduction in their chemical energy can be
used to generate electrical energy. In the electrolytic cell, it is the other way
around. Chemical energy can also relate to concentrations: simply a difference
in concentration between the solution near the anode and cathode of the same
reactive ions, can generate a cell voltage, thus generate electrical energy, while
the reverse process (to separate two solutions) requires input of 𝐸𝑒. If these
effects relate to the electrodes, we categorize such cells as Faradaic cells, while
we reserve the term ‘concentration cell’ for those cells where electrolyte effects
are predominant, as will be discussed.

In the diagrams in Fig. 3.2 that relate to Faradaic cells, the current 𝐼 is either
zero or is directed to the right. In that same direction the potential in the electrolyte
phase goes down to pull the ionic current through solution, in analogy with Ohm’s
law, 𝐼 = −𝜅 𝑑𝑉/𝑑𝑥, where 𝜅 is an ionic conductivity. Electrode potentials can
either go up or down, but interestingly, for a fuel cell the only requirement is
𝑉A −𝑉C < 0, see Fig. 3.3.iii

iThis energy 𝐸𝑒 is not to be confused with the field strength 𝐸, nor with the symbol 𝐸 for electrode
half-cell potentials that we use further on. It is neither the energy that we can store in a capacitive
electrode, as we also discuss further on. Note that referring to an energy 𝐸𝑒 here in Fig. 3.2 is
not entirely correct, because a cell produces power (in W), and integrated over a time period, that
leads to an energy 𝐸𝑒 in J.

iiNote that in a power source, for which we use the abbreviation PS, the generated electrical power,
Pgen, defined as a quantity that is generated by the electrochemical cell, would be negative. Thus
only when the external device is a load, L, and current runs, then we have a positive power, Pgen,
generated by the cell. This is for instance the case for the fuel cell regime in Fig. 3.1, while to the
left, in the electrolytic cell regime, a power source, PS, is used, and we have a power input.

iiiIf the sign is opposite, and we still wish to describe this system in the conventional manner as a
fuel cell, one just has to reverse (the labels of) anode and cathode. Thus, a fuel cell requires two
electrodes with different 𝑉𝑒 , and the electrode with the largest 𝑉𝑒 is assigned as the cathode.
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The fuel cell mode, or regime, is depicted at the top row of Fig. 3.2, as well as
in all panels of Fig. 3.3. In a fuel cell we generate electrical energy, 𝐸𝑒. Thus in
the electronic circuit, a load ‘L’ is placed and it will generate energy 𝐸𝑒 because
the electrons that flow through it (leftward) can go up in electrical potential. The
electrons do this spontaneously, and thus drive the generation of 𝐸𝑒. Fuel cell
operation can only be achieved for a limited range of currents and cell voltages.
One way to assure that one operates at a suitable current, is to work (in practice,
or in the imagination) with a ‘load’ as a passive element, for the present purposes
of analysis similar to how a resistance is understood.iv The heat that is produced
in this resistance is then equal to what potentially can be generated as electrical
energy, 𝐸𝑒.v By using a resistance as a load, the resulting current is never too
high.vi The load placed in the external circuit will slow down the flow of electrons,
but never make it completely stop, thus power is always generated, see Fig. 3.1,
right panel.

Interestingly, the maximum power is obtained at a current roughly half that of
the short-circuit current (or, obtained for a cell voltage that is half the open-circuit
voltage), and this is when the resistance in the load is about equal to the resistance
of all other elements of the cell. If the load resistance is higher than this optimum
value, the cell voltage is higher but the current decreases, and vice-versa for lower
loads. At this condition of optimal load, note that the system operates at about
50% efficiency, i.e., for each two quantities of chemical energy that are being
‘destroyed’, only one becomes electrical energy; the other is lost as heat in the

ivThe load can for instance be a battery that is being recharged, but often the load is simply envisioned
to act as a resistance. The heat produced in such a resistance (current × cell voltage) is then a
measure of the electrical energy that can potentially be generated in a more suitable device (with a
certain conversion efficiency). The load resistance will slow down the flow of electrons, but never
reverse it, i.e., in this regard it is ‘passive’. A realistic device such as a battery is more complex
than a simple resistance because we aim to charge it slowly, and thus the cell voltage must not
be too high at first, but then must slowly increase to charge the battery to completion. Thus, the
recharge of a battery by our electrochemical cell is a time-dependent problem.

vNote that some heat is always produced in any energy conversion device, thus the generated 𝐸𝑒 in
a real load is always less than the total heat produced in the resistance that we use to simulate it.

viTo this load we can then assign any value of its internal resistance, from very low to very high. The
maximum power produced by the load is when this internal resistance is approximately the same
as the sum of all other resistances in the cell.
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electrochemical cell (not in the load). This does not yet include energy losses
(heat production) in the load. A more efficient operation requires the cell to work
nearer to the open-circuit voltage, at a reduced power production rate (per unit
time less energy is generated). For maximum efficiency we try to work very close
to 𝑉cell,OC, thus at a low rate of power generation.vii

Energy Storage Devices (ESDs). Fig. 3.4 gives a overview of ESDs based
on electrochemical cells. ESDs can be constructed based on each of the three
types of electrochemical cells that are summarized in Fig. 1.2, with the fuel
cell (FC) an ESD from the class of Faradaic cells, and the electrochemical
capacitor (EC) an ESD from the class of capacitive cells.

The word battery does not have a strict definition. It mainly relates to cells
of the Faradaic type, though not all devices in this class are called a battery
(for instance, a hydrogen fuel cell is generally not called a battery), while
also devices that are concentration cells are sometimes called a battery by
manufacturers. An example of an electrochemical capacitor that is called a
battery is the Li-ion battery. The term battery is sometimes associated with
ESDs that have a finite, fixed, enclosure, as for consumer electronics, though
also this definition is not strict (for instance, the redox flow battery is fed
from external tanks). Or the term is used to impute that ‘chemical effects’
are at the basis of its operation, in contradiction to more ‘electrostatic effects’
that are then considered to be the driving forces in ECs. However, this latter
association of the term battery with chemical effects is problematic, as we
try to explain below.

According to a distinction where battery refers to chemical effects, and
an EC to electrostatic effects (a distinction that we do not advocate), a
battery then has a constant output voltage because it is based on a chemical
reaction, with the output voltage in an EC variable because ECs are based
on electrostatics and capacitance, and thus voltage is strongly dependent on

viiIn practice, operation near 𝑉cell,OC can also be energetically inefficient, because of parasitic effects
that come into play, such as leakage of salt between anode and cathode compartments, and thus
we lose ‘energy’ because reactants mix up.
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charge. A related distinction is then also drawn that ECs are fast because
they use electrostatic effects, and batteries are slow because the ions are
chemically bound.

These arguments to make a distinction between a battery and an EC, are
not very convincing in our view. To begin with, a distinction based on the
theoretical view of what happens exactly inside an electrode, is not very
strong, because this depends on one’s personal preferred theory, and this
view can always change, and people don’t have to agree. Because how to
decide whether an effect is electrostatic or more chemical, or something
else? There are many situations that are hard to classify: in the electrode,
ions can bind to the surface, can associate with electrons, and we can’t be
sure what exactly occurs. As for the other criteria proposed to distinguish
the two two types, we would argue that the rate of discharge seems not to be
a very fundamental property to decide on whether a device is to be called
a battery or not. And the stability of the output voltage is neither a strong
criterion because many devices that are called a battery have a voltage that
decays during use, including the Li-ion battery.

The Li-ion battery is an intriguing type of electrochemical capacitor, in
which Li-ions are stored in the graphite anode during charging, and released
during discharge, and the reverse for the cathode (made of a Li oxide or
phosphate). Because of phase separation of Li-ions within the electrode, it
has an output voltage that is rather stable, which makes it seem to behave in
this regard to a Faradaic cell (but it is capacitive). Still, it is a capacitive cell.

Interestingly, a stable output voltage is not that essential when devices have
an electronic management system (based on inductors and other electronic
elements) that can deal with a decaying voltage during use. Such a system
then provides a stable voltage output of any required level. For example, the
voltage of a Li-ion battery can decrease by 20% during operation, but the
output voltage stays at a required level.

Note that there also exists an electronic device called a (dielectric) ca-
pacitor. This electronic device consists of two metal wires (ends) separated
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Fig. 3.4: Energy storage devices (ESDs) based on electrochemical cells are in one of two
classes: fuel cells and electrochemical capacitors. The term battery has a loose definition.

by a dielectric (insulating) medium, and this device can store charge (i.e.,
negative charge in one metal, positive charge in the other; overall the device
is electroneutral). This is not an electrode, and neither is it an electrochemi-
cal cell. This electronic device has a capacitance 𝐶 (defined as (change in)
stored charge in one metal end, over the (change in) voltage across the full
device) that is almost independent of charge.

What Figs. 3.1 and 3.2 indicate, is that the same electrochemical cell (the same
device) can in principle run in each of the three modes/regimes, and it is not
the case that a certain device can only operate as a fuel cell, and another as an
electrolytic cell. Fig. 3.1A presents for a Faradaic cell a curve of cell voltage
versus current, i.e., the I-V curve, or polarization curve.viii With one and the
viiiFurther on, we encounter polarization curves, for a concentration cell, and for a single electrode.

Interestingly, they do not depend on whether a current is applied or a voltage. Both approaches are
completely equivalent because 𝐼 and 𝑉 are uniquely related, and thus, whether we apply a certain
current and measure voltage, or the other way around and apply a voltage and measure current,
these two methods lead to the same set of I-V data. This is not the case for a time-dependent
process. In that case, if we apply a certain current and measure the voltage, V(t), that is different
from an experiment where we apply a certain voltage and measure the current I(t).
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same device, we can work in three regimes: in the middle is operation as a fuel
cell, to the left is the electrolytic cell, and to the right a non-practical regime where
we push a fuel cell so hard that even though the reactions go in the ‘spontaneous’
direction, still energy must be invested.ix

Thus, the fuel cell regime in the middle of Fig. 3.1A is limited on two sides:
on the left, the current direction reverses sign, and on the right 𝑉cell switches
sign. The first transition is at the open-circuit (cell) voltage, 𝑉cell,OC, and we
go from the fuel cell to the electrolytic cell mode. The other transition is at the
short-circuit current, 𝐼SC.

An important discussion is now whether the labels anode and cathode must be
switched when the current direction is (repeatedly) reversed. This is a complicated
and ambiguous topic for many reasons: do the words relate to a specific piece of
metal, or to the operation at any moment in time. When confusion arises, it helps
to give a fixed label to each metal piece (electrodeTC), whatever is the current
direction. Indeed, in such a system with charge-discharge cycles, such as a lead-
acid battery, the terms anode and cathode are based on how the cell functions
during the key phase of operation. For a battery this key phase is discharge,
i.e., when it is used, not during recharge. So in practice, after switching to
the other mode of operation (from discharge to charge), the piece of metal, i.e.,
the electrodeTC, is called the same as before, so during charging, what is called
cathode, has ionic current move away from it, which is opposite to the theoretical
definition of the term cathode.

Note that for a perfectly symmetric system, with the same electrodes, we do
not have three regimes, but only the electrolytic cell-regime that always needs an
energy input to generate a current. This would be a curve that is point-symmetric
around the origin in Fig. 3.1A. The input power Pinput is zero for 𝐼 = 0, and
otherwise always positive.

The accompanying Fig. 3.1B describes the power that the cell generates, Pgen,
which is the product of 𝐼 and −𝑉cell. This power is positive in the fuel cell regime,
and negative (we need to invest electrical energy) in the regimes both to the left
and to the right. When the polarization curve is linear as in panel A of Fig. 3.1,

ixThis ‘super-galvanic’ regime seems not to have any practical use, but nevertheless its scientific
study can be interesting and generate new insights.
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then the power curve is parabolic, and the maximum power is obtained halfway,
i.e., for a current that is half the short-circuit current, thus 𝐼 |𝑃gen,max = ½ 𝐼SC,
with 𝐼SC indicated by ** in Fig. 3.1. And we are at the same condition of
maximum power when the cell voltage is half the open circuit voltage, thus when
𝑉cell = ½ 𝑉cell,OC, with 𝑉cell,OC indicated by * in Fig. 3.1. Thus the maximum
power in that case is obtained from

𝑃max,gen = 1/4 · 𝐼SC · |𝑉cell,OC | . (3.1)

In the electrolytic cell there is no generation of electrical energy; if we calculate
it, Pgen is negative; i.e., we must invest electrical energy in the non-spontaneous
chemical reaction, see the third panel in Fig. 3.2. The products of the reaction
have a higher chemical energy than the reactants, i.e., we store chemical energy.

Of course most device are optimized for a certain operation, thus we cannot
simply reverse current in a fuel cell, and expect the system to switch graciously
to electrolytic cell operation, or vice-versa. But reversible systems can deal with
regular switching, such as concentration cells and capacitive cells. Also some
Faradaic cells can operate ‘back and forth’, i.e., can be recharged (for instance the
lead-acid battery).

When an electrochemical cell is operated in such a cyclic manner, i.e., with
current in one direction for some time, and then with the current direction switched
for another period of time, we can assign the terms ‘charge’ and ‘discharge’ to
these two periods, where charging refers to the period with input of electrical
energy (from an external source, into the cell), and discharge refers to period
where electrical energy 𝐸𝑒 is generated. Discharge is when an ESD is used
to power another device. And charge, often called recharge, is when electrical
energy is being stored in the cell. For such reversible systems we can calculate
the round-trip efficiency, which is how much energy is generated from the cell
(the ESD) in the discharge step, versus how much was put in during (re-)charge.

The open-circuit cell voltage. So how to find the open(-circuit) cell voltage,
that separated the fuel cell regime from the electrolytic cell regime? Ex-
perimentally this is of course not very difficult, we just measure the voltage
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between the two wires from the electrochemical cell using a voltmeter (which
internally has a very high resistance). Theoretically, because we are close to,
or at, equilibrium, we can use the Nernst equation, to be discussed below, to
calculate the electrode potential,𝑉𝑒, for both electrodes, and subtract the two,
which is then𝑉cell,OC. In this expression is a standard term,𝑉0,𝑒. Though we
do not know the two values of𝑉0,𝑒, we do know the difference𝑉0,A−𝑉0,C very
accurately, because this difference is the same as the difference 𝐸0,A−𝐸0,C

where the 𝐸0, 𝑗 ’s are the standard half-cell potentials, which are tabulated
versus the reference, being the standard hydrogen electrode (SHE). [Here it
is assumed that one particular reaction takes place on the anode, and another
well-defined reaction on the cathode. This is not generally the case.] The
second element of calculating 𝑉𝑒 relates to the concentrations of ions and
other solutes (and gas phase species) near the electrode.

One complication in calculating 𝑉cell,OC is that often there is a membrane
or filter in between anode and cathode compartments. Even if this layer
is quite open, there can be an extra potential difference here, because of
different diffusion coefficients of the various ions. In addition, when an ion-
exchange membrane (a membrane very selective for cation transport versus
anion transport, or vice-versa) is placed in between the two compartments
of different composition, there is a potential across the membrane, and the
measurement will also pick up this potential, and thus it must be added to
the two electrode potentials when calculating the theoretical open circuit
voltage.

3.2 Concentration cells

A second type of electrochemical cell also operates in steady state, but does not
critically rely on electrode reactions. Instead, important is the electrical potential
in the electrolyte phase. Examples are electrodialysis (ED) and reverse electro-
dialysis (RED) as the analogues of the electrolytic cell and fuel cell discussed
previously. Indeed, also for concentration cells we can construct an I-V curve, or
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Fig. 3.5: Concentration cells can operate in a mode that generates electrical energy (for
instance, from a salt concentration difference), and in a mode that requires energy input,
for instance for water desalination.

polarization curve, similar to the curve for Faradaic cells, see Fig. 3.6, with three
modes of operation similar to Faradaic cells.x

In ED, we use a large number of membranes to separate a salt solution of a
certain salinity into two outflow streams, one with higher salt concentration, and
one with a lower salt concentration, and this requires an energy input, while the
net result is that the energy of the system has increased (in the form of a reduced
ion entropy of the outflowing streams, compared to the inflow). ED is then the
analogue of the electrolytic cell because a net electrical energy input is required.
The opposite is a cell for RED (also called ‘osmotic power’, ‘nanopore power
generation’, or ‘blue energy’), where electrical power is generated from mixing

xAnother type of cell depends on differences in concentration of electroactive ions, and how that
affects the electrode potential. So in these cells the electrode reactions are of importance, and the
voltage change across the electrolyte is as usual (B&F (2001), footnote on p. 65). We classify
these cells as Faradaic cells.
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two streams of different salt concentration (or different pH), again in a cell with
many membranes. This cell is analogous to a fuel cell because we generate
electrical energy from the decrease of energy of bulk solutions.

Compared to the Faradaic cells, what is different in these concentration cells,
is that the electrode potentials, 𝑉𝑒, can be the same or similar on both electrodes,
we just do not care much, as they are low relative to the total cell voltage, see
Fig. 3.5, and 𝑉cell is now determined not by the electrodes, but by what happens
inside the electrolyte phase. Especially RED is interesting, where even though
the ionic current flows left to right through the electrolyte phase, and thus in each
layer outside the membranes the potential decreases, the same as for the Faradaic
cell designs, see Fig. 3.2, nevertheless, as in a ‘water mill’, in each membrane
(when well-designed) the potential is lifted up, such that ultimately 𝑉sol>0. This
is then opposite to the general case which is that 𝑉 sol is negative (‘going down’)
(see also p. 67 in Vetter, 1967).

Thus, also for these cells, a polarization curve and a power curve can be
constructed, see Fig. 3.6, the same as in Fig. 3.1 for the Faradaic cells. The open-
circuit potential, 𝑉cell,OC, which is the cut-off between ED and RED, depends
on the salt concentrations in the two streams and the number of membranes, 𝑀:
|𝑉cell,OC | = 𝑀 · 𝑉T · ln 𝑐high/𝑐low.xi

3.3 Capacitive cells

In capacitive cells, when a current is applied, the different regions in the electrodes
change in time. It is not possible to operate the process in steady state, because
more and more electrons are stored, as well as more and more ions (or less and
less, dependent on current direction, ion type, etc.). Important capacitive cells are
electrochemical capacitors used to store electrical energy, where electronic and
ionic charge is stored inside the electrode, i.e., inside the EDL structures located
at the metal-electrolyte interface, with the Li-ion battery a prime example.

This battery is not based on a Faradaic process. In a Faradaic process one com-
ponent, originating from outside the electrode, is converted inside the electrode

xiFor an ideal 1:1 salt and perfectly selective membranes. Membranes are alternatingly anion-
selective and cation-selective. The number of membrane pairs in a stack is given by 𝑁 =𝑀/2.
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Fig. 3.6: An I-V curve, or polarization curve, for a concentration cell running in each of
the three possible modes, with RED operation in the middle, and ED on the left. The
cell consists of 𝑁 = 5 pairs of ion-exchange membranes (IEMs), each of 20 cm2 area,
with 160 𝜇m wide channels. The channels are fed alternatingly with 17 mM and 500 mM
NaCl solution, with a flow rate per channel of 12 mL/min (empty channel residence time
𝜏=1.6 s). A redox solution flows along the two electrodes in channels separated by IEMs
from the desalination channels. Neosepta AEX and CMX IEMs are used. The voltage
reported is that across a pair of membranes and adjoining channels, and power Pgen is
per m2 total membrane (the area of both membranes in a cell pair is counted). Voltage
is measured with reference electrodes across the N membrane pairs; thus, excluding end-
electrodes.
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and leaves again, as is the case for the lead-acid battery, and also for reversible
hydrogen fuel cells; these are Faradaic systems. But charging of a Li-ion battery
is simply transporting Li-ions from one electrode to the other, thereby changing
the Li-concentration and chemical potential inside the two electrodes, and thus
also changing the electronically stored charge.

Capacitive and Faradaic electrodes in an electrochemical cell. An interest-
ing question is whether the two electrodes in an electrochemical cell such as
in Fig. 1.1 need to be of the same type, i.e., do both need to be capacitive,
or both Faradaic? The answer is: no. Each can be of either type, and each
can also be a mixture of boths. There is no constraint at all here. Indeed, in
reality any practical electrode will have some Faradaic reactions occurring
even though they may be small. And after a change in conditions, also in
a Faradaic electrode, we have a dynamic situation for some time, and then
capacitive effects briefly play a role. Thus, always all electrodes to some
extent are subject to both processes. Nevertheless, in a very good electro-
chemical capacitor, the Faradaic effect will be small. And vice-versa, if an
electrode operates in steady state (i.e., no changes in time), it means there is
only Faradaic operation because capacitive effects are then absent.

So there are many options. The only constraint to the complete cell
operation is that during steady state operation, the capacitive current is
zero. And if this is so, then the Faradaic process has the same rate in both
electrodes. Thus, if we are in the steady state, and there is some non-zero
current, although each of the electrodes certainly has a certain EDL structure
with separated regions of opposite charge, these regions are not being charged
further over time. Thus, the capacitive current is then zero, 𝐼𝑐 = 0, and all
of the electronic current arriving in an electrode is used for the Faradaic
process, and that is the case in both electrodes.



4
Faradaic and capacitive electrode

processes

We can now shift our attention to the level of a single electrode and discuss the
clear distinction between Faradaic and capacitive electrode processes.

In general, we know that in an electrode, even without any process going on,
i.e., when the current is zero, that an electrode has regions of positive and negative
charge, and thus there is an electrode potential, 𝑉𝑒, see Fig. 2.2. Now we run
a current through the electrode, and then the electrode charge and potential will
change, i.e., the structure of the EDL (i.e., of the electrode) changes. We also know
that the electronic current arriving on the metallic side, is equal –numerically–
to the ionic current that leaves the electrode and goes into the electrolyte phase
(gases typically do not carry current). There are two fundamentally different
processes about what now exactly happens in the electrode:
1. Faradaic electrode process: There is transfer of charged particles (electrons
or ions) across the electrode, thus from the metallic side to the electrolyte side (or
vice-versa); or
2. A capacitive, or non-Faradaic, electrode process: There isn’t such a transfer
of electrons or ions. Electrons arrive, and ions arrive. But none ‘transfers across
the electrode’ to the other side.
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Option 1 implies that there is an oxidation or reduction reaction at the electrode
with the reactants entering the electrode and products leaving the electrode.
Examples can involve water reacting to H3O+ and O2, or Fe2+ reacting to Fe3+.
In both cases also electrons transfer across the electrode between electrolyte
and metal. All of these species (H2O, H3O+, O2, Fe2+, Fe3+) enter, and leave,
the electrode, with electronic charge transferring from the electrolyte phase to
the metal. The other option is that it is not the electron that transfers across
the electrode, but the ion. This is the case for plating and for corrosion. In a
plating reaction, a metal ion, for instance Cu2+, transfers from the bulk electrolyte
phase across the electrode, and becomes incorporated into the metal bulk phase.
Corrosion, for instance of an iron structure, is the reverse of this, now a metallic
atom, say Fe, transfers across the electrode and becomes an ion (often immediately
incorporated in a ‘solid salt’, i.e., an iron-oxide phase). Thus we have in all these
cases charged particles (ions or electrons) that transfer across the electrode from
one bulk phase to another.

Another example is the reaction 2H+ + 2e− → H2, where an H+-ion arrives at
the electrode, picks up an electron, and leaves as gaseous H2. All these examples
are Faradaic electrode processes. As long as reactants are supplied, and products
removed, a Faradaic process can run forever, and the electrode potential stays
the same. The electrode doesn’t store any ions or electrons: everything that
enters, also leaves again. There is a certain EDL structure, with a certain number
of electrons and ions, but while the process is ongoing, these numbers do not
change, unless we change conditions in solution, or change the current. Faradaic
electrodes are also called charge-transfer electrodes, and this terminology refers
to the transfer of physical particles across the electrode, see a box on p. 14.

In option 2 there is no such transfer of charged particles across the electrode.
Ions can enter the electrode and do interesting things there, such as adsorb to the
metal surface, and associate with electrons. It can completely give off an electron
or react with one, and this we can call an electrode reaction. But for a capacitive
process, the products of this electrode reaction do not leave the electrode. Instead,
they stay and accumulate inside the electrode.

The reverse situation is that there are no ions entering, but only ions leaving.
This is the case in a charge-discharge cycle of an electrochemical capacitor. Then,
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during one phase ions go in, and in another it is the same ions that leave again.
Integrated over a cycle, the ions are unchanged, they are not converted, and also
the electrode is unchanged. In this type of electrode process, when a current is
applied, the electronic charge in the electrode changes in time (and likewise the
charge on the ionic side), i.e., we store both types of charge, and therefore the
electrode potential continues to change over time.

Thus, there is a clear difference in how a Faradaic electrode and a capacitive
electrode respond to applying a (constant) current: either the electrode potential
is stable, or it continuously changes.

Interestingly, to make the distinction, we do not need to know what exactly
happens in the electrode on the atomic scale, which is a very good thing because
we may never know these details for certain. We can make models, but these
theories about the atomistic details of how ions are stored, there are many of
them, and there may be ongoing scientific discussions, and what is someone’s
preferred theory, that can always change again. Instead, to make the distinction
between Faradaic and capacitive electrode processes, we only have to consider
the observable, macroscopic, behaviour of the electrode, because that suffices to
clearly make the distinction between the two processes. As we discussed before,
this difference only depends on the question whether or not both reactants and
products of an electrode reaction are able to freely go in and out of the electrode.
For the ions and other (neutral) reactive species to have this freedom or not, that
determines whether after a current is applied, the concentration of ions and thus the
charge in the electrolyte regions of an electrode is constant, or instead continues
to change, and thus whether the electrode potential is constant or changes in
time. Thus, to determine whether a process is Faradaic or capacitive, we can
analyse how an electrode responds to an applied current. And thus we can make
the distinction Faradaic versus capacitive based on experimental observations,
without having to assume anything about what we believe exactly happens inside
the electrode.
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We do know that in a capacitive process, more and more electrons and ions are
stored in time (if we continue to apply current), this will lead to the cell voltage
continue to change, until it is so high (or, so low) that a Faradaic process develops.i

Thus, we can summarize much of the above in the simple equation (Vetter,
1967)

𝐼 = 𝐼𝑐 + 𝐼𝐹 (4.1)

which states that part of the current (density), 𝐼, arriving through the external
circuit into an electrode, will result in a capacitive current, 𝐼𝑐, and the other
part will be Faradaic current, 𝐼𝐹 .ii The general concept of Eq. (4.1) can be
found in various classical textbooks, describing that all capacitive current relates
to absorption of charged species inside the electrode, and all Faradaic current
relates to processes that can run in steady state, i.e., ‘forever’, with the electrode
not changing in time, because reactants and products do not accumulate in the
electrode. Three quotes from classical sources are provided in Fig. 4.1.

Sometimes the two processes occur simultaneously, but often one is more
important than the other. Which of the two is the most important we can find out,
for instance, by applying a step change in voltage. If the the current quickly goes
up (it ‘spikes’), but then goes down to zero, we have a capacitive process and
𝐼 = 𝐼𝑐. If the current goes to a new constant level, we have a Faradaic electrode
process, and thus 𝐼 = 𝐼𝐹 .

For an electrode where both capacitive and Faradaic processes take place, we
can set up a charge balance for the electronic charge in an electrode

𝑑𝜎𝑒

𝑑𝑡
= 𝐼𝑐 = 𝐼 − 𝐼𝐹 (4.2)

iAn exception is when ions in the material phase-separate, as happens for Li-ion batteries in an
organic solvent, where a Li-ion concentrated and a Li-ion dilute phase develop. In that case we do
store more and more electrons and ions, but as long as both phases coexist, and we (dis-)charge
the battery very slowly, the potential is stable. So even though the electrode is capacitive, and the
number of electrons stored increases, it is because of phase separation that it is possible for the
electrode potential to stay constant.

iiHere we define the positive direction as going from metal into the electrolyte as is drawn for the
anode in Fig. 1.1. We then have a plus-sign in Eq. (4.1) for the Faradaic current, which implies
that the Faradaic reaction is defined as positive in the oxidation direction.
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W. Tiedemann and J. Newman, J. Electrochem. Soc. 122, 70-74 (1975).

A.J. Bard and L.R. Faulkner, Electrochemical Methods (1980).

K.J. Vetter, Electrochemical Kinetics (1961/67).

Fig. 4.1: Three passages from classical sources on the distinction between capacitive and
Faradaic processes.
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where 𝜎𝑒 is the charge density (in C/m2 or in C/m3) on the metal-side of the
electrode.iii According to Eq. (4.2), the electronic charge depends on the current
flowing in from the external circuit, 𝐼, minus the current used by the Faradaic
reaction, 𝐼𝐹 . The Faradaic current is often envisioned as a leakage current,
representing that some of the current that arrives is not stored, but leaks away,
while the other part is stored, and that is the capacitive part.

When the electrode behaves as a simple capacitor, then the charge 𝜎𝑒 is pro-
portional to the electrode potential, 𝑉𝑒, by

𝜎𝑒 = 𝐶𝑉𝑒 (4.3)

where 𝐶 is the capacitance of the electrode, a number with unit F/m2 or F/m3,
where F is ‘Farad’, which is F = C/V. If there is no Faradaic reaction, thus 𝐼𝐹 = 0,
and if we now do an experiment at fixed current density (this is the current ‘going
into the electrode’, I), then 𝜎𝑒 increases linearly in time, and thus the electrode
potential 𝑉𝑒 will do the same. This is not so interesting.

But if we also have a Faradaic reaction, and the rate thereof depends on 𝜎𝑒

(or, equivalently, see Eq. (4.3), we can say it depends on 𝑉𝑒), then the calculation
becomes more interesting. In general, an oxidation reaction goes faster when 𝑉𝑒
is higher (more positive), which is because electrons are negative, and thus the
higher the electrode potential, the more they prefer to leave the ions and go into
the metal phase. Thus, a simple expression for 𝐼𝐹 can be

𝐼𝐹 = + 𝑘𝑉𝑒 (4.4)

where 𝑘 is a kinetic rate constant with unit A/V/m2. If we insert Eqs. (4.3)
and (4.4) in Eq. (4.2), we arrive at

𝑑𝑉𝑒

𝑑𝑡
=
𝐼 − 𝑘𝑉𝑒
𝐶

(4.5)

iiiIn the text that follows, many properties are either per unit area, and thus ‘/m2’ is part of the
unit, or per unit volume, and then the unit has a part that is ‘/m3’. The area-definition is for an
electrode that has a well-defined surface area, while the volume-based definition is relevant for
porous electrodes. This applies to the charge density 𝜎𝑒 , capacitance 𝐶, power 𝑃, energy, 𝐸,
and for the currents, 𝐼 , 𝐼𝑐 , and 𝐼𝐹 . In practice, many of these properties are defined per mass of
electrode, not volume or area.
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which we can integrate from 𝑉𝑒 = 0 at 𝑡 = 0 for a constant 𝐼 to arrive at the result
that the electrode potential first rapidly increases and then levels off to a constant
value when 𝐼𝐹 equals the applied current 𝐼. Thus, the final value of 𝑉𝑒 is given
by 𝑉𝑒 = 𝐼/𝑘 , and a higher current 𝐼 leads to a higher 𝑉𝑒 in the steady state. The
capacitive part is absent in steady state; that part only decides on how long it takes
to reach steady state.

If we have many data of the electrode potential 𝑉𝑒 versus current 𝐼 in steady
state, we can construct a polarization curve which is a plot of current 𝐼 against
electrode potential 𝑉𝑒 (or vice-versa), and such a curve provides a fingerprint of
the behaviour of the electrode (the Faradaic reaction rate as function of potential),
independent of capacitive effects.

Three-electrode setup. The best method to obtain an i-V curve of a single
electrode, is a setup, or experiment, with three-electrodes. In this setup,
the electrode under study is the working electrode (WE), while the counter
electrode (CE) provides the current, and we have a reference electrode (RE)
placed near the WE. The voltage between WE and RE is measured, and this
is generally called the electrode potential, E, reported jointly with the type
of RE that was used (for instance, Ag/AgCl), or the number is converted to
an E relative to a standard, such as the standard hydrogen electrode, SHE (as
if that standard electrode was used). As we will discuss in Ch. 7, see p. ??,
the potential 𝐸 differs from the electrode potential 𝑉𝑒 by a constant factor.

To have this constant factor, this fixed difference between E and 𝑉𝑒, we
must avoid a significant voltage difference between WE and RE across the
solution between them. This is accomplished by the use of a very low current
between WE and RE (a high ‘impedance’ of the RE), a high salt concentration
in solution (for instance, 1 M) and placing the RE very near the WE.

Still, the possibly large current between WE and CE results in voltage
changes in solution, which can lead to a voltage difference in the solution
between WE and RE (see also B&F, p. 24). And there will be a film layer
in front of the WE, and the effect thereof will be current-dependent. In
any case, if everything works out, 𝑉𝑒 = 𝐸 + 𝑐1 and 𝑐1 is a constant factor.
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Interestingly, across the RE the voltage change is a fixed value because it is
a Faradaic electrode that can be made to operate very near equilibrium, and
thus for the RE the Nernst equation, that we will discuss later, applies.

RC network analysis and electrochemical impedance spectroscopy (EIS).
Presented above was a simple example of an RC network calculation, where
RC refers to a ‘resistance-capacitor’ scheme, or network. In this example
there was no real resistance, though in this calculation the Faradaic reaction
had the same mathematical structure as a resistance placed in parallel to a
capacitor. We analysed the case of a constant current, but experiments more
often are based on a certain imposed (cell) voltage (signal). In RC network
models often more elements are used, placed in series and in parallel,
thereby constructing an entire network of elements in the calculation. And
in the related experiments, the voltage signals or currents are not set to
constant values, but vary periodically around a mean value.

There are generally two possibilities for the type of experiment and analysis
using RC circuits. The first is a repeatedly varying ‘saw tooth’ profile in
cell voltage, and this experiment is called ‘cyclic voltammetry’ (CV). The
resulting CV diagrams show many features, such as peaks and troughs, and
specialists are able to extract useful information from these diagrams. The
second type of experiment is to apply a sinusoidally changing electrode
voltage or current, of a certain frequency and amplitude (around a mean),
repeated at many frequencies spanning many orders of magnitude, and this is
called Electrochemical Impedance Spectroscopy (EIS). Theoretical analysis
is easier when one is familiar with complex number analysis, focusing on
the real and imaginary parts of the ‘complex impedance.’ A very interesting
read on this topic is pp. 125–141 in P.J. Nahin, An imaginary tale: The story
of

√
−1 (1998), where the famous Rayleigh’s puzzle is also discussed.

Two reasons for the popularity of EIS analysis and experiments are that:
1. The experiments can be done precisely with special electronic equipment.
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Diagrams called Nyquist- and Bode-plots are then automatically generated
and they provide much information about the behaviour of electrodes.
2. If one is familiar with complex numbers, the theory is relatively straight-
forward when the various equations in the theory are linear. This is often
the case when the amplitude of the voltage signal is low (for instance, an
oscillation with an an amplitude of 10 mV). With special software, accurate
RC network fits are obtained from a measured complex impedance.

Electrochemical methods based on titration of charge. For capacitive pro-
cesses, there are two methods not related to the RC circuit methods discussed
above, which generate equilibrium data that help us to characterize an elec-
trode. First is the galvanostatic intermittent titration technique (GITT). In
this method, for a short duration a current is applied to an electrode, then the
current is switched off to let the electrode ‘relax’, and after this hold-period
the voltage is recorded. This process is repeated many times, with ongoing
increments of charge.iv A series of data points is obtained in this way for
the electrode voltage as function of accumulated charge. In another type of
titration method the voltage is stepped up in increments, and the total current
that flows after each step-change is recorded and integrated over time, to
calculate a charge, to again construct a dataset of charge versus voltage.

This second method can be called ‘voltage-step titration’, recording the
change in charge after each step in voltage. Ideally, without a Faradaic
leakage current, the two titration techniques just discussed lead to the same
equilibrium data of electrode charge against voltage. These data can then be
recalculated to the capacitance 𝐶 of the electrode as function of electrode
charge and/or as function of voltage, see Fig. 5.1 for an example.

This finalizes our general discussion of capacitive and Faradaic electrodes.
Next, we continue with a discussion of first capacitive electrodes, in Ch. 5, and
then Faradaic electrodes in Ch. 6. There we also discuss redox potentials and
Pourbaix diagrams. In Ch. 7, we continue with Faradaic processes, and from
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§7.7 onward, capacitive capacitive effects are included in our analysis of dynamic
(time-dependent) experiments.



5
Capacitive electrode processes

5.1 Introduction

Electrodes are a special type of electrical double layer (EDL). We can also phrase
it that electrodes have an EDL structure. Physically, this means that within an
interfacial region of a few nanometer thickness they contain multiple regions of
opposite charge sign, and across this EDL an electrode potential develops, see
Fig. 2.2. Overall the EDL is electroneutral. An important EDL property is the
capacitance, 𝐶. It is the change in electrode charge 𝜎𝑒 with a change in electrode
potential 𝑉𝑒,

𝐶 = 𝑑𝜎𝑒/𝑑𝑉𝑒 (5.1)

and generally, capacitance 𝐶 depends on charge 𝜎𝑒 and electrode potential 𝑉𝑒.
Note that charge, 𝜎𝑒, and voltage,𝑉𝑒, are uniquely related, i.e., there is one unique
(equilibrium) 𝜎𝑒-𝑉𝑒 curve for a certain electrode in a certain solution.

If we know how capacitance depends on electrode potential, or on electrode
charge, we can integrate Eq. (5.1), which then leads to the two options

Δ𝜎𝑒 =

∫ 2

1
𝐶 (𝑉𝑒) d𝑉𝑒 , Δ𝑉𝑒 =

∫ 2

1
𝐶−1 (𝜎𝑒) d𝜎𝑒 (5.2)

where (...) indicate that𝐶 is a known function of the electrode potential,𝑉𝑒, or of
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electrode charge, 𝜎𝑒. Eq. (5.2) shows how a higher capacitance implies that we
can store more charge for a certain voltage change. Vice-versa, a high capacitance
has the effect that a certain increase in charge only changes the electrode potential
slightly. A very good electrochemical capacitor can store much charge, and when
charge is released the voltage only slightly decreases, thus the capacitance must
be high.

Interestingly, for all capacitive electrodes there is a maximum electrode poten-
tial beyond which Faradaic reactions start to play a role. This maximum potential
depends on the electrolyte composition, and on which ions and other (dissolved)
molecules are present. In an application to store energy, the electrode will not be
charged to potentials beyond this maximum. So one of the aims in the develop-
ment of ESDs is to increase this maximum voltage as much as possible, which
leads to more charge storage. And the energy that can be stored increases more
than linearly with the maximum voltage, as will be shown next.

The energy in the charging of an electrode can be calculated as follows. We
describe here the minimum energy required to charge a capacitive electrode, and
this is the energy stored. In reality we need to input more energy than we store,
because of energy losses during the charging process, as we discussed on p. 27.
At each moment in the charging process, the power input, Pch –that which will
be usefully stored– is current density 𝐼 times electrode potential 𝑉𝑒 (unit W/m2),
and the energy E (unit J/m2) that will be stored in the electrode, is the integral of
Pch over time,i

𝐸 =

∫
𝑡

𝑃chd𝑡 =
∫
𝑡

𝐼 𝑉𝑒d𝑡 . (5.3)

We can combine Eq. (5.3) with Eq. (4.2) (for 𝐼𝐹 = 0) and arrive at the energy
required to go from one value of electrode charge to another (1 to 2),

𝐸1→2 =

∫ 2

1
𝑉𝑒d𝜎𝑒 (5.4)

which can be integrated if we know how the electrode voltage depends on electrode
charge. Many EDL models are available to this end, which we will discuss further

iThis energy 𝐸 is the energy that is stored in the capacitive electrode, and is not the electrical energy
𝐸𝑒 that is continuously produced or required in a fuel cell or concentration cell, such as depicted
in Fig. 3.2 and Fig. 3.5.



Introduction 49

on, but let us first assume a direct proportionality, as also assumed in Eq. (4.3),
thus 𝜎𝑒 = 𝐶𝑉𝑒. Inserting this in Eq. (5.4) leads to

𝐸1→2 =

∫ 2

1
𝐶−1𝜎𝑒d𝜎𝑒 =

1
2𝐶

(
𝜎2
𝑒,2 − 𝜎

2
𝑒,1

)
(5.5)

and if 𝜎𝑒,1 is zero, and we implement Eq. (4.3) once again, we arrive at (we leave
out numbers 1 and 2)

𝐸 = ½𝐶𝑉2
𝑒 (5.6)

stating that the stored energy in a capacitive electrode increases quadratically
with electrode potential,𝑉𝑒. This result depends on capacitance𝐶 being constant
along the charging curve, and that the electrode was initially uncharged. The
analysis only described the ‘thermodynamic’ or ‘minimum’ energy to charge the
capacitive electrode, which then results in the stored energy. It did not describe
how much energy we had to invest to charge it to this degree, because the analysis
did not include any of the losses because of resistances to transport of ions and
electrons. During charging, these losses can be 5–50% of the final stored energy.
And during discharge (when the stored energy is released, i.e., used), again 5-50%
is lost in resistances. Therefore the round-trip energy efficiency can be anywhere
in the range 25–90%.

Energy losses during charging of an electrochemical capacitor, EC. In the
text above, an analysis was made of a single capacitive electrode. In a
electrochemical cell there is also another electrode. That can be Faradaic,
but let us assume it is also capacitive, thus we have an electrochemical
capacitor (EC), a special type of ESD. Let us also assume they are the same.
We again start at an uncharged cell, 𝜎𝑒,1 = 0, and we go to the final charge
‘2’, leaving out subscript 2 from this point onward. If we stay close to
equilibrium, the cell voltage is 𝑉cell = 𝑉A −𝑉C. Thus 𝑉cell = 2|𝑉A | = 2|𝑉C |
because we assumed the two electrodes behave in the same way: when one
is charged with x C, the other is charged with -x C, and we started with both
being uncharged, and their capacitances are the same. Thus the energy stored
in this ESD is twice that of each capacitive electrode, and thus we end up
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with 𝐸 = 1/4𝐶𝑉2
cell, where 𝐶 was defined by Eq. (5.1). If we charge at a

current 𝐼, and have a resistance 𝑅, in series to the two capacitors, a resistance
for instance due to ionic current in the electrolyte, the energy loss over the
charging period is 𝐸 loss = 𝜎𝑒 𝐼 𝑅. This equation implies that the lower is 𝐼,
the less energy loss we have in the charging process. For instance, when we
reduce 𝐼 by a factor of two, the energy loss goes down by two. Note as well
that because the charging time doubles at the twice-lower current, the heat
production rate due to energy losses, 𝑃loss, goes down by a factor 4. This
helps to keep temperature excursions in the EC low, which may be good to
extend the life of the ESD. All of this shows that it is advantageous to charge
slowly. During discharge, the same resistances play a role. But now the main
resistance is the device that is powered, so currents are generally lower.

In the design of ESDs we aim for a high electrolyte conductivity (low
resistance) by working at a high salt concentration of several M. And we
design the device in such a way that the distance for current to travel across
the electrolyte is small, because that reduces the resistance 𝑅. We need a
minimum distance to avoid the risk of a electronic current crossing across
the electrolyte layer. The current density must be low for a low energy loss,
and thus the cell has a very high area across which the current flows. For
these reasons the electrode will be thin and wide, i.e., it is constructed as
a thin porous film. For ECs where EDL formation (charging) requires ions
from the layer between the electrodes, then the layer cannot be too thin as it
would limit the supply of these ions.

This analysis of energy storage relates to ECs, such as an electrode made
of the intercalation material that we discuss below, as well as for the Li-ion
battery, where Li-ions are stored inside the electrodes. The lead-acid battery
is different. Here energy storage does not relate to the capacitance of the
electrode, but this is a battery based on Faradaic processes where all solid
Pb-phases, such as PbO2, are in the vicinity of the electrode.
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An example of a capacitive electrode which does not have a constant capacitance
is described in Fig. 5.1. It is an intercalation material, a material that forms a cubic
crystalline structure consisting of the atoms Fe, Ni, C, and N. Electronic charge
resides in the crystal matrix, and cations can diffuse from outside the material
into the pores, or holes, within this crystal. The capacitance for this material is
described by an EDL theory called the extended Frumkin isotherm (EFI). The
capacitance of this material, expressed in F/g, according to the EFI, is given by

𝐶 =
𝐹2𝑐∗max
𝑅𝑇

(
1
𝜗
+ 1

1 − 𝜗 + 𝑔′
)−1

(5.7)

where 𝑐∗max is the maximum cation concentration in the material in mol/g, and
where 𝑔′ is an energy of repulsion between ions in the material (a negative value
implies attraction). Furthermore, 𝜗 is the intercalation degree, a number between
0 and 1 which describes to what percentage the material is filled with cations,
with 𝜗 = 0 referring to completely empty and 𝜗 = 1 to completely full.ii Zero
𝜗 also corresponds to zero charge.iii The charge per gram of material is given
by Σ = 𝑐∗max 𝜗, which is the stored charge relative to the material in the most
‘uncharged’ limit (when 𝜗 = 0).iv If the interaction parameter 𝑔′ is zero, the
expression for capacitance simplifies to 𝐶 ∝ 𝜗 (1 − 𝜗) and this expression shows
how capacitance goes to zero when 𝜗 → 0 and is at a maximum when 𝜗 = ½, as
also shown in Fig. 5.1. This is also the case when 𝑔′ ≠ 0.

This material only adsorbs cations, because the crystal –which is the electron-
conducting side of the electrode, with the ions inside the pores representing the

iiA technical point is that even when 𝜗 = 0, we believe there are still mobile cations left, but they
cannot be removed (they can be exchanged for other cations, though), because it is impossible to
charge the matrix of this material more positive. The concentration 𝑐∗max refers to the maximum
concentration of ions that can be removed, or added.

iiiImplicit in much of the text above, is that the total charge of an electrode is zero. Thus when we
refer to ‘the’ charge, it is that in one of the regions of the electrode. And electrochemical methods
do not really measure the charge (in any of these regions) as such, but measure the change in
charge relative to a prior situation.

ivInterestingly, for𝑔′ < −4, the EFI predicts that ions in the material phase-separate for a certain range
of 𝜗-values, and capacitance will be infinite in that range. We can use a Maxwell construction
to find the electrode potential 𝑉𝑒 when two phases exist simultaneously, a potential which is then
independent of charge if we (dis-)charge slowly enough.
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Fig. 5.1: The capacitance of a porous capacitive material (nickel hexacyanoferrate) mea-
sured in a three-electrode setup with 1 M Na2SO4 in water as obtained by the galvanostatic
intermittent titration technique (GITT), as function of the charge of the electrode.

ionic side– is always negatively charged, even after we extracted all electrons to
the maximum. Thus anions from solution do not want to enter this material at all.

An interesting question is the difference in absorption between different cations
in such a material, dependent for instance on ion size and ion valency. This brings
us to the point that EDL models (thus also models of the electrode) must also
describe how many of each type of ion absorb for a certain electrode charge. In
the material just discussed, anions do not absorb, but in general, both anions and
cations absorb in an electrode. The exact amount is important, for instance when
these electrodes are used to desalinate water, and must be described by the EDL
model. We briefly discuss two such models.

5.2 Donnan EDL model for porous electrodes

The first model that includes both anions and cations absorbing in an electrode is
the Donnan model. This is a model generally used for porous electrodesTC such
as carbon that have significant absorption both of cations and anions. To find the
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concentration of anions and cations in the electrode (i.e., in the water-filled pores
inside the electrodeTC material), we use the Boltzmann equation, which we derive
from chemical equilibrium of a species i that exchanges between two phases, in
this case between bulk electrolyte, ∞, and inside the electrode, ‘in’. The balance
of chemical potential isv ,vi ,vii

𝜇0,𝑖 + ln 𝑐∞,𝑖/𝑐ref + 𝑧𝑖𝜙∞ = 𝜇0,𝑖 + ln 𝑐in,𝑖/𝑐ref + 𝑧𝑖𝜙in (5.8)

which we can rewrite to

𝑐in,𝑖 = 𝑐∞,𝑖 · exp (−𝑧𝑖Δ𝜙D) (5.9)

where ∞ refers to outside the electrode, in bulk electrolyte, and Δ𝜙D is the
(dimensionless) Donnan potential, Δ𝜙D = 𝜙in − 𝜙∞. In the simplest Donnan
model, Δ𝜙D = Δ𝜙𝑒 = 𝑉𝑒/𝑉T, i.e., this theoretical Donnan potential is set equal
to the electrode potential, see Fig. 2.2. The concentrations in the electrode, 𝑐in,
have unit mol/m3, i.e., mM, because they are defined per unit volume of pores
that are inside the electrode.

Based on the Boltzmann equation, Eq. (5.9), we can calculate the charge in the
electrode, i.e., in the ion-filled pores in the electrode, as

𝜎𝑒 = −𝜎ionic = − (𝑐+ − 𝑐−) = 2𝑐∞𝐹 sinhΔ𝜙D (5.10)

where we assumed that we only have monovalent cations and anions, i.e., a
symmetric 1:1 salt, with a salt concentration in the electrolyte bulk of 𝑐∞. We

vAll chemical potentials in J/mol are divided by RT, resulting in chemical potentials, 𝜇𝑖 , used here
that are dimensionless.

viThroughout this book, the term ‘chemical potential’ is used for the sum of all possible contributions
to the potential of a species. We do not use a terminology where this term only relates to
concentration effects, and that when charge is included, it is extended to electro-chemical potential.
That would lead to a cascade of terminology when affinity and excess volume effects are also
included, or gravity (for colloids), or the insertion pressure, or the effect of polarization force etc.
Thus, we always use chemical potential for the summation over all these contributions, described
by the symbol 𝜇𝑖 .

viiThe EFI of Eq. (5.7) is also based on such a balance of chemical potential, extended with competition
for empty sites (Langmuir), and including ion-ion attraction inside the material (Frumkin). For a
full account, see B&D.
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implemented that the ionic charge and electronic charge add up to zero: 𝜎ionic +
𝜎𝑒 = 0. Though the electronic charge is not really located inside the pores,
but rather inside the solid (electron-conducting) structure around these pores,
we nevertheless define the electronic charge density per unit pore volume. So
when we know the electrode charge 𝜎𝑒 and bulk salt concentration 𝑐∞, we can
use Eq. (5.10) to calculate the Donnan potential, Δ𝜙D, and then use Eq. (5.9) to
calculate for each ion the concentration in the pores within the electrode. We can
also add up these two concentrations, to obtain the total concentration of all ions
in the pores, which will always be larger than the total ion concentration in bulk
solution, which for a 1:1 salt is 2 𝑐∞.

The capacitance in the Donnan model is given by

𝐶D = 𝑉−1
T

𝑑𝜎𝑒

𝑑Δ𝜙D
=

2𝑐∞𝐹
𝑉T

coshΔ𝜙D = 𝑉−1
T

√︃
𝜎2
𝑒 + (2𝑐∞𝐹)2 (5.11)

and thus around zero charge,𝜎𝑒 ∼ 0, the capacitance is at a minimum, at 𝐶D |min =

2𝑐∞𝐹2/𝑅𝑇 . This minimum capacitance increases with salt concentration. Thus
for a given Donnan potential, we can store more charge at the same voltage when
𝑐∞ increases.

The energy of charging a Donnan layer (starting at 𝜎𝑒 = 0) follows from
Eq. (5.4),

𝐸 =

∫ 𝜎𝑒

0
𝑉TΔ𝜙Dd𝜎𝑒 = 𝑉TΔ𝜙D𝜎𝑒 −𝑉T

∫ Δ𝜙D

0
𝜎𝑒dΔ𝜙D =

= 2𝑅𝑇𝑐∞ · (Δ𝜙D sinhΔ𝜙D − coshΔ𝜙D + 1)
(5.12)

which at low Δ𝜙D simplifies to the classical Eq. (5.6) when we identify the
capacitance 𝐶 in Eq. (5.6) as 𝐶D |min given above.

An important extension is to include next to the Donnan layer an additional
capacitance 𝐶S. This layer is called the Stern layer. It behaves as a ‘ simple
capacitor’, located between the ionic charge on the one side, and electronic
charge on the other side. Note that there are no ions or charge ‘inside’ this layer.
The voltage across the Stern layer is the Stern potential, 𝑉S, and is proportional
to the electrode charge, 𝜎𝑒 = 𝐶S𝑉S. Here 𝜎𝑒 is in C/m3 and 𝐶S in F/m3 (the
m3 refer to pore volume in the electrode). Instead of a dimensional voltage, V,
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a non-dimensional Stern potential can be used, given by Δ𝜙S = 𝑉S/𝑉T. The
Donnan potential and Stern potential add up to the electrode potential

Δ𝜙𝑒 = 𝑉𝑒/𝑉T = Δ𝜙D + Δ𝜙S (5.13)

and this is the modified Donnan (mD) model that can be used to describe the
adsorption of ions and electronic charge in certain types of porous electrodes.

If we differentiate each term in Eq. (5.13) with respect to 𝜎𝑒, we arrive at

𝑑𝑉𝑒

𝑑𝜎𝑒

=
𝑑𝑉D
𝑑𝜎𝑒

+ 𝑑𝑉S
𝑑𝜎𝑒

(5.14)

and when we define the overall, Donnan, and Stern, capacitances as

𝐶𝑒 =
𝑑𝜎𝑒

𝑑𝑉𝑒
, 𝐶D =

𝑑𝜎𝑒

𝑑𝑉D
, 𝐶S =

𝑑𝜎𝑒

𝑑𝑉S
(5.15)

we arrive at
1
𝐶𝑒

=
1
𝐶D

+ 1
𝐶S

(5.16)

i.e., the capacitance of the complete EDL (electrode) is obtained from the addition
of the inverse of the two capacitances that are in series. The expressions for 𝐶D

and 𝐶S can be inserted in here to obtain the total electrode capacitance, 𝐶𝑒, as
function of electrode charge. In this case, we still have an increase of 𝐶𝑒 when
we move from zero charge to either negative or positive charge (the curve is again
completely symmetric around 𝜎𝑒 = 0), but now 𝐶𝑒 levels off at a high charge
because the capacitance of the total electrode is now dominated by the constant
Stern capacitance, i.e., in the limit of a high charge, we have 𝐶𝑒 → 𝐶S.

The mD model can be further extended to include specific adsorption of ions
or ion size effects. Also extensions are possible where ions are part of acid-base
reactions which depend on local pH, and that local pH, via Eqs. (5.9) and (5.10),
depends again on 𝜎𝑒. Clearly, there are many ways to extend the mD model.
As an example, an interesting effect is that of ion volume. When we include
ion volume, then at high electrode charge, the capacitance –that was levelling off
based on the Stern effect– now decreases again at an even higher charge, which
is in line with classical data for the capacitance of mercury electrodes.
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The minimum energy E required to reversibly charge an electrode (i.e., if
there are no losses; resulting in the energy that is stored), that energy can also
be calculated based on the mD model (and by any other EDL model). Inter-
estingly, we can simply add up the energy to charge the Stern layer and the
Donnan layer, because from Eq. (5.13) we can derive that 𝐸1→2 =

∫ 2
1 𝑉𝑒d𝜎𝑒 =

𝑉T

(∫ 2
1 Δ𝜙Dd𝜎𝑒 +

∫ 2
1 Δ𝜙Sd𝜎𝑒

)
. Thus, each individual contribution, Δ𝜙 𝑗 , can be

integrated separately over the electrode charge, 𝜎𝑒, to obtain the energy of the
EDL.

5.3 Gouy-Chapman-Stern EDL model for planar
electrodes

Often for electrodes that are more or less planar, a more complicated EDL model
is used. In contrast to the mD model, this model only has a simple solution for
a 1:1 salt (or other z:z symmetric salt). This is the Gouy-Chapman-Stern (GCS)
model. Compared to the mD model, what is the same is that we again have the
linear Stern capacitance next to a layer that contains ions, but now we do not
simply use Eq. (5.9) for the region that contains ions (the pore volume in the
Donnan approach), but based on the Poisson-Boltzmann theory, a different result
is obtained. Effectively the Donnan pore volume is replaced by the ‘diffuse layer’,
see last row in Fig. 2.2, and see the very similar Fig. 2.3 which is from the book
by Mohilner (1966).

The Donnan and diffuse layer concepts are in many regards the same: they
contain ions that are free to exchange between the electrode and bulk, and the
concentration of counterions is increased and of coions decreased, relative to
bulk, and this diffuse layer again stores ionic charge, 𝜎ionic. The only difference
is that in the diffuse layer in the GCS model for planar electrodes, that ions
have a continuously varying concentration from very high (or very low) near the
metal (near the electrodeTC), gradually changing to bulk values some nanometers
away, while in the Donnan model we simply have one value of ion concentration
(different for anions and cations) in the pores that are inside the electrode, which
is different ‘stepwise’ from the value outside the electrode. Mathematically, the
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GCS model is in many regards the same as the Donnan model, with the potentials
Δ𝜙D (we use the subscript D now for diffuse layer, which before was for Donnan
layer) and Δ𝜙S adding up to the electrode potential, Δ𝜙𝑒.

The description of the Stern layer is only slightly changed, to

𝜎𝑒 = 𝐶SΔ𝜙S𝑉T (5.17)

with 𝜎𝑒 in C/m2 and 𝐶S in F/m2. The different units for 𝜎𝑒 and 𝐶S compared to
the Donnan model, show that the GCS model is ‘area-based’ while the Donnan
model is ‘volume-based’. Now, in the GCS-model, for a 1:1 salt, the expression for
𝜎𝑒 becomes the classical Gouy-Chapman equation (sometimes called Grahame
equation), given by

𝜎𝑒 =
√︁

8𝜀𝑅𝑇𝑐∞ · sinh (Δ𝜙D/2) = 4 𝐹 𝜆D 𝑐∞ sinh (Δ𝜙D/2) (5.18)

where Δ𝜙D is the diffuse layer potential, where 𝜀 = 𝜀r ·𝜀0, with for water, 𝜀r ∼ 78,
while 𝜀0 is that of vacuum (𝜀0 = 8.854 · 10−12 C/V/m). The Debye length, 𝜆D,
is given by 𝜆D = 𝜅−1 where 𝜅 is the inverse Debye length, which for a 1:1 salt is
given by 𝜅 =

√︁
2𝐹2𝑐∞/𝜖𝑅𝑇 . Also in the GCS-model we have 𝜎𝑒 + 𝜎ionic = 0.

As Eq. (5.18) shows, we can store progressively more charge (at the same diffuse
layer potential) with increasing 𝑐∞, but now the dependence is to the power ½, not
proportional to 𝑐∞, as it was in the Donnan model. Note that in this GCS model,
just as in the mD model, there are no ions adsorbed in the plane that separates
the ‘D’ and ‘S’ layers –which is the Stern plane– and neither are ions adsorbed
inside the Stern layer.

Also for the GCS model many extensions are possible, to account for multiple
types of ions, ions with volume, protonation reactions, and many other effects.

For a 1:1 salt, the capacitance of the diffuse layer in the GCS model (unit F/m2)
is given by

𝐶D = 𝑉−1
T

𝑑𝜎𝑒

𝑑Δ𝜙D
= 𝐹

√︁
2𝜀𝑐∞/𝑅𝑇 · cosh (Δ𝜙D/2) . (5.19)
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The Boltzmann isotherm. For future reference, it is useful to rewrite the
Boltzmann equation, Eq. (5.9), to

𝑉D = 𝑉0 −
𝑅𝑇

𝑧𝑖 𝐹
ln
𝑐in,𝑖

𝑐∞,𝑖

(5.20)

where we included an extra voltage, 𝑉0, that shows up if in Eq. (5.9) there
would be an extra partition coefficient, Φ𝑖 , because of an extra term 𝜇exc,𝑖 or
𝜇aff,𝑖 in Eq. (5.8).

This equation, which is the Boltzmann equation, is an example of an
isotherm: it describes the relationship between the concentration of an ion
in two phases at equilibrium, i.e., it describes the distribution of a species
between two phases that allow for the ion to equilibrate between them. In
our example these phases are on the one hand bulk solution, and on the
other hand the electrode. Many types of isotherms exist for charged surfaces,
extending Eq. (5.20) by including effects such as a limited availability of
adsorption sites (Langmuir), and an energetic interaction between adsorbed
species (Frumkin). The key point is that they describe the concentration of
the same species, distributing between two phases, in this case between bulk
and electrode.

Though these isotherms are always of relevance, for all electrode pro-
cesses, they are predominantly associated with the study of capacitive elec-
trode processes, because then we need to know the change of EDL properties
(such as ion adsorption) as function of charge and electrode potential. In the
next section on Faradaic electrodes, we will encounter a different equation,
the Nernst equation, which looks deceptively similar to Eq. (5.9), but could
not be more different. Instead of relating the distribution of the same ion,
between a bulk phase and an electrode, as the isotherm of Eq. (5.9) does, the
Nernst equation relates the concentrations of different species, that are all in
the same or in different bulk phases.

The Boltzmann equation, and the resulting isotherm, follows from equating
the chemical potential of the same ion that is in different phases, and one of
these phases is the electrode. The same as for the Boltzmann equation, also



Gouy-Chapman-Stern EDL model for planar electrodes 59

the Nernst equation follows from a chemical potential balance, but now it is
one where the chemical potential of a reactant in some bulk phase, together
with that of the electrons in a metal, is set equal to that of the product species,
again located in a bulk phase. These expressions are very different.





6
Faradaic electrode processes

6.1 Introduction

In all Faradaic electrode processes, such as the lead-acid battery, the Ag/AgCl
reference electrode, fuel cells, or for that matter any electrode reaction that is in
the well-known lists of standard half-cell potentials, in all these processes, none
excepted, there is a reactant and a product of the reaction, and the reactant arrives
from a bulk phase, and the product will return to a bulk phase.i None of the
species stays in the electrode. Thus, as long as the bulk phase contains reactants,
a Faradaic process can go on forever.

When discussing Faradaic processes, we must discuss the direction and the
rate. The direction of a Faradaic electrode process is determined by the chemical
potentials of the species just outside the electrode in the various bulk phases, and
the direction also depends on the potential of the electron. Let us first discuss
the electron. The more negative the electric potential in the metal (where the
electron comes from) relative to the electrolyte bulk phase, the more an electron
has a propensity to leave the electrode (this is because an electron is negative,

iThe bulk phases can be electrolyte, metal (as in plating), a solid salt (for instance, an AgCl-layer
formed on the electrode), or a gas phase (for instance, H2 or O2). The electrolyte can be water,
but also an ion-exchange membrane, or a solid state ion-conducting material.
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and negative species prefer to go to where the electric potential is higher), and
thus a reduction reaction becomes more favourable when the metal potential is
further decreased (relative to the potential in solution). In a reduction, a species
O picks up an electron and is reduced to a species R. Thus, the more negative
𝑉𝑒 (the electrode potential, which is the potential in the metal minus that in the
electrolyte), the more a reaction shifts in the direction of reduction.

The direction of the reaction is also determined by the chemical potentials of
the molecules and ions involved in the reaction. If for instance one is a neutral
molecule from a gas phase, such as O2 or H2, we can change the gas pressure. A
higher pressure will make the chemical potential of these molecules go up, and
then a species coming from the gas phase will more quickly react away.ii

Terminology of reacting ions on electrodes. The terminology used to de-
scribe the species that react on electrodes, is not so easy. It is also com-
plicated because one may be more familiar with reactions in solution where
two reactions, a reduction and an oxidation, take place simultaneously. In
the latter case, one reactant is called the electron donor, the other electron
acceptor, i.e., the terminology is used for two different reactants, with the
two or more products not explicitly labelled. The same words are also used
for an electrode process, but now based on a single reaction.

Thus for a reaction on a certain electrode, we use the same words, but now
they refer to the ions on either side of a reaction equation. And we do that
irrespective of the direction in which the reaction goes, and we can also use
them when the reaction rate is zero.

The symbol ‘O’ is used for the oxidized species, the species in the oxidized
state, the oxidant, the electron acceptor. Symbol ‘R’ is used for the reduced
species, the species in the reduced state, the reductant, the electron donor.

Thus, in a reduction, a species O is reduced to become species R, by

iiThis would also be the case when a gaseous molecule, such as O2, does not directly adsorb, but
when it first dissolves in water, and then reacts as a dissolved species, because this concentration in
the water will be proportional to the pressure of O2-gas. Instead, when H2 and O2 gases develop
at at an electrode, these molecules may form a gas phase directly.
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picking up electrons, i.e., the species O is an electron acceptor. In the
reaction it will pick up electrons. And when that reaction is reversed, or
simply looked at in the reverse direction, we have an oxidation, where now a
species R is oxidized to become species O, and electrons are released from
the molecule, i.e., are donated to the external circuit.

The terminology ‘oxidant’ and ‘reductant’ refers to what a species reacting
away, can do to another species. For instance, if oxygen is reduced, it allows
another species to be oxidized (this can be in solution, at the same electrode,
or at a very different electrode), and thus oxygen is an oxidant.

It is customary to write a reaction in the direction of reduction, O𝑧𝑂 +
𝑛 𝑒− → R𝑧𝑅 , irrespective of whether the reaction actually went in this
direction, or in the opposite direction. Here 𝑛 refers to the number of
electrons involved. Thus, this right-directed arrow → does not imply that
the reaction went in that direction.

We introduced here the charge (valency) of the ions involved, and in this
reaction, we logically must have 𝑧O = 𝑧R + 𝑛. But this simple change of
valency is not a general rule. It is not valid when for instance the proton, H+,
is also involved. For instance, we can have an oxidation where the oxidant O
accepts (absorbs) two electrons as well as two protons, to become the reduced
species R. But the valency of that molecule is unchanged, because also two
protons are formed. Thus, we can write for this reaction: O+𝑛 𝑒1− +𝑛H+ →
R, see B&F, p. 36.

6.2 The Nernst equation

For the solutes dissolved in the electrolyte, the ion entropy, i.e., a term related
to concentration, is an important contribution to the chemical potential. For
molecules such as OH– and H+, pH is a measure of their concentration. Assum-
ing ideal thermodynamics and neglecting non-idealities related to ion activity
coefficients, then the chemical potential of an ion is independent of the concen-
tration of other species, and simply given by 𝜇𝑖 = 𝜇0,𝑖 + ln (𝑐𝑖/𝑐ref) + 𝑧𝑖𝜙, the
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same as was used in the derivation of the Boltzmann equation, Eq. (5.9), with the
reference concentration for instance chosen as 𝑐ref = 1 M.

Let us take a simple reaction, O𝑧O + 𝑛 𝑒− → R𝑧R . An example is a reaction
with Fe3+ as oxidant, and Fe2+ as reductant, with 𝑧O=3, 𝑧R=2, and 𝑛=1.

Equality of chemical potential of reactants on the one hand, and products on
the other is given by 𝜇O + 𝑛 · 𝜇𝑒 = 𝜇R, where 𝜇𝑒 refers to the electron in the
metal.iii , iv ,v In the chemical potential, ions have a concentration-term and an
electrostatic term, while electrons only have the latter; in addition all species have
a standard ‘0’ term as well. For the reaction 𝑂 + 𝑛 𝑒− → 𝑅 we then obtain the
balance of chemical potentials

𝜇0,O + ln 𝑐O + 𝑧O𝜙 + 𝑛 ·
(
𝜇0,𝑒 + 𝑧𝑒𝜙in metal

)
= 𝜇0,R + ln 𝑐R + 𝑧R𝜙 (6.1)

where concentrations 𝑐 and potentials 𝜙 without an index are those in solution
(electrolyte) just outside the electrode. The electron valency is 𝑧𝑒=−1.

Now, the potential in the metal phase, minus that in solution, is the electrode
potential, Δ𝜙𝑒 = 𝑉𝑒/𝑉T. Making use of 𝑧O = 𝑧R + 𝑛, we arrive at

ln 𝑐O − 𝑛 ·
(
Δ𝜙𝑒 − Δ𝜇∗0

)
= ln 𝑐R (6.2)

where Δ𝜇∗0 =
(
𝜇0,O − 𝜇0,R

)
/𝑛 + 𝜇0,𝑒. We multiply all sides by 𝑉T = 𝑅𝑇/𝐹 and

end up with the Nernst equation

𝑉𝑒 = 𝑉0 −
𝑅𝑇

𝑛 𝐹
ln
𝑐R
𝑐O

(6.3)

where 𝑉0 = 𝑉T Δ𝜇
∗
0 is a reference potential for that particular reaction on that

electrode material. It is different by a constant factor from the standard half-cell
potentials, that are often written as 𝐸0.vi

iiiFurther on we discuss where exactly concentrations are evaluated, either in the bulk of the solution,
∞, or right between electrode and the film layer, at position ‘s’, see Fig. 2.1.

ivIf more than one reductant or oxidant molecule is involved in the reaction, the respective term 𝜇O
or 𝜇R is multiplied so many times.

vAll terms with concentrations in the expression for 𝜇𝑖 , should officially be 𝑐𝑖/𝑐ref but we can leave
out a term 𝑐ref when it cancels out further on in a calculation. And, if we express concentration in
the right unit, such as M, we are fine as well. Remember that the unit M is shorthand for mol/L,
not mol/m3, and the latter is the same as mM.

viThis factor depends on the type of metal of the electrode.
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You may note the similarity between Eq. (6.3) and the Boltzmann isotherm,
Eq. (5.20), but you will by now also appreciate that this is only a superficial
resemblance, without there being an actual correspondence between the two
expressions. The two equations have a complete different background, and a very
different meaning of the symbols that are involved: in the Boltzmann isotherm,
𝑉D is the potential in one region of the electrode relative to bulk electrolyte,
while the concentrations involved are of the same ion, and there is a 𝑧𝑖 that is the
charge of the ion; instead, in the Nernst equation,𝑉𝑒 is the electrode potential (the
difference in potential between metal and electrolyte, across the full electrode),
irrespective of the choice of EDL model, while the concentrations are those of
two different ions, and the prefactor 𝑛 is the number of electrons involved in the
electrode reaction. The term 𝑉0 in the Boltzmann isotherm relates to an affinity
difference of the ion to distribute between the two phases, while 𝑉0 in the Nernst
equation ultimately relates to the Gibbs energy of the reaction between different
ions. Clearly, the two equations are very different.

Interestingly, the Boltzmann isotherm plays a significant role in capacitive
processes, and the Nernst equation in Faradaic processes. So they are used in
very different contexts.

Eq. (6.3) is a valid formulation for an electrode reaction in the simple case of
the two ions coming from, and going back to, solution. But what about other
situations? For instance, metal plating where the reduced species is part of the
metal bulk. Then a term ln 𝑐R is not in the derivation and then does not show up
in Eq. (6.3). How gas pressures are included is discussed further on.

Let us analyse the Nernst equation for the example of metal plating. In plating, if
we increase the concentration of the cation in solution, 𝑐O, that will make it easier
for them to plate out, so at equilibrium, the counterforce, which is an electrical
effect, should push back, to make the converting to a metal more disadvantageous
for the cations. That means the electrode potential should go up (cations do not
prefer locations of higher potential). When we check Eq. (6.3), it indeed predicts
that at equilibrium a higher 𝑐O leads to a higher 𝑉𝑒.
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6.3 The Nernst equation in water

The previous example related to metal plating. Next we discuss the reduction of
protons, H+, to H2-gas.vii For gases, the partial pressure in unit atm or bar (these
are very close) is used in the Nernst equation for electrode equilibrium. Note also
that two H+-ions are required and two electrons for the formation of one H2-gas
molecule. Therefore, the Nernst equation is given by

𝑉𝑒,H+/H2
= 𝑉0,H+/H2

− 𝑅𝑇

2 𝐹
ln

𝑝H2

[H+]2 (6.4)

where we introduce in an ad-hoc fashion how a component that participates
‘twice’ in such a reaction has a ‘power two’ in the ln-argument; this can be
formally derived when we start again at Eq. (6.1) and multiply the contribution
of that component by a factor two.

This equation for the reaction 2H+ + 2𝑒− → H2 can be rewritten to show the
dependence of electrode potential on pH, via pH = −10 log[H+], resulting in

𝑉𝑒,H+/H2
= 𝑉0,H+/H2

−𝑉T ·
(
ln
√︁
𝑝H2

+ ln 10 · pH
)

(6.5)

where the term 𝑉T · ln 10 is ∼ 59 mV at room temperature. Thus, this equation
predicts that when pH goes up by one point, at equilibrium the electrode potential
goes down by 59 mV. Let us see if that makes sense: if pH goes up, the H+

concentration decreases. This would make the reduction reaction (towards H2)
more difficult. To still be at equilibrium, we can help the reaction in the reduction
direction by enticing the electrons to react with H+ (more than before), and to
that end the electrode potential must go down, which indeed is the prediction of
Eq. (6.5). This is because decreasing the electrode potential, 𝑉𝑒, implies that the
electrolyte will be at a higher potential relative to the metal (more than before),
and thus electrons look more favourably to the prospect of leaving the metal and
going into solution. Thus at equilibrium, (i.e., at zero current), a higher pH results
in a lower 𝑉𝑒.

This is equilibrium, but what does this mean in practice, in a cell with two
electrodes? If we produce H2-gas, then this reaction takes place at the cathode
viiSee an earlier footnote explaining that we use the term ‘proton’ as shorthand for what officially is

the hydronium ion, H3O+.
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(the cations H+ move to this electrode, thus it is the cathode). If we do this at a
certain current, and we now increase pH by one point, and if nothing else changes,
the electrode potential decreases, see Eq. (6.5), to make it more favourable for an
electron to come out of the metal. That means the cell voltage goes up (because
𝑉cell = 𝑉A −𝑉C −𝑉 sol). Because 𝑉cell · 𝐼 is the electrical energy we need to
invest (with 𝐼 running to the right as in Fig. 3.2), this increase in pH leads to
the energy going up. Thus, making H2-gas from high pH water is more energy-
consuming than from low-pH water (considering only the cathode-side). That of
course seems obvious all along: if you reduce the concentration of a reactant, and
you want the reaction rate to stay the same, you have to pay for that somehow.
Alternatively, if this cell runs at a certain 𝑉cell, an increase in pH will reduce
the rate of this process (i.e., will reduced the current),viii and the current may
even switch sign. This is because at constant 𝑉cell the increase in 𝑉C must be
compensated by a lower voltage difference across resistances in the cell, and to
do that the current must go down, and may even reverse sign. Thus, an analysis
based on the equilibrium electrode potential can help in evaluating operation of
an electrochemical cell.

The interesting and useful thing about Eq. (6.5) formulated as function of pH,
is that it helps to appreciate that the reaction of H+ with an electron to H2 is
in the end the same as –and cannot be distinguished from– a reaction of water,
H2O, with the same electrons to again H2, and now forming OH– . Writing out
this second reaction, converting a concentration of OH– to pH, and translating a
term 𝑉0,H2O/OH−/H2

to 𝑉0,H+/H2
by implementing a factor that relates to the water

dissociation constant, 𝐾w, we ultimately end up with the same result. Thus,
Eq. (6.5) is valid at any pH, irrespective of whether the reaction is written as H+

reacting to H2, or of water reacting to H2 and OH– . The resulting expression for
the electrode potential, 𝑉𝑒, versus pH, comes out the same.

This really is very good news. The same equation for𝑉𝑒, Eq. (6.5), is therefore
valid at any pH, from very low to very high. There is no need to decide or
assume which ion from the water it is that takes part in the reaction. And we
certainly do not have to use this equation twice, for a reaction involving H+, and

viiiThe current goes down even though within the cathode we still assume equilibrium, i.e., the reaction
kinetics in itself is not slowed down.
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one involving OH– . All of this relates to the very fast reaction between H+ and
OH– that takes place throughout the aqueous phase, and the fact that therefore
the chemical potentials of these two ions are tightly coupled. Thus, an electrode
reaction involving water can be based on one arbitrarily chosen ion, and literature
has converged on a choice for the H+-ion. Of course at high pH, it will be the
hydroxyl ion that is predominantly present in the system and will in fact be the ion
involved in a reaction, but still the electrode reaction can be evaluated by focusing
on the H+-ion. The same situation applies to all reactions involving H+/OH– ,
including the reduction of O2.

6.4 An electrochemical cell with the redox reaction
acetate to bicarbonate

An example is the reaction of organic molecules such as glucose or acetate,
towards CO2 and the related dissolved ions, H2CO3, HCO –

3 , and CO 2–
3 , in the

absence of oxygen. In literature there is often the discussion how many H+ are
involved and which species react. Is it carbonic acid, or bicarbonate, or carbonate?
And the same question for the acetate ions. Extending on §6.3, we will explain
that these questions may not be that difficult to solve.

Let us consider the oxidation reaction, from acetate to carbonate. Acetate has
two forms: the acetate ion, and the neutral acetic acid molecule. The latter is
the protonated form of the former (both we call ions below). For the bicarbonate
ions, we have three types of ions, from neutral to -2 charged. Based on elemental
balances (stoichiometry) we know that the reaction of one ion from the acetate
group, leads to the formation of two ions in the bicarbonate group (irrespective
of which ion type reacts or is formed), while 8 electrons are released (go into the
external circuit).

Out of all the ions in each group, we use the neutral form as the basis of
analysis in the Nernst equation. Thus we focus on HAc and H2CO3. Then the
reaction, which involves 8 electrons, must also involve 8 H+-ions. This is because
the other species we consider are neutral, and the overall reaction balance must
have equal charge on each side. Again, in reality it may be that hydroxyl ions are
the main species involved in transport and reaction, and not the protons, and the
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transport modelling will tell us if this is the case, but in writing out the reaction
stoichiometry, and in the Nernst equation, we base the analysis on the H+-ion.

Based on the knowledge that 8 electrons are involved for one acetate molecule
reacting away, while two carbonate ions are formed, we know the production rate
of acetate and of carbonate (each as a group) when we know the current that goes
to this reaction. This last statement relates to the fact that in reality part of the
electrical current that arrives in an electrode is also used for other reactions, for
instance, water reacting to O2-gas, electrons, and H+. In that case the current
efficiency is lower than 1, because not all of the electronic current is used for the
intended reaction.

The Nernst equation for this reaction, based on one acetic acid molecule, HAc,
reacting to two carbonic acid molecules and 8 electrons, is

𝑉𝑒 = 𝑉0 −
𝑅𝑇

8𝐹
· ln

[HAc]
[H2CO3]2 [H+]8 (6.6)

and thus
𝑉𝑒 = 𝑉0 −𝑉T ·

(
1
8

ln
[HAc]

[H2CO3]2 + ln 10 · pH
)
. (6.7)

If we now operate a fuel cell, the aim is to have 𝑉cell as negative as possible,
and thus, based on Eq. (2.1), we know that 𝑉A must then be as negative as
possible. With the oxidation of acetate to bicarbonate on the anode, this means
that 𝑉𝑒 in Eq. (6.7) must be as low (negative) as possible, and thus a high pH is
advantageous.

To summarize, in Eqs. (6.6) and (6.7) above, it works well to use the concen-
trations of the two neutral species HAc and H2CO3, even when ionic forms of
these groups are more prevalent. Of course we can always implement an acid-
base equilibrium, for instance between HAc on the one hand, and Ac– and H+

on the other (related by an acid-base equilibrium constant 𝐾), and then a term
+𝑉T/8 · ln𝐾 is added to 𝑉0, while also a term 1/8 · ln[H+] is added to ln 10 · pH,
which then results in a rather inelegant expression with the involvement of 7
protons. But the final result will numerically come out just the same.

newpage
Thus, to describe equilibrium, the problem is more simple than perhaps anti-

cipated. We do not have to evaluate equations such as Eq. (6.7) in a different way
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at different values of pH, and neither do we have to decide which species exactly
is the one participating. As long as we can assume that in solution all acid-base
reactions (reactions involving the H+-ion) are sufficiently fast, the Nernst equation
such as Eq. (6.7) suffices, set up with one species from the group of reactant ions,
and one species from the group of products.

But how to describe the rate of such a (biochemical) reaction, with species
of different protonation degrees, involving protons as well? A full description
is based on electrocatalytic processes at a surface, or the biochemical networks
inside cells, see De Lichtervelde et al. (2019). But in the absence of such a
detailed model, a good starting point is to build a more simple kinetic model that
is thermodynamically consistent, and can deal with ions with different protonation
states (like the three types of bicarbonate just discussed).

A model that can do that, is as follows. For each half-reaction we calculate
the equilibrium electrode potential, and ‘between’ the half-reactions we add a
resistance. Across this resistance, when the reaction proceeds, and current flows
from the one to the other half-reaction, a voltage difference develops, in analogy
with Ohm’s law. The equilibrium electrode potential can be based on an arbitrarily
chosen species from each group of ions, and a choice for the neutral species is
often the easiest. In §6.5, we will make such a calculation for simultaneous
sulphate reduction and iron oxidation, i.e., corrosion.

6.5 Corrosion of iron by of sulphate reduction

In this section we develop the model just mentioned in the context of corrosion
of iron. Corrosion is an electrochemical process where currents are very small,
but the process leads to the deterioration and subsequent breakdown of metallic
structures. Methods to reduce and eliminate corrosion are therefore important.
The study of corrosion can lead to understanding how to reduce corrosion currents
by reducing driving forces or creating resistances to the flow of current. In a
corrosion process, there is a very large driving force for current to flow. This is
because most metals (pure and alloys) are thermodynamically highly unstable in
most natural environments, and for instance with oxygen as oxidant, there is a
large driving force for metals to oxidize. Thus corrosion protection has the aim to
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keep the metals in the thermodynamically unstable state arrived at after smelting
and metalworking of metal ores (such as metal oxides).

Thus, the study of corrosion as an electrochemical process is about reducing
currents from very low to zero. It is therefore very different from processes
discussed in prior chapters that are about enhancing rates, energy storage, etc.
Corrosion is furthermore different for two more reasons. First, the anode and cath-
ode are not ‘designed’ pieces of metal, made into a specific shape and connected
to a power source or load with wires. Instead, they form spontaneously, some-
where on a metal surfce, and over time they change their shape and are covered
with oxidic material. The two electrodes are also close: the oxidation of metal
somewhere (anode) is accompanied for instance by oxygen reduction (cathode)
in a region very nearby. Secondly, corrosion is a spontaneous process, similar to
a fuel cell, but no energy is extracted. There is no load L placed in the electrical
circuit to generate energy. The two or more electrodes are short-circuited on the
metallic side. Because of the low currents, also on the ionic side the electrodes
are often at the same electrolyte potential, and all resistances to reaction are ‘in’
the two electrodes, or in just one of them. The main rate limitation can also be
the diffusion of oxygen to the bare metal. Thus, both on the metal-side and on
the electrolyte-side, the electrodes are short-circuited. Thus,the two electrode
potentials, 𝑉 𝑗 , are the same. Each of these 𝑉 𝑗 ’s includes a thermodynamic part
and a kinetic part (relating to reactions or ion transport within the electrode).
The thermodynamic part of the electrode potential (Nernst) and the kinetic part,
they together lead to a certain electrode potential in an electrode, and because
the current is the same in both electrodes, a specific value of current develops
in the cell such that both electrodes end up with the same 𝑉 𝑗 . This 𝑉 𝑗 is now a
function of the two equilibrium potentials and the two kinetic factors describing
both electrodes. The resulting, single, value for 𝑉 𝑗 is the corrosion potential, and
because it is due to the interplay of multiple electrodes, it is also called a ‘mixed’
potential.

Thus, in reality, resistances in a corrosion process are in the electrodes. How-
ever, in the simple model that we explain next, we assume the main resistance to
current is in solution in between the electrodes. This is done because it makes the
model easier to set up, while mathematically, it leads to the same result as when
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the resistance was assumed to be in one of the electrodes. In §6.6, we consider a
theory for cathodic protection with not one, but three resistances, each associated
with a different electrode.

We make a calculation for the corrosion of iron due to sulfur-reducing bacteria
(in an environment without oxygen, i.e., anaerobic). The species being reduced is
the sulphate ion (HSO –

4 , SO 2–
4 ) and it becomes a sulfide ion, HS– , which can be

protonated and then it evaporates as H2S. The SO 2–
4 -ions accept electrons in this

reaction, and thus the reduction to HS– takes place at the cathode. The electrons
are donated by the oxidation of solid iron, Fe0, which leads to the formation of
Fe2+-ions and Fe3+-ions, and this happens at the anode. When Fe2+ oxidizes to
Fe3+, also an electron is donated, without involvement of Fe0. We include in the
calculation the formation of Fe(OH)3 as a separate phase (solid or amorphous
product). At a later stage one can also include formation of other minerals or ion
pairs such as FeS, FeCO3, as well as gaseous H2S.

The sulphate ion can have various protonation degrees, and the reaction also
involves protons. This may suggest a high complexity to the reaction problem, but
that is actually not the case, as discussed in §6.5. We simply need to implement
that irrespective of the protonation degrees of reactants and products, 8 electrons
are accepted when a sulphate ion reacts to a sulfide ion.

Writing the reaction as that between bisulphate and bisulfide, we have at equi-
librium the Nernst equation at the cathode

𝑉C,eq = 𝑉0 |s −
𝑅𝑇

8𝐹
· ln

[HS−]
[HSO −

4 ] [H+]8 (6.8)

where 𝑉0 |s is the reference potential for this reaction which relates to 𝐸0 according
to 𝑉0 |𝑖 = 𝐸0 |𝑖 + 𝑉∗

ref,eq. For the reaction described by Eq. (6.8), 𝐸0 |s=+236 mV.
We do not need to know the reference value 𝑉∗

ref,eq, which does not influence the
final calculation. So we proceed as if 𝑉0 |s is a known constant, and the same is
the case for other 𝑉0 |𝑖’s.

On the anode we have the reaction of Fe to Fe2+ (reaction I) and to Fe3+ (reaction
II), for which the equilibrium electrode potentials are given by

𝑉A,eq = 𝑉0 |I + 1/2 · 𝑉T · ln[Fe2+]
𝑉A,eq = 𝑉0 |II + 1/3 · 𝑉T · ln[Fe3+]

(6.9)
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where the two 𝑉0 |𝑖’s relate to the respective 𝐸0 |𝑖-values in the same way as de-
scribed above (related by a constant difference 𝑉∗

ref,eq). The resulting equilibrium
electrode potential, 𝑉A,eq, is one value, because both reactions take place on the
same electrode. The two 𝐸0-values are 𝐸0 |I = −445 mV and 𝐸0 |II = −40 mV.
Thus, at equilibrium, these two Nernst equations also determine the ratio in the
concentration of Fe2+ over Fe3+ according to

𝐸0 |II − 𝐸0 |I =
𝑉T
6

ln
[Fe2+]3

[Fe3+]2
(6.10)

which we can derive by subtracting one from the other the two equations of
Eq. (6.9). Here in Eq. (6.10) we must use the two concentrations in the concen-
tration scale of M. This equilibrium applies when there still is solid iron, Fe0,
available as reactant. It predicts that as long as Fe0 is available (and Fe(OH)3
or Fe2O3 are not yet formed), that the Fe0 that dissolves is overwhelmingly in
the form of Fe2+. When all Fe0 is gone, then only Eq. (6.9) applies, and another
electrode is able to drive up 𝐸A, for instance by oxygen reduction, and all Fe2+

will be oxidized to Fe3+. But this only happens after all Fe0 is gone.
We now set up a model that is not at equilibrium, and thus the current and

the corrosion rate are not zero. Because large part of the calculation do con-
sider (chemical) equilibrium, we call this a dynamic equilibrium model. In the
electrochemical cell, similar to the geometry of Fig. 3.2, we therefore include a
resistance to current at some point in the circuit. We can include it in one of
the electrodes, as a reaction overpotential 𝜂 (a concept we will discuss in Ch. 7),
but it is easier to describe both electrodes as being at equilibrium, as already
discussed above, and assume that the resistance is located in solution, and thus
𝑉 sol = −𝑅sol 𝐼. The exact origin or location of this resistance, whether in solution
or in one of the electrodes, does not matter to the resulting model. We make use
of Eq. (2.1) to relate the different voltages in the cell. The cell voltage in Eq. (2.1)
is set to zero, i.e., 𝑉cell = 0, because the two metal sides are short-circuited. As
mentioned, each electrode is considered to be at equilibrium, thus we replace each
electrode potential 𝑉 𝑗 by the equilibrium value, i.e., 𝑉 𝑗 → 𝑉 𝑗 ,eq, and thus we can
use Eq. (6.8) and the two Eqs. (6.9). This set of equations, together with Eq. (2.1)
and the equation above for 𝑉 sol, suffices to calculate the current I and the two
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electrode potentials,𝑉A and𝑉C, as function of all concentrations, in combination
with ion mass balances that describe the composition of the solution over time.

We can also combine these equations into a set of two algebraic equations, one
of which is

𝐼 · 𝑅sol = 𝑉C,eq −𝑉A,eq = Δ𝐸0 +𝑉T

(
1
8

ln
[HSO −

4 ]
[HS−] − 1

2
ln [Fe2+] − ln 10 · pH

)
(6.11)

where Δ𝐸0 = 𝐸0 |s − 𝐸0 |I. Alternatively, we have the same equation but not as
function of Fe2+, but as function of Fe3+. The second algebraic equation is the
equilibrium between Fe2+ and Fe3+ given by Eq. (6.10).

What these equations predict is for instance that with a higher concentration
of sulphate, the reaction will go quicker, and the same when we remove HS–

from solution, or when we remove the Fe2+- or Fe3+-ions from solution. In
addition, we have an influence of pH: sulphate reduction will go faster at low pH.
Note that in all of these cases the ‘goes faster’ is not because reaction rates are
enhanced kinetically as such (all of them are modelled to be at equilibrium, i.e.,
infinitely fast), but only because the driving force goes up (𝑉C,eq−𝑉A,eq), which
thereby increases the current because of the relation we proposed between current
and voltage across solution. The increasing driving force is solely because the
concentrations of reactants go up or those of products go down.

We solve these two equations together with overall electroneutrality (charge
neutrality) of the solution, the water autodissociation equilibrium, the protonation
equilibrium of HS– to H2S, and the equilibrium for the complexation of Fe3+ with
OH– to soluble Fe(OH)2+ and Fe(OH) +

2 , and to the solid phase Fe(OH)3. In an
extension of this code, also formation of the solid FeS can be included, and
evaporation of H2S. We can combine these equations with mass balances for a
closed system (batch reactor) for all conserved groups (such as the S-atom, and
the Fe-atom), and can study what happens when sulphate ions reduce to sulfide,
while iron oxidizes. The conversion rate relates to the current I because for each
ion from the group HSO –

4 /SO 2–
4 converted to sulfide (HS– /H2S), 8 electrons

are accepted, which are donated by the reactions on the anode. There, the flow of
electrons is equal to the summation of several formation rates times a multiplier,
namely the formation rate of Fe2+ times two, and the formation rates of Fe3+,
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Fe(OH)2+, Fe(OH) +
2 , and Fe(OH)3, all times three. The calculation will self-

consistently predict the formation rate of each individual ion or complex. There
is no need for a separate balance for protons; instead, the calculation predicts how
pH changes during the process, and this pH is directly coupled to all protonation
equilibria in the system, and thus the rate of corrosion.

Results of this calculation are presented in Fig. 6.1, where we start with a 10
mM solution of H2SO4 solution at pH 3.0 (thus [Na+]=18.1 mM, pKSO4 1.99)
and availability of solid iron, Fe0. This is all we need to define the starting
condition. We include in the calculation not only Fe2+- and Fe3+-ions, but also
the complexes of Fe3+, which are Fe(OH)2+ and Fe(OH) +

2 . These complexes
have a much higher concentration than the Fe3+ ion itself, but they do not change
the outcome of the calculation, because all these dissolved Fe3+-based ions have
a very low concentration compared to the Fe2+ ions. Much more significant is the
formation of Fe(OH)3 as a solid product, described by 𝐾 = [Fe3+]/[H+]3 with
concentrations in M, for which 𝐾 ∼ 9100 M-2. We make a calculation analysing
the composition of the solution and the electrode potentials, at various levels
of sulphate conversion, which relates to how much charge was transferred from
anode to cathode. So the x-axes in Fig. 6.1 are similar to a time axis, but when
current goes down over time, which it will as panel B shows, the same increment
in charge transfer takes more and more time. The current is a function of the
difference between 𝐸C and 𝐸A, similar to an Ohmic resistance for ion transport.
In panel E there is a moment indicated by ⊗ where the two electrode potentials
become the same, and current will go to zero, i.e., equilibrium is then reached.
But before reaching that point, the time increments will grow to infinity, i.e., we
never reach this point, which is not directly obvious in this representation.

We notice that with increasing charge transfer (increasing conversion of sul-
phate), pH first slowly and then more rapidly increases to values around pH 10 and
higher. The rapid increase in pH corresponds to a steep decrease of the current and
of the cathode potential. Thus corrosion is slower at high pH, which is because
the sulphate to sulfide electrode potential, 𝑉C, rapidly decreases, while the anode
potential is not influenced. Without the possibility for the formation of Fe(OH)3,
pH increases to around pH 12, and at some point the two electrode potentials
become the same (⊗ in panel E) and the process stops. However, the outcome is
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Fig. 6.1: Calculation results of the dynamic equilibrium model for the reduction of sulphate
to sulfide, and simultaneous iron oxidation. In all panels the x-axis is the total charge
transfer. Panels E and F describe 2× more charge transfer than A and B, and panels C
and D 7.5× more. Panels A and B show results for pH and current with and without the
possibility of solid Fe(OH)3 formation. If this solid product forms, this takes place from
the point indicated by ☼. After that, all variables still change, such as depicted for pH in
panel C and for [Fe2+] in panel D. Panels E and F show the electrode potentials 𝐸𝑖 of anode
and cathode, in panel E without formation of solid Fe(OH)3, and in panel F, with. In that
case, sulphate reduction and iron oxidation continue until almost all sulphate is reduced.
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very different if formation of Fe(OH)3 is included: as panel A shows, after the
moment that Fe(OH)3 starts to form, indicated by ☼, pH levels off at pH∼10, and
the decrease in current and in 𝐸C (see panel F) is halted. However, this levelling
off is only temporarily, and after some time pH again increases (panel C). But in
this case, until all sulphate is gone, the electrode reactions continue because the
two electrode potentials remain significantly apart, resulting in a driving force for
current (panel F).

The explanation of each aspect of these calculations may not be very obvious
in many cases. But the point is to bring across the message that the dynamic
equilibrium model as was explained above, and which is based on only a few
equations, is able to make all of these predictions, which can be compared with
experimental observations. Of course, a more complete model for (bio-)corrosion
also includes other species such as the carbonate system which buffers pH, and
other types of iron complexes and solid and gaseous substances. Also details of
the metabolism of the microorganisms that are involved must be included.

6.6 Cathodic protection of a metal against corrosion

As discussed in §6.5, a metal structure can corrode, converting metal into soluble
cations at an anode, with simultaneously a cathodic reaction, for instance the
reduction of sulphate to sulfide. In this section, we consider the reduction of
oxygen as the cathode reaction. To protect a metal structure, such as for instance
steel, an alloy with main component Fe, a well-known method is cathodic pro-
tection, where a sacrificial metal, such as Zn, is wired to the piece of metal to
be protected. We now have a three-electrode electrochemical cell. We assume
the three electrodes are short-circuited; thus, on the metal side, the potential is
the same in all electrodes in this problem, and we set that value to zero. And
all three electrodes have a different electrode potential 𝑉 𝑗 . So how to calculate
the directions and magnitudes of the currents? At what condition is the anode
protected? We present a simple calculation that provides a first approach to solve
this problem.

Thus, on the solution side, the potential near each electrode is −𝑉 𝑗 , and this is
different for each electrode. These potentials, 𝑉 𝑗 , are a constant factor different
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from the electrode potential in the E-scale. Thus we can switch to the E-scale,
and then the potential in solution near the electrode is 𝐸sol, 𝑗 = −𝐸 𝑗 , see Fig. 6.2.

Differences in the three 𝐸sol, 𝑗 lead to currents flowing between the three elec-
trodes. These currents depend on the geometry of the electrolyte phase between
the electrodes, how far apart they are, and what is the surface area of the electrodes.
Thus we can make a 2D or 3D calculation based on Laplace’s law, ∇2𝜙 = 0, where
𝜙 is the electrical potential in solution, that we solve in the space between all three
(or more) electrodes, and then we calculate the currents from/towards each elec-
trode. Such a calculation assumes a constant conductivity throughout the entire
phase between the electrodes. In a more detailed calculation, other processes are
included as well, such as a limitation in the supply of reactants, for instance in the
diffusion of oxygen to the cathode, or barriers to the flow of ions near the anode.

In a simplified calculation, we assign a resistance to each electrode, which
could either relate to a kinetic limitation in the electrode reaction, or to a transport
process just outside the electrode. And across the bulk solution phase, we assume
there are no changes in potential. In this simplified calculation, we must consider
the three currents shown in Fig. 6.2B, each directed from an electrode into bulk
solution. They add up to zero: 𝐼A + 𝐼C + 𝐼S = 0 (for panel A, 𝐼S = 0). Each of
these currents is given by 𝐸sol, 𝑗 − 𝐸∞ = 𝐼 𝑗 · 𝑅 𝑗 , where 𝐸∞ is the potential in bulk
solution.

Let us assume each electrode is at equilibrium, and at standard conditions, thus
we can use 𝐸C=1.23 V (for oxygen reduction), 𝐸A=−0.445 V for Fe(s) to Fe2+,
and 𝐸S =−0.77 V for Zn-oxidation. We can now calculate how resistances must
relate to one another, to make cathodic protection work. Thus we calculate the
condition that a current of 𝐼A<0 is predicted. In that case, at the anode, where a
metal oxidizes, the current is reversed and cations may even reduce to the metallic
form. Based on the equations just presented, we can derive that the criterion for
this reversal is when

𝑅S < 𝑅C · 𝐸A − 𝐸S
𝐸C − 𝐸A

(6.12)

and thus, to protect a metal structure from oxidation, we see from Eq. (6.12) that
first of all, we need a sacrificial electrode with 𝐸S<𝐸A. Furthermore, we notice
that the resistance of the anode, 𝑅A, is irrelevant, but the other two resistances,
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Fig. 6.2: On a metal surface, a particular spot can oxidize, i.e., corrode (anode A, electrode
potential 𝐸A) because of a reaction on a cathode, C, see panel A. But because of a sacrificial
electrode S, that has a more negative electrode potential, 𝐸S, see panel B, the oxidation of
A can be halted. Comparing panels A and B, the current to the anode, 𝐼A, is reversed, and
corrosion is halted. The height of each bar refers to minus the potential E of that electrode.

𝑅C and 𝑅S, they play an important role. The resistance of the sacrificial electrode
cannot be too high, relative to the resistance in the cathode. For the stated values
of 𝐸 𝑗 , the resistance 𝑅S must be less than approximately one-fifth of 𝑅C. Then,
irrespective of the anode resistance, electrons will not be drawn from the anode,
and thus it is protected against oxidation. The required low resistance of the
sacrificial electrode is promoted by a large area in direct contact with water, while
the resistance in the cathode for oxygen reduction must be high, thus this reaction
is ideally limited to only one or a few weak spots on the metal (for instance,
where a protection by paint is damaged). So a sacrificial electrode can function,
even when it is quite far away from the location to be protected, as long as the
resistance in the cathode(s) is high enough.

In summary, we provided a calculation that shows how cathodic protection
of a metal (from oxidation) can be understood in a simple model that includes
electrode potentials (of the three electrodes that play a role) and two electrode
resistances. It is not enough when the sacrificial electrode has a lower electrode
potential than the anode, but potential losses because of electrode reactions and
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ion transport must be part of the analysis.
It might now seem that in solution there is a potential, 𝐸∞, that depends on the

electrodes and their resistances. But the solution potential is a value determined
by other factors, and it is actually the potential in the metal that depends on these
factors. The metal potential relative to that in solution, is the corrosion potential,
𝐸corr, and it is calculated by

𝐸corr =

∑
𝑗 𝐸 𝑗/𝑅 𝑗∑
𝑗 1 /𝑅 𝑗

. (6.13)

Of interest in Eq. (6.13) is that an electrode x of which the resistance increases,
for instance by placing it further away from the other electrodes (but still in short-
circuit contact with them via the metal phase), or by making it smaller in area, that
this electrode x will contribute less to 𝐸corr. So the potential across the resistance
associated with x, which determines its current, is increasingly determined by the
other electrodes, especially those that are close to one another. If one electrode
has a much smaller resistance than all other electrodes, that one determines the
corrosion potential. Corrosion potential is the same as the redox potential that
will be discussed in §6.7.

Thus we illustrate in Fig. 6.2A the situation that the solution potential (relative
to that in the metal) is in between that of the anode and cathode, similar to what will
occur in any spontaneous electrochemical cell that is short-circuited. And thus
both the oxidation on the anode and reduction on the cathode occur in the usual
fashion, with 𝐼A then a positive number (oxidation is defined as positive; positive
charge is pushed into the solution phase) and 𝐼C is a negative number (reduction
currents are defined as negative). In panel B, a sacrificial electrode protects the
anode (and cathode) because the oxidation now occurs in the sacrificial electrode
S. For the cathode, we have a reduction current just as before, and for the anode
the current now also has the direction of a reduction. As a consequence, Fe-ions
near the electrode might even become metallic again.

In practice, instead of using a piece of metal that spontaneously acts as a third
electrode, and which is sacrificed, it is also possible to use a power source and any
kind of electrode structure where for instance oxygen is formed from water. This
situation is similar to Fig. 6.2 but now 𝐸S of the sacrificial electrode is replaced
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by that of oxygen evolution, plus the cell voltage generated by the power source.

6.7 The redox potential of a solution, and Pourbaix
diagrams

In this last section, we return to §6.5, and the oxidation of Fe0 to either Fe2+ or
Fe3+. It is interesting to recombine the two equations of Eq. (6.9) to

𝐸A,eq = 𝐸0 |III −𝑉T ln
(
[Fe2+]/[Fe3+]

)
(6.14)

where 𝐸0 |III = 3 · 𝐸0 |II − 2 · 𝐸0 |I = +770 mV, which exactly corresponds to the
𝐸0-value for the reduction of Fe3+ to Fe2+. So that reaction is ‘enclosed’ in the
two reaction equilibria of Eq. (6.9). When there is no Fe0 left, then Eqs. (6.9)
and (6.10) no longer apply, but Eq. (6.14), the Nernst equilibrium between Fe2+

and Fe3+, still holds. So now a certain ratio between the concentrations of Fe2+

and Fe3+ in solution, will result in an anode potential, 𝐸A,eq, and if this is the
most important redox couple in the system, this will be the ‘redox potential’ of
the solution, 𝐸H.

The redox potential of a solution is set by the redox couple that has the most
balanced ratio between oxidized and reduced forms. Instead, a redox couple
where one of the involved ions (either the one in the reduced form, or in oxidized
form) is present at a minute fraction of the other, does not set the redox potential.

In environmental systems, the redox potential can be set by many possible redox
couples, and can involve for instance oxygen, manganese, carbonate, acetate,
nitrate, sulphate, and sulfide. As just mentioned, one of these reactions sets the
redox potential, which is the reaction that has the largest buffer capacity, i.e.,
the reactant and product of this reaction (the redox couple) are both present in
reasonably large amounts. If instead a redox couple is present in almost fully
oxidized or fully reduced form, then the ratio between oxidant and reductant in
this couple very quickly changes when a few electrons are donated or accepted
from another couple. So this reaction does not set 𝐸H, it rather follows it. It is
the couple with the largest redox buffer capacity that sets 𝐸H.ix One may now
ixA numerical calculation of a solution with several redox couples of different concentrations and

𝐸0’s will show this to be the case.
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wonder, what is it that 𝐸H represent. What it describes is a solution’s tendency
to donate electrons to other dissolved species, or to accept them. The higher is
𝐸H, the stronger is the tendency of the various molecules in solution, to accept,
i.e., to strip, electrons from (new) molecules. So it describes the oxidizing power,
with a solution of a high 𝐸H having a high oxidizing power. On the other end of
the scale (very low 𝐸H), the solution has a high tendency to donate electrons: a
newly arriving molecule will likely be reduced, if that is chemically possible.

The 𝐸H-sensor, which is an electrochemical cell with a Pt-electrode in direct
contact with the solution, connected to a reference electrode, does not give a
response to all redox couples (see an example below). But because there are other
redox couples which ‘follow’ the 𝐸H set by the most buffered couple, as explained
above, the 𝐸H-sensor still functions in measuring 𝐸H. The redox couples that it
gives a good response to, are for instance Fe2+/Fe3+ and Mn(IV)/Mn(II). Oxygen
reduction is not measured by an 𝐸H-sensor, though the measured redox potential
does give a good indication of the concentration of oxygen in the water, and
this might relate to the reversible formation of Pt(OH)2 on the electrode surface
(Stumm and Morgan, p. 361). The redox potential EH is often rewritten to a p𝜖 ,
or pe, by dividing EH by ln 10 · 𝑉T ∼ 59 mV (no additional minus sign).

In environmental systems, some examples of redox couples are as follows. With
sufficient dissolved oxygen, thus for regular aerobic respiration, where carbohy-
drates are converted to CO2 and water, the redox potential is around +820 mV.
When oxygen levels drop, and if available, then Fe3+ takes over as electron ac-
ceptor and then EH is around +750 mV. At even more reducing conditions (when
there is no Fe3+ left), Mn(IV) becomes the main electron acceptor (oxidant), and
then Co(III), U(VI), NO –

3 (at +400 mV), then SO 2–
4 (as in the example of §6.5)

at EH -220 mV, then the reduction of CO2 to methane at -250 mV, the reduction
of S0 at -270 mV, and ultimately the reduction of CO2 to acetate at -300 mV.
Thus, the measurement of EH provides information on what are the molecules in
a sample that have the largest redox buffer capacity.

Related to the redox potential are plots of 𝐸H, or pe, versus pH, called Pourbaix
diagrams. They contain much useful information about what species can form
dependent on 𝐸H and pH. However, they might also be confusing because they
do not clearly convey how a process with various reactions works, and how they
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can be described for instance in the way we did in §6.5.
In the familiar Pourbaix diagram for iron, Fe, we have at low pH a sequence

with increasing 𝐸H of solid Fe, Fe2+, Fe3+, and then a line for oxygen. What does
all of this mean? The diagram shows what state of the iron is most prevalent,
dependent on 𝐸H and pH. For ambient O2 concentrations (aerated conditions),
the redox state is described by a line that starts at 𝐸H = 1.23 V at pH 0, decaying
with a slope of 59 mV/pH. This line sets the 𝐸H of a solution saturated with
oxygen gas at a pressure of 1 bar, i.e., for 𝑝O2 =1 bar.

At equilibrium, 𝐸H is equal to the two electrode potentials; thus, we can use
𝐸H for 𝐸A,eq in Eq. (6.14), and obtain the result that for instance at pH 2, the
concentration of Fe3+ is about 106 times larger than of Fe2+. When the oxygen
pressure goes down, then 𝐸H goes down as well, and more and more of the Fe3+

is reduced to Fe2+. At some point, when the oxygen partial pressure is at a very
low value, almost all of the iron is in the Fe2+-form. And then comes a point
that solid Fe is formed. Or in reverse, starting at low 𝐸H, if solid Fe is being
oxidized, the ions that are formed are predominantly Fe2+. As long as some solid
iron is still present, the concentrations of Fe2+ and Fe3+ are related by Eq. (6.10),
and this equation predicts that an overwhelming part of all dissolved iron is in
the Fe2+-form. With increasing 𝐸H (for instance because oxygen is continuously
added), at some point all solid iron is gone, and more and more of the Fe2+

converts to Fe3+. Thus, with increasing 𝐸H, the ratio of Fe2+ to Fe3+ goes from
very large, to very small. The point where we switch over from predominantly
Fe2+ to predominantly Fe3+ is given by Eq. (6.14) inserting here a ratio of Fe2+

over Fe3+ equal to unity, thus we switch when 𝐸H = 𝐸0 |III = +770 mV.
A second element in Pourbaix diagrams is the formation of the various oxidation

products, which are soluble ions, such as Fe(OH) +
2 , and insoluble solid products,

such as Fe(OH)3. These oxides can have associated water molecules, for instance
written as Fe(OH)3, or when they are less hydrated, it can be FeOOH or Fe2O3.
When no electrons are involved, the related boundaries in Pourbaix diagrams are
vertical. For instance, for the formation of Fe(OH)3 from Fe3+ and OH– , this
vertical line is typically drawn at a pH∼4.

Thus, Pourbaix diagrams by themselves may not be of direct help to find out
which ions and solid phases are formed. Instead, we have to formulate all mass
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balances and equilibrium relationships, and solve them, for instance in a way
similar to the calculation of §6.5. Equilibrium between different half-reactions is
then solved by setting the electrode potentials equal to one another, such as for
the two reactions in Eq. (6.9). We can have kinetic limitations when the reactions
occur on different electrodes. In that case a cell calculation can be set up with
resistances in or near the electrodes and/or in solution, resulting in the dynamic
equilibrium model introduced in §6.5.

These kinetic limitations are also possible in solution, without an explicit
electrode process. For instance, when a solid iron oxide is formed based on the
Fe2+-ion at low 𝐸H, such as Fe(OH)2, and if now 𝐸H increases, then it takes a
long time before Fe(OH)2 transforms to the thermodynamically more stable solid
oxide Fe3O4 (in which there is a mixture of Fe2+ and Fe3+), and at even higher
𝐸H to Fe2O3. As a first approach, the dynamic equilibrium model can again be
used to describe these processes.



7
Electrode Kinetics

7.1 Introduction

In Ch. 6, we focused on the equilibrium electrode potential,𝑉𝑒,eq, using the Nernst
equation. In the present chapter, we go beyond the Nernst equation to model the
rate of an electrode reaction, i.e., we study Electrode Kinetics. We start with
the Frumkin equation which includes EDL effects, which we then simplify to the
Butler-Volmer equation. We also include the film layer in front of the electrode
and describe dynamic operation including capacitive effects.

In this chapter it becomes important where in solution we evaluate ion concen-
trations. We distinguish between a concentration at the surface, with index s, i.e.,
right next to the electrode, and concentrations in bulk electrolyte, ∞, see Fig. 2.1.
In between these two positions is a film layer. From now on, concentrations in the
Nernst equation are those at the surface, s, not in bulk (unless there is no current,
then they are the same). The concept of the film layer will be discussed in §7.5.
The film layer influences concentrations at the surface and thus reaction rates,
and when we have multiple competing electrode reactions, transport across the
film layer influences the relative rate of each process, i.e., selectivity.
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Electrocatalysis. In this chapter we combine expressions for the rate of
electron transfer with the modelling of mass transport in front of the electrode.
However, these two processes are just two elements in a much longer series
of transport steps. More generally, ions must first diffuse through the water
to the electrode, adsorb at the electrode, perhaps dissociate, or combine
with other molecules, diffuse over the surface to reach a particular site,
participate in an electron-transfer reaction there, and after that the product of
the reaction diffuses away, first over the surface, and after desorption diffuse
away from the electrode. These detailed processes are studied in the field
called electrochemical catalysis, or electrocatalysis.

In this chapter we do not discuss the processes on the electrode surface in as
much detail as in electrocatalysis. Instead, we describe transport of ions and
other solutes through the film in front of the electrode, and combine with an
electrode reaction described by the Butler-Volmer equation. In §7.8–7.10, we use
the Frumkin equation which describes how the structure of the EDL influences
the electrode process.

7.2 The Frumkin equation for the rate of an electrode
reaction

To describe the rate of an electrode reaction, the Frumkin equation is one of
the most general starting points. A key feature is that it highlights how the
EDL structure influences the electrode reaction rate, which is an important effect.
Nevertheless, we urge caution because in the Frumkin equation ions from solution
or other bulk phases (after moving through a film layer), directly participate in an
electrode reaction, neglecting other transport steps across the electrode surface
that can also be rate-limiting, as discussed in the box above.

According to the Frumkin equation, the Faradaic reaction rate, in the direction
of oxidation, is given by

𝐽𝐹 = 𝑘O𝑐
∗
R𝑒

+𝛼O𝑛Δ𝜙S − 𝑘R𝑐
∗
O𝑒

−𝛼R𝑛Δ𝜙S (7.1)
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where concentrations 𝑐∗O and 𝑐∗R are at the reaction plane * inside the electrode,
see Fig. 2.1. The Faradaic rate, 𝐽𝐹 , is in mol/m2/s and can be multiplied by 𝑛𝐹
to a current density 𝐼𝐹 in A/m2. The number of electrons that take part in the
reaction of one molecule R to O (or vice-versa), is n. We assume here that one
molecule R reacts to one molecule O. The coefficients 𝛼 𝑗 are numbers between 0
and 1, and sum up to unity: 𝛼O + 𝛼R = 1, and generally 𝛼O = 𝛼R = ½ is used.

The Frumkin reaction rate includes the influence of a jump for the electron
across an inner layer, from the metal to a location in the EDL, where it meets
with a reactant ion for a reduction, or the electron goes in the other direction
for an oxidation. Within the modified Donnan model and the GCS-model, this
inner layer across which the electron jumps is the Stern layer, with an associated
potential change Δ𝜙S, see Fig. 2.2. Thus, Δ𝜙S is the step an electron makes when
it leaves an ion at the reaction plane and enters the metal phase. The ions at this
reaction plane, which in these EDL models is the Stern plane –for which we use
the notation * in Eq. (7.1)– have a concentration given by the Boltzmann equation

𝑐∗𝑖 = 𝑐s,𝑖𝑒
−𝑧𝑖Δ𝜙D (7.2)

where index * refers to the Stern plane, and index s to a position just outside the
EDL structure, i.e., just outside the electrode, see Fig. 2.1.

For 𝐽𝐹 = 0, or when both kinetic constants are very high, combination of
Eqs. (7.1) and (7.2) results in the Nernst equation, Eq. (6.3), making use of
Δ𝜙𝑒 = Δ𝜙D + Δ𝜙S, see Eq. (5.13). Ion concentrations in the Nernst equation
are those just outside the electrode, at position s. The two 𝑘-values lead to the
standard state potential of that reaction, 𝑉0. This also means that the two 𝑘-
values are not independent, but if one is known or estimated, the other follows
automatically if 𝑉0 is already known.

Eq. (7.1) describes how the EDL structure plays a role in the reaction rate. Thus
it includes the role of other ions than the ones reacting, because they can modify
Δ𝜙D, the Donnan or diffuse layer potential. These effects are well known to
influence the reaction rate, especially with mixtures of ions of different valencies.

The other interesting aspect of Eq. (7.1) is that it highlights the relevance of
the electronic charge density, 𝜎𝑒. This is first of all because Δ𝜙S in Eq. (7.1) is
proportional to 𝜎𝑒, according to Eq. (5.17). Secondly, 𝜎𝑒 determines Δ𝜙D, for
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instance according to the Gouy-Chapman equation, Eq. (5.18). In this way it is
possible to write Eq. (7.1) completely in terms of charge𝜎𝑒 and ion concentrations
just outside the EDL. Thus, the full problem can be formulated as function of
charge 𝜎𝑒, instead of the electrode potential, 𝑉𝑒. But a certain EDL model must
then be assumed, suh as the GCS model.

7.3 The Butler-Volmer equation

A significant simplification is made when it is assumed thatΔ𝜙S ≫ Δ𝜙D, and then
the concentrations in Eq. (7.1) become those just outside the electrode (∗ → s),
which results in the Butler-Volmer (BV) equation

𝐽𝐹 = 𝑘O𝑐s,R𝑒
+𝛼O𝑛Δ𝜙𝑒 − 𝑘R𝑐s,O𝑒

−𝛼R𝑛Δ𝜙𝑒 (7.3)

with Δ𝜙𝑒 the electrode potential, Δ𝜙𝑒 = 𝑉𝑒/𝑉T, the same as𝑉𝑒 in Ch. 6, but from
now on, 𝑉𝑒 will also be used for an electrode reaction that is not at equilibrium.

Eq. (7.3) is a general representation of the BV equation and it can be extended
in various ways, for instance to include species with a fixed potential (such as
metal atoms in a metal bulk phase) by removing the related concentration from
Eq. (7.3). Or that one of the ions in the reaction cannot leave the electrode,
resulting in a modification of Eq. (7.3) by including an occupancy-related term 𝜗

that increases as the reaction proceeds.i

However, traditionally Eq. (7.3) is not used in the form above but it is further
modified. The first step is to again derive the Nernst equation for equilibrium,
which based on Eq. (7.3) becomes

Δ𝜙𝑒,eq = 𝜙0 −
1
𝑛
· ln

𝑐s,R

𝑐s,O
(7.4)

where we introduce 𝜙0 which is 𝜙0 = 𝑛−1 ln (𝑘R/𝑘O). Note that this Δ𝜙𝑒,eq is
the electrode potential at equilibrium with the concentration of ions next to the
electrode, at position s, see Fig. 2.1.

iThe electrode process is then no longer Faradaic, but capacitive.



The Butler-Volmer equation 89

We combine Eqs. (7.3) and (7.4), introduce the (dimensionless) reaction over-
potential, 𝜂 = Δ𝜙𝑒 − Δ𝜙𝑒,eq, and then derive

𝐽𝐹 = 𝐽exch ·
(
𝑒+𝛼O ·𝑛·𝜂 − 𝑒−𝛼R ·𝑛·𝜂 ) (7.5)

where 𝐽exch is the exchange current density, given by 𝐽exch = 𝑘exch 𝑐
𝛼R
s,R𝑐

𝛼O
s,O, with

𝑘exch = 𝑘
𝛼R
O 𝑘

𝛼O
R . If we assume 𝛼O=𝛼R=½, then Eq. (7.5) can be written as

𝐽𝐹 = 2 · 𝐽exch · sinh (½ · 𝑛 · 𝜂) . (7.6)

Because the reaction is not infinitely fast, the BV-equation predicts an electrode
potential that is higher or lower than the equilibrium potential by a value 𝜂. For
an oxidation (electrons go from ions in solution into the metal), 𝜂 is positive, and
𝜂 is negative for a reduction.ii

At a low reaction overpotential, i.e., when we are near equilibrium, the BV equa-
tion simplifies to

𝐽𝐹 = 𝐽exch · 𝑛 · 𝜂 . (7.7)

If now 𝐽exch is taken as a constant, Eq. (7.7) results in a linear relationship between
overpotential and current, with the inverse of 𝐽exch representing a resistance.
That makes Eq. (7.7) similar to the linear resistance model of §6.5, that was
implemented on the left of Eq. (6.11). But a difference is that now the linear
resistance depends on concentrations of O and R via the expression for 𝐽exch.

A useful formulation of the BV-equation is to rewrite Eq. (7.3) to (B&F, p. 102)

𝐽𝐹 = 𝐽∞exch

{
𝑐s,R

𝑐∞,R
𝑒+𝛼O 𝑛 𝜂∞ − 𝑐s,O

𝑐∞,O
𝑒−𝛼R 𝑛 𝜂∞

}
(7.8)

where 𝜂∞ = Δ𝜙𝑒 − Δ𝜙∞𝑒,eq, in which Δ𝜙∞𝑒,eq = 𝜙0 − 𝑛−1 ln
(
𝑐∞,R/𝑐∞,O

)
, thus

Δ𝜙∞𝑒,eq is similar to Eq. (7.4), but now based on bulk concentrations, 𝑐∞,𝑖 . In
Eq. (7.8), we introduce the exchange current density based on bulk concentrations,
𝐽∞exch =

(
𝑘O𝑐∞,R

)𝛼R ·
(
𝑘R𝑐∞,O

)𝛼O . Eq. (7.8) is useful when there is a fixed bulk
concentration, because then 𝐽∞exch and Δ𝜙∞𝑒,eq are constants.

iiThis is different in some engineering textbooks, for instance, on fuel cell design. There 𝜂’s are
used as quantities that are always positive. This is certainly intuitively appealing, but can also be
problematic when the model is used outside its intended range of use.
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All dimensionless potentials 𝜙 can be multiplied by 𝑉T to a potential 𝑉 , and if
we then assume 𝛼O =𝛼R =½ and set 𝑛=1, and neglect a difference between 𝑐s,𝑖

and 𝑐∞,𝑖 (i.e., neglect the film layer), Eq. (7.8) simplifies to

𝐽𝐹 = 2𝐽∞exch sinh
(

1
2𝜂

∞
)
= 2𝐽∞exch sinh

(
1
2

(
𝑉𝑒 −𝑉∞

𝑒,eq

)
/𝑉T

)
(7.9)

which we will use in §7.7.

7.4 How does electrode potential 𝑉𝑒 relate to voltage E?

In §3.1 and §6.5 it was already discussed that the electrode potential, 𝑉𝑒, relates
to a measurable property, 𝐸 . This relation between 𝑉𝑒 and E is illustrated in
Fig. 7.1. This term, E, is often called the electrode potential, relating to the
type of reference electrode. However, the electrode potential is 𝑉𝑒. Instead, E
is a measurable voltage (difference), not very different from the concept of a
cell voltage, 𝑉cell; it is a voltage difference between the metal lead of a working
electrode (WE), and the metal lead of a reference electrode (RE), through which
only a tiny current flows. Thus we will call E a voltage, or a voltage difference.

Fig. 7.1 explains the layout of a typical electrochemical experiment. The
working and counter electrodes (WE and CE) are similar to the anode and cathode
in earlier figures, such as Fig. 3.2, while the external device (which before was
a load L or power source PS) is replaced by a device called potentiostat. In all
other respects, it is the same as before. The terms WE and CE reflect that the WE
is the electrode we aim to study in detail, while the CE is just there to ‘provide
the current.’

In this scheme a third electrode is added, which is a reference electrode,
abbreviated as RE. It is placed near the WE. Hardly any current goes through the
RE. The voltage between WE and RE, 𝑉u, must be small, and to achieve that the
RE is placed close to the WE. This is important because the current between WE
and CE leads to voltage changes across solution. The use of background salt can
help to reduce 𝑉u, but is not always possible, because the experiment then has
less correspondence to the process that we aim to study.

Following a trajectory from WE to RE, first through the electronic circuit, and
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Fig. 7.1: The measured voltage E is directly related to the electrode potential 𝑉𝑒 by a
constant factor. To change 𝐸 , the potentiostat adjusts the current in the WE-CE circuit,
which modifies 𝑉𝑒, and this changes 𝐸 . It has no direct control over 𝐸 , but processes
inside the WE determine E.

then back through solution, we can add up all voltages, and obtain

𝑉𝑒 = 𝐸 +𝑉∗
ref,eq +𝑉u , 𝑉∗

ref,eq = 𝑉 ref ± Σ 𝑗𝑉jnct, 𝑗 (7.10)

where 𝑉 ref is the electrode potential of the reference electrode. The term 𝑉 jnct

is a metal-metal junction potential, or work function, which is a constant voltage
difference across the various metal-metal connections in the circuit, see Fig. 7.1,
and values of these work functions are tabulated. Such a junction can be located
between WE and potentiostat, and between potentiostat and RE. For instance, it
develops when a connecting wire is Cu and the metal in the RE is made of Pt or
Ag.

The conclusion of Eq. (7.10) is as follows: as long as 𝑉u can be neglected,
or is always the same value, then the voltage 𝐸 , equals 𝑉𝑒, only with a constant
offset. Thus we can measure changes in E, and know precisely by how much the
electrode potential 𝑉𝑒 was changed. We do not know the exact value of 𝑉𝑒, but
we do know by how much we are changing it.

It is sometimes assumed that the potentiostat has control over E, i.e., can
change it, and in this way change the potential on the metal side of the WE. With
conditions in solution assumed to stay the same, the voltage across the WE is
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therefore changed and thus the reaction rate changed as well.
However, the potentiostat does not have direct control over E. Instead, a poten-

tiostat can only push more or less current into the cell circuit of the CE and WE.
Then, processes in or near the WE will be more or less out of equilibrium, and
thus𝑉𝑒 will change. And now, because of the change in𝑉𝑒, E will change as well.
This is because all other voltage steps in the loop from WE to RE and back, see
Fig. 7.1, are constant, not influenced by a change in current, and thus according
to Eq. (7.10), a certain change in 𝑉𝑒 will result in the same change in 𝐸 . And this
change in E is measured.

In practice, the potentiostat has a control system that rapidly adjusts the current
to reach a certain setpoint for 𝐸 . Thus it might seem as if we are changing 𝐸
directly, but we only did that in the most indirect way, by a process which involves
the entire circuit, with a current running from the CE through the electrolyte, to
the WE, to changes in 𝑉𝑒 of the WE, and then finally E was changed.

With now the voltage 𝐸 explained and its relation to 𝑉𝑒, in §7.5 we present
equations for the relationship between current and E in steady state. This is called
the polarization curve, or i-V curve, of an electrode. (In §3.1 a polarization curve
for an entire electrochemical cell was discussed.) We analyse these cases using
the BV-equation, in combination with a film layer in front of the electrode. After
this steady-state analysis, we discuss the dynamics of electrode response.

7.5 Steady state current as function of voltage 𝐸

In the present section we describe the relation between the electrode current (in
a WE) and the voltage E. As discussed, in reality, a potentiostat does not really
apply a certain E, but it adjusts the current between WE and CE such that the
measured E quickly reaches a certain setpoint. But in steady state, all of this does
not matter, because we only care about the relationship between current and E.

In the model, the Butler-Volmer equation is combined with equations for trans-
port of reactant ions from bulk, through the film layer, to the electrode, and
vice-versa for the ions produced in the electrode. The film layer has various
names, such as stagnant (diffusion) layer, (diffusion) boundary layer, concen-
tration polarization layer (CP layer), and Nernst layer. We use the term film
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layer.
In B&D, four models for the film layer are described, where the first model

includes diffusion and migration in the direction 𝑥 to the surface across a layer of
a certain thickness; the second model includes dispersion due to eddies, mixing,
or turbulence, in the same 𝑥 direction; the third combines the first model with
flow, or ‘refreshment,’ along the surface, i.e., a flow in a direction 𝑦, with the
refreshment rate independent of 𝑥; while in the fourth model the refreshment rate
increases with x.

Interestingly, when molecules only diffuse, without the electromigration con-
tribution due to the electrical field, all these models lead to the steady state flux
of a species to be proportional to the concentration difference between bulk and
surface

𝐽𝑖 = 𝑘L
(
𝑐∞,𝑖 − 𝑐s,𝑖

)
(7.11)

where concentration 𝑐s,𝑖 is the surface concentration that can be used in the Nernst
equation for the electrode reaction. At steady state, Eq. (7.11) can always be used
for neutral species, while for ions it can be used when we have much background
salt (addition of extra salt ions that do not react at the electrode). Then the electric
field is masked and ions do not flow by electromigration, but only because of a
concentration gradient. In that case, their charge does not influence their rate of
transport. iii

Thus, we can analyse the steady state by combination of the film model for
reactant R and product O (without electromigration, as for a large excess of
background salt), Eq. (7.11), in combination with the BV-equation, for instance
Eq. (7.5). Thus we have three coupled equations, for 𝐽𝐹 , 𝑐s,O, and 𝑐s,R, in
combination with 𝐽𝐹 = 𝐽R = −𝐽O. Flux 𝐽𝐹 is defined positive for a reaction
in the oxidation direction, and thus it has the same sign as 𝐽R, the flux toward
the electrode of the species in the reduced state. The product of the electrode

iiiThere are situations that Eq. (7.11) applies even when electrical fields do play a role in ion transport.
This is the case for an electrolyte with only two types of ions, i.e., a binary salt (valencies and
diffusion coefficients, 𝑧𝑖 and 𝐷𝑖 , of the two ions can be different from one another). But at the
film-electrode boundary, 𝐽𝑖 and 𝑘L relate in a specific way to the concentration gradient there, see
B&D. Thus, it is possible to set up a model with two charged species, and many neutral species,
with transport through the film layer for each of the species described by Eq. (7.11).
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reaction, O, has a flux with opposite sign. The fluxes J are in mol/m2/s, and can
be multiplied by 𝑛𝐹 to obtain a current density, I, in A/m2.

For steady state, this current I can be expressed as function of E by combining
Eqs. (7.4), (7.5), and (7.10), resulting in

𝐽𝐹 = 𝐽exch ·
{
exp

(
𝛼O

(
𝑛𝐸 ′

𝑉T
+ ln

𝑐s,R

𝑐s,O

))
− exp

(
−𝛼R

(
𝑛𝐸 ′

𝑉T
+ ln

𝑐s,R

𝑐s,O

))}
(7.12)

where we assume 𝑉u = 0 (note that 𝑉0 = 𝐸0 + 𝑉∗
ref,eq), and where 𝐸 ′ = 𝐸 − 𝐸0,

i.e., 𝐸 ′ is the measured E minus the standard state potential of the redox reaction.
Eq. (7.12) is the most general result, and we combine it with Eq. (7.11) for all

species that participate in the reaction, and that set of equations can be solved.
These equations predicts a limiting current at high 𝐸 ′ of 𝐽lim,a = 𝑘L𝑐∞,R when
the concentration of the reactant R decreases to zero at the electrode. At very
negative 𝐸 ′ the limiting current is 𝐽lim,c = −𝑘L𝑐∞,O.iv

Results of such a calculation are shown in Fig. 7.2 for the reduction of Ce4+ to
Ce3+ (𝑛 = 1), for three cases with the same concentration of Ce4+, but different
concentrations of Ce3+ (increasing in direction of arrow). Data are from K.J.
Vetter, Z. Physik. Chemie 196, 360–377 (1950). Just as Vetter, we find that
the best fit is obtained for 𝛼R = 0.25. We furthermore use 𝑘L = 32 𝜇m/s,
𝑘exch = 3 𝜇m/s, and 𝐸0 = 1.45 V. With these parameter settings, we can fit all
three datasets over the entire range adequately. Interestingly, this good fit of
several datasets by the same theory with the same parameter settings, is more the
exception than the rule. For instance, Vetter also reports data for an electrode
process with Mn-ions, and while a single dataset can always be fitted by the
theory above, this is not possible for a series of related 𝐼−𝑉-curves with different
concentrations of reactants and products. Also the oxidation of Ce3+ to Ce4+ does
not allow a good fit by the above theory, because of formation of oxygen bubbles.
This situation shows that much information is obtained from a series of related
polarization curves, where only bulk concentrations of reactants and products are
changed.

If we only consider operation in one direction, for instance oxidation, and

ivIndices ‘a’ and ’c’ relate to anodic and cathodic, see B&F, p. 30. B&F use 𝐽𝐹 in the reduction
direction and thus their limiting currents have the ±-signs opposite to here, see their p. 109.
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Fig. 7.2: Polarization curve for the reduction of Ce4+ to Ce3+ in 1 M H2SO4 for [Ce4+]=
10 mM and [Ce3+] =0.1, 1, or 10 mM (direction of arrow). Data from Vetter (1950) and
theory based on Eqs. (7.11) and (7.12).

assume all resistance is in the electrode reaction (i.e., the redox reaction is slow
compared to mass transfer), then 𝐸 ′ is high, while mass transfer to the electrode
can be neglected (concentrations at the surface are equal to those in bulk). Then
in Eq. (7.12) we only have to consider the first exp-term, set concentrations 𝑐s, 𝑗

to a constant value, and then we arrive at

𝐸 ′ = 𝑎 + (𝛼O𝑛)−1 · 𝑉T · ln (10) ·10 log (𝐽𝐹) (7.13)

which is called the Tafel equation, which predicts that in a plot of 10log(current)
versus electrode potential, such as Fig. 7.2B, (part of) the data are on a straight
line with slope𝑉T ln 10/𝑛𝛼O. In this context, Fig. 7.2B is then called a Tafel plot.
Because of the many assumptions required in its derivation, the Tafel equation
has a limited range of applicability. Indeed, we notice in Fig. 7.2B that there is
no such region where the data are on a straight line.

We return to Eq. (7.12) and assume 𝛼O=𝛼R=½. Then we can derive

𝐽𝐹 =

(
1 + 2

𝑘exch
𝑘L

· cosh
{

1
2
𝐸 ′

𝑉T

})−1
· 2 · 𝐽∞exch · sinh

{
1
2

(
𝐸 ′

𝑉T
+ ln

𝑐∞,R

𝑐∞,O

)}
(7.14)

which does not include concentrations at the surface, but only in bulk.
The above expressions formulate current 𝐽𝐹 as function of a voltage 𝐸 ′. To

translate 𝐽𝐹 to a current I, 𝐽𝐹 must be multiplied by n and by 𝐹 to arrive at a
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current in A/m2. Let us reiterate that the above derivation assumes 𝑉u to be zero.
If we do not want to make that assumption, we return to the equations in §7.3,
and we can then implement a relationship where for instance 𝑉u is proportional
to current.

The equations for the polarization curve can be simplified when we return to
Eq. (7.8) and based on the film model implement that 𝑐s,R/𝑐∞,R = 1 − 𝐽𝐹/𝐽 lim,a

and 𝑐s,O/𝑐∞,O = 1 − 𝐽𝐹/𝐽 lim,c, resulting in an implicit relationship between 𝐽𝐹
and 𝜂∞ given by

𝐽𝐹

𝐽∞exch
=

(
1 − 𝐽𝐹

𝐽lim,a

)
𝑒+𝛼O𝜂∞ −

(
1 − 𝐽𝐹

𝐽lim,c

)
𝑒−𝛼R𝜂

∞
(7.15)

which is Eq. (3.5.32) in B&F (p. 109). We can multiply 𝜂∞ by 𝑉T to arrive at a
Δ𝐸 , which is the step change in voltage E, relative to the situation of zero current,
i.e., Δ𝐸 = 𝑉T 𝜂

∞. If we implement 𝛼O = 𝛼R = ½, and make the conversion
Δ𝐸 = 𝐸 ′ + 1

𝑛
· ln

(
𝑐∞,R/𝑐∞,O

)
, Eq. (7.15) can be rewritten to Eq. (7.14).

7.6 Electrode response to a change in 𝐸 – I

In the present section we discuss how in time the electrode responds after a step-
change in E, i.e., we we describe the dynamic behaviour, until we reach steady
state. For this calculation, equations for the electrode reaction rate are still valid,
but the film model with a linear dependence of flux on the overall concentration
difference, that is no longer correct. Instead, ion transport must now be modelled
dynamically (i.e., as function of time; transiently). And how this is done depends
on the choice of the film layer model. (In §7.5 four types of film layer models
were summarized, that describe in different ways dispersion or convection along
the surface.) Just as in the steady state, with enough background salt we can
neglect the electromigration effect, and the basic equation is the mass balance for
transport of neutral species which is Fick’s second law extended with dispersion
or convection. In the present section we use the classical boundary film model
which only includes diffusion.v

vAlso in the dynamic case, with a maximum of two charged ions (and any number of neutral solutes),
thus also in the absence of background salt, the full diffusion-plus-migration transport problem
can be solved by Fick’s second law, as if there is only diffusion, see §7.9 and B&D.
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Fig. 7.3: After a voltage step-change Δ𝐸 , the current directed to an electrode in front of
which is a film layer, starts at a high value, decreases, and levels off to the steady state
current. Curves Ia and Ib are based on a full discretization of the film layer into a large
number of gridpoints (Ia, 𝑛=100) and a smaller number (Ib, 𝑛=20), while curves II and
III are analytical results by Vetter. The Cottrell equation is shown as well.

Using this model we can analyse the change from the initial current (directly
after the step change) to the final current, which are both positive finite values, All
of this is quite different from the Cottrell equation often used in literature, which
predicts that the current starts at infinity and goes to zero. The Cottrell equation
considers the limit where 𝐽∞exch → ∞, i.e., the electrode reaction is infinitely
fast and follows the Nernst equation. Therefore, the initial current is infinite,
and because there are no other resistances or capacitances, ion concentrations
instantaneously reach the steady state values.vi

The Cottrell equation is based on an analysis where the electrode is always at
kinetic equilibrium, i.e., the Nernst equation applies at any moment in time. The
sudden change in E now leads to a sudden change in the equilibrium electrode
potential, i.e., 𝑉𝑒,eq, and thus instantaneously we must have a step change in

viThough a classical approach in literature, these assumptions are unrealistic. The Cottrell approach
is also puzzling for the reason that, if the electrode reaction is so fast, then why study it in the first
place.
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the ion concentrations just outside the electrode (at position s) to new values,
and afterwards these values remain unchanged. However, these are unrealistic
assumptions. Furthermore, diffusion of ions to the electrode is modelled assuming
there is a stagnant layer of infinite thickness, and thus the fluxes of ions will
ultimately decrease to zero. The resulting Cottrell equation for a reaction in the
direction of oxidation is (Vetter, Eq. (2.207); B&F, Eq. (5.4.160))

𝐼/𝐹 = 𝐽𝐹 =
√︁
𝐷/(𝜋 𝑡) · 𝑐∞,R ·

(
1 + 𝜃−1

)−1
(7.16)

where we assume equal D for the oxidant and reductant, and a one-electron
reaction. The factor 𝜃 = 𝑐s,O/𝑐s,R is the ratio of ion concentrations at the surface
after the step changeΔ𝐸 (after that step change, these concentrations are unvarying
in time in the Cottrell approach). This factor is given by 𝜃 = 𝑐∞,O/𝑐∞,R ·
exp (Δ𝐸/𝑉T) where Δ𝐸 = 𝑉𝑒,eq −𝑉∞

𝑒,eq.vii Eq. (7.16) can be used irrespective of
the bulk concentrations of the O and R species, but does assume that prior to the
step change of Δ𝐸 , there is equilibrium of the system (absence of concentration
gradients).

We make two improvements to the Cottrell-based analysis. We replace the
Nernst equation by the BV-equation, i.e., the electrode reaction of itself now has
a finite rate, and we model diffusion across a film layer of a certain realistic
thickness, not assuming there is diffusion into stagnant semi-infinite layer.

In this new approach we start at a very high current, but this current is not
infinite. Ion concentrations right next to the electrode start at the value before
the step-change and then start to change (the change is at first infinitely fast, then
slower), but they do not immediately go to the final values as in the Cottrell
approach. The final steady state current is finite, which is also different from the
Cottrell analysis where current decreases to zero.

Full numerical calculation results are presented in Fig. 7.3 based on Eq. (7.6)
for the BV equation (thus assuming 𝛼O = 𝛼R = ½), in combination with Fick’s

viiLet us note again that the direct relation between Δ𝐸 and concentrations at the electrode surface not
only assumes the Nernst equation (infinitely fast reaction kinetics) but also the absence of a voltage
difference outside the electrode, for instance in the film layer. In the absence of background salt,
however, there are these extra voltage changes, and then the direct linear relationship between 𝐸

and 𝑉𝑒 is lost.
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second law, 𝜕𝑐𝑖/𝜕𝑡 = 𝐷𝑖 ·𝜕2𝑐𝑖/𝜕𝑥2, solved for reductant and oxidant across a film
of thickness 𝛿 = 20 𝜇m. The current 𝐽𝐹 relates to the gradient in concentration
at the surface according to 𝐽𝐹 = ±𝐷𝑖 · 𝑑𝑐𝑖/𝑑𝑥 |s. The ±-sign depends on the
species and the coordinate direction. With the coordinate x pointing from the
electrode into solution, then for the R-species, and with 𝐽𝐹 defined in the oxidation
direction, the + sign is used. Bulk concentrations of O and R are 30 mM and
we apply a step change in voltage of Δ𝐸 = 0.4 V (before the step change the
current is zero). Diffusion coefficients of both ions are 𝐷𝑖 = 2 · 10−9 m2/s, and
𝑘exch=1.0 𝜇m/s. Results are presented in Fig. 7.3 as function of the number of
gridpoints used to discretize the transport film, either 𝑛=20 or 𝑛=100. The two
numerical calculations overlap after 1 ms, but before that moment, the calculation
at 𝑛=100 is closer to a semi-analytical approach that is valid for early times. That
approach we discuss next.

For diffusion into an unstirred semi-infinite space (not a fixed film layer thick-
ness), Vetter gives the full solution of this problem in his Eq. (2.429). This
equation is valid for unequal ion diffusion coefficients, and unequal bulk concen-
trations of the O and R species. We evaluate that equation, which is line II in
Fig. 7.3. It only fails at longer times because it predicts the current to decrease to
zero. Vetter also provides an analytical solution for early times as his Eq. (2.431).
His formula is valid for all values of 𝑐∞,O and 𝑐∞,R, and for unequal diffusion
coefficients of the O and R species. Written for the case that 𝑐∞,O = 𝑐∞,R and
equal diffusion coefficients of the O and R species, this equation becomes

𝐽𝐹

𝐽𝐹,0
= 1 − 4 · 𝑘exch · cosh

(
1
2
Δ𝐸

𝑉T

)
·
√︂

𝑡

𝜋𝐷
(7.17)

which is an analytical expression for the current versus time after a step change
Δ𝐸 . This solution is shown as line III in Fig. 7.3 and correctly predicts the initial
behaviour after the step change in E, but after some time falls off too quickly. We
can compare Eq. (7.17) with the Cottrell-equation, also provided in Fig. 7.3, and
it may be clear that the initial behaviour is better predicted by Eq. (7.17), while the
Cottrell equation is better at later times. Interestingly, compared to the Cottrell
equation, the dependence on time and diffusion coefficient is exactly reversed in
Eq. (7.17), where the change in current (from the initial value) positively depends
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on the square-root of time, and negatively depends on D, whereas the Cottrell
equation has these dependencies exactly reversed.

7.7 Electrode response to a change in E – II

The system response as discussed in §7.6 will be different in reality. The control
system of the potentiostat responds to a change in the setpoint for 𝐸 , by adjusting
the current directed to the counter electrode. These adjustment processes are not
instantaneous, but take time (Vetter, p. 366). Therefore, and because of the effect
of charge storage, a temporary overshoot of current is possible, and it can even
happen that the current starts to oscillate around the final, steady state, value, as
we show below. Modern potentiostats avoid these problems because of advanced
control software and high quality components. Nevertheless, the calculation
illustrates the intricacies of control strategies for electrochemical systems.

We analyse here the simplest possible control strategy, where the system adjusts
the current, I, directly based on the offset in E. The offset is the difference between
the setpoint, 𝐸set, and the measured voltage 𝐸 , and thus we assume the potentiostat
to work according to

𝑑𝐼

𝑑𝑡
= 𝛼 (𝐸set − 𝐸) (7.18)

where we introduce the response factor, 𝛼.
In the calculation, besides the electrode reaction, which mathematically behaves

as a non-linear resistance, we include a small capacity placed in parallel. Thus
the total circuit current I is a summation of a Faradaic and a capacitive current,
𝐼 = 𝐼𝐹 + 𝐼𝑐, see Eq. (4.1). The capacity can be in wires or other electronic
elements but can also be the electrode itself. This last option we analyse in §7.8.
For the Faradaic current we use Eq. (7.9). The capacitive current 𝐼𝑐 charges a
linear capacity according to 𝐶 · 𝑑𝑉𝑒/𝑑𝑡 = 𝐼𝑐 (editor’s note on p. 363, p. 366,
footnote p. 373, Vetter).

To solve this model, we must relate the electrode potential 𝑉𝑒 to the measured
voltage 𝐸 . Before the change in setpoint, the system is in equilibrium, thus
𝑉𝑒 = 𝑉∞

𝑒,eq. These two 𝑉𝑒’s relate to E according to 𝑉𝑒 = 𝐸 + 𝑉∗
ref,eq (𝑉u = 0),

and with Δ𝐸 the change in E relative to the equilibrium situation, it is the
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Fig. 7.4: After a change in the setpoint for the voltage 𝐸 , the potentiostat will adjust the
current to reduce the offset in E, With a capacity in the circuit, then dependent on the
control strategy and the response factor 𝛼, the generated current can shoot over the target
and start to oscillate.

case that Δ𝐸 = 𝑉𝑒 − 𝑉𝑒,eq, and thus the Faradaic reaction rate becomes 𝐽𝐹 =

2 𝐽∞exch sinh (½Δ𝐸/𝑉T). The potential 𝐸 before the change in setpoint is some
value 𝐸∗, and thus after the change in setpoint, 𝐸 = 𝐸∗ + Δ𝐸 . We define
Δ𝐸set = 𝐸set−𝐸∗. Thus the right side of Eq. (7.18) now becomes 𝛼 (Δ𝐸set − Δ𝐸).

We can now make a calculation where we start at Δ𝐸 = 0 and we choose a
value for Δ𝐸set. Results of this calculation are shown in Fig. 7.4 for a low and
high value of the response factor 𝛼. Fig. 7.4 shows that over the time period
considered, the current can shoot beyond the target, and even start to oscillate
(B&F, p. 572). Mass transfer limitations because of the film layer were not yet
considered, as if we are before 1 𝜇s in the calculation of Fig. 7.3. The effect of
the film layer will be discussed in §7.9.

7.8 Comparing the Frumkin and Butler-Volmer models

In §7.7, the BV-equation was used and an extra capacity was placed in parallel
to the electrode. Within the Frumkin model for electrode kinetics, Eq. (7.1),
however, these elements are an integral part of the EDL model that is used, for
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instance the GCS model. Jointly, these elements predict the electrode charge and
how it changes in time, all of which is not predicted by the BV-equation.

In a model based on the Frumkin equation, the charge of the electrode, 𝜎𝑒,
relates to current according to

𝑑𝜎𝑒

𝑑𝑡
= 𝐼 − 𝐼𝐹 (7.19)

and this charge determines the Stern potential, Δ𝜙S, according to Eq. (5.17),
and the diffuse layer potential, Δ𝜙D, according to Eq. (5.18). Now that we use
the Frumkin equation, Eq. (7.1), instead of the BV-equation, a capacity effect is
automatically included.

Results of a calculation for the same control loop strategy as in §7.7 are
presented in Fig. 7.5 and we make the same assumptions, especially that con-
centrations just outside the electrode do not change in time. We assume the
reactant R is neutral, and the product O of the oxidation reaction is a cation. We
set 𝜙0 = ln (𝑘R/𝑘O) to zero. We use the GCS model with 𝑐∞ = 30 mM and
𝐶S=1.0 F/m2. We start at an uncharged electrode and at time zero step up the set-
point for E to Δ𝐸set=0.1 V. When we reach the steady state, the Donnan potential
is ∼75 mV, and the Stern potential ∼25 mV. The capacitance of the EDL is much
smaller than in §7.7, and thus the system responds much more quickly, about 10×
faster. The response factor 𝛼 is now set to a much larger value than before, but
the overshoot is still much less. At time zero, when current starts to flow, all of
the current is used to charge the EDL, with the Faradaic reaction still zero. Thus,
for this short period, the electrode process is purely capacitive. This situation
changes after that short period, and when the steady state is reached, capacitive
charging has gone to zero, and all current is used for the Faradaic reaction.

This example calculation hopefully showed that it is not that difficult to make a
calculation for an electrode with a certain EDL structure, for an electrode process
that is a mixture of capacitive and Faradaic currents, with the ratio between these
two processes rapidly changing in time.

In the calculation just presented, based on the Frumkin-equation, concentra-
tions just outside the electrode were assumed to be constant. In §7.9, we discuss in
more detail the effect of changes in ion concentrations next to the surface because
of a film layer.
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Fig. 7.5: For an electrode process described by the Frumkin equation, charge storage in the
electrode is an integral part of the calculation. For the same control strategy as in Fig. 7.4,
we show here results for the Frumkin model in combination with the GCS-model. The
time scale is about 10× less than in Fig. 7.4, while 𝛼 is larger than in Fig. 7.4.

7.9 The effect of film layer mass transport on the
electrode response

In §7.8, the Frumkin equation was used in an example calculation where the
electrode charge increased in a short period from 0 to 35 mC/m2. But it was
assumed that ion concentrations just outside the electrode did not change. In
reality, these concentrations will change, and this will affect the electrode. First
of all, this is because (in this example) the neutral reactant must diffuse to the
surface, while the cation that is formed must be removed, by diffusion and elec-
tromigration, and thus concentrations will change through the film layer in front
of the electrode. The second effect is that the increase in electrode charge requires
a counterbalancing ionic charge in the diffuse part of the EDL. In our example
calculation, the electronic charge is positive, and thus anions must flow into the
EDL to compensate that charge. We first discuss the effect of a mass transfer
limitation because of the film layer, and discuss ion storage in the EDL in §7.10.

In our example calculation, we have the neutral reactant R, the product O
which is a cation, and there is an inert anion to compensate the charge of the
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cation at any position in the film layer (as well as in the bulk, away from the
electrode). The anion and cation have the same bulk concentration, 𝑐∞. When
cations are produced in the electrode, their concentration increases, and thus the
anion concentration must also increase there, by flowing from outside the film
layer toward the electrode. This leads to an increase in the salt concentration that
is used in the GCS model. Thus, in the present section, we do not assume there
is a large concentration of background salt.

We use the same dynamic film model as on p. ??, with the same diffusion
coefficient, D, for all three molecules in this problem. Thus, Fick’s second
law is solved for the neutral reactant, and for the two ions (which have the
same concentration another because of local electroneutrality). At the electrode,
neglecting ion storage in the EDL, the Faradaic current, 𝐼𝐹 , is directly related
to the molar fluxes of the reactant, R, arriving through the film layer, and of the
oxidant, O, flowing away, according to

𝐼𝐹/𝐹 = 𝐽R = −𝐽O (7.20)

where we define the ionic fluxes in the direction from bulk to electrode (coordinate
x pointing from bulk to electrode surface), and 𝐼𝐹 is defined in the direction
of oxidation. For the neutral species R, at the surface the flux is given by
𝐽R = −𝐷 𝑑𝑐R/𝑑𝑥, and its concentration will decrease towards the electrode.
The cation, which is the oxidant, with index O above, leaving is produced at
the electrode, while the anion has a zero flux at the electrode (the electrode
blocks the anions). In this case, the relation between molar flux of cations and
the concentration gradient at the surface (electrode) has an additional factor 2
compared to a neutral molecule, thus: 𝐽+ = −2𝐷 𝑑𝑐R/𝑑𝑥. This factor 2 is
because cations not only leave the electrode because of a concentration gradient,
but are also aided by the electrical field there. This same electrical field (gradient
in electrical potential) will also pull anions toward the electrode, building up in
concentration, to ensure we have local electroneutrality at each position in the
film. Thus, both anion and cation have a concentration that goes up toward the
electrode. Because of this factor 2, for the cation, concentrations in the film change
a factor 2 less than for the neutral reactant. Results for current after a change in
the setpoint for E, are presented in Fig. 7.6 and show stronger oscillations than in
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previous calculations where the film layer was neglected (Fig. 7.5). Thus the film
has an effect on the structure of the diffuse layer, and thereby an effect on the rate
of the electrode reaction.
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Fig. 7.6: For the same control strategy as in Figs. 7.4 and 7.5, we show here results for
the Frumkin-model in combination with the GCS-model for the structure of the EDL,
including the effect of mass transport in a film layer in front of the electrode.

7.10 The effect of ion storage in the EDL on electrode
response

Until now, accumulation of ions in the EDL was neglected in the calculation.
However, this effect can be important. This is because the EDL needs ionic
countercharge to balance the electronic charge that develops. In our example a
positive electronic charge develops, and thus anions are required in the diffuse
part of the EDL. The cations that are formed in the electrode reaction cannot
compensate the electronic charge, but they must move out of the diffuse layer.
For a steady state problem, this EDL effect is irrelevant and the calculation of
§7.9 suffices. However, for a dynamic problem, after a step change in potential or
current, as well as for cyclic operation at high frequency, ion storage in the EDL
will make a difference.

Because we now consider accumulation of ions in the EDL, Eq. (7.20) is no
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longer valid for the oxidation product, i.e., the cations. It remains valid for the
neutral reactant molecule. Eqs. (7.18) and (7.19) also remain valid. The following
modifications must now be made to account for ion accumulation.

First of all, the external (imposed, measurable, electronic) current, I, is equal
to the current carried by anions and cations outside the EDL (at any point in the
film layer), thus

𝐼 + 𝐹
∑︁
𝑖

𝑧𝑖𝐽𝑖 = 0 (7.21)

where the summation runs over anions and cations, and we can evaluate these
fluxes anywhere, for instance at the film layer/EDL interface, which is position ‘s’.
Furthermore, we can use the Frumkin equation, Eq. (7.1), with the concentration
of the neutral reactant, 𝑐∗R, the same at the reaction plane as at position ‘s’, which
is outside the EDL. For the cation, we use Eq. (7.2) to relate concentrations at
these two positions. We must now also track the excess adsorption, Γ𝑖 , of one of
the ions in the EDL. We can do that for the inert ion, and then that balance is

𝑑Γ−
𝑑𝑡

= 𝐽− (7.22)

where 𝐽𝑖 is the flux of ion i from film layer into the EDL. We solve this balance
for the anion, jointly with overall electroneutrality of the EDL, which is

𝜎𝑒 + 𝐹 · (Γ+ − Γ−) = 0 . (7.23)

Furthermore, the GCS model is used for the charge, 𝜎𝑒, according to Eq. (5.18),
as well as to relate the excess ion adsorption (unit mol/m2) to Δ𝜙D, which for an
anion in a 1:1 salt solution is given by

Γ− = 𝐹−1 ·
√︁

2𝜀𝑅𝑇𝑐∞ · (exp (Δ𝜙D/2) − 1) (7.24)

where the salt concentration, 𝑐∞, is evaluated at the film layer/EDL interface,
position ‘s’ (the same for 𝑐∞ in Eq. (5.18) for 𝜎𝑒).

The final equation is a boundary equation for the diffusion rate of anions and
cations. Based on §7.4 in B&D we know that for equal diffusion coefficients of
anion and cation, the salt concentration gradient is given by

𝐽+ + 𝐽− = −2𝐷
𝑑𝑐

𝑑𝑥

����s (7.25)
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where index s refers to evaluation at the film layer/EDL interface.
Results of this calculation are presented in Fig. 7.7. At time zero, we change the

setpoint for E by 0.4 V (from equilibrium before), and we track how all currents
develop in time. In this calculation the concentration at the surface only changes
by 1 or 2 mM, so the film layer does not matter too much (we use the same values
for film layer thickness and diffusion coefficient as in §7.6). We furthermore use
𝑘exch= 𝑘O= 𝑘R=0.01 A/m2/(mol/m3), and Stern capacity 𝐶S=0.3 F/m2.

What Fig. 7.7 shows, is that current I increases steadily at first, and in that
period anions are being stored in the EDL, while cations are expelled. The
Faradaic reaction hasn’t yet started, i.e., 𝐼𝐹 is still very low. After a short time,
cation expulsion slows down, and even later anion adsorption declines strongly
while the Faradaic reaction takes off and cation flow out of the electrode increases
again. The increase in cation flux is because the Faradaic reaction starts to produce
more and more cations, and they must flow out of the EDL in which the number
of anions and cations has reached constant values. Because of the high value of
𝛼 chosen to define the control system, the current goes beyond the steady state
value and then decreases again. In that period of decrease, anions again flow out
of the EDL. When after some time steady state is reached, all currents will be the
same, except for the anion flux, which is then zero.

So this last calculation, as presented in Fig. 7.7, predicts the rates of cation
and anion adsorption in the EDL, that add up to the applied current, I. This
information on the flow of individual ions was not generated in the calculation of
§7.9, see Fig. 7.6, but there an assumption had to be made which ions contributed
to the current I. In §7.9, the assumption was that only cations were involved. In
the present section, these contributions of the two ions are not predefined, but are
calculated by the model, and in the early stages after a change in setpoint, these
contributions change rapidly.

Thus, the present calculation shows that EDL effects, including accumulation of
cations and anions, can be included in a dynamic model for an electrode reaction.
In reality of course the processes in an electrode are even more complicated, for
instance involving diffusion of adsorbed species across the surface to sites where
the reaction takes place, so the present calculation only covers part of all electrode
processes. But it does show that if we wish to do so, EDL effects can be rigorously
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implemented, and in this way we can study how in a few ms, an electrode can
transform from 100% capacitive behaviour, such as in the first 0.2 ms in Fig. 7.7,
to almost completely Faradaic after 2 ms.
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Fig. 7.7: Electrode response in a calculation that includes ion accumulation in the EDL.
From time zero onward, there is a flux of anions into the EDL, 𝐽− , while cations are
expelled (flux out of the EDL is 𝐽+). The electrode changes from completely capacitive
behaviour at early times to almost completely Faradaic at later times. The difference with
the situation in Fig. 7.6 is that now both ions can flow in and out of the electrode, and the
ratio between their fluxes changes in time and is calculated by the model. (In this figure,
fluxes 𝐽𝑖 have been multiplied by F resulting in a flux with unit A/m2.
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Electrode reactions including surface

transport

In this last chapter we evaluate a model for Faradaic processes where we combine
transport limitations in the film layer (i.e., in solution), with transport across the
surface of an electrode, before molecules participate in a redox reaction. We will
assume these transport process are all the rate limiting steps, and the actual transfer
of an electron is infinitely fast, so there is no electrochemical rate limitation or
reaction overpotential.

We evaluate the case that reaction is simply ‘stochastic’: each adsorbed
molecule simply has a certain change per unit time to react. The second cal-
culation is that molecules must diffuse over the surface to reach sites for electron
transfer. We develop an elegant mathematical approach for this situation.
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Summary

In this textbook we gave an overview of the three types of electrochemical cells,
which are Faradaic cells, capacitive cells, and concentration cells. We explained
that all these three types can be used to harvest and story energy, to provide energy,
and to convert chemicals or separate solutions. We explained that electrochemical
cells can also have a single electrode, or more than two, and that it is possible
to combine electrodes, for instance a Faradaic electrode can be combined with
a capacitive electrode. We also explained how in any practical electrode, both
capacitive and Faradaic effects can occur. It is explained how the electrode is a
special type of electrical double layer (EDL), and is the structure of the interface
between an electrolyte solution, and a metal.

For capacitive electrodes, we discussed various EDL theories, such as the
Donnan model and the GCS model. We showed how to calculate the power and
energy that can be stored.

We discussed the corrosion of iron, based on iron oxidation and the reduction
of sulphate to sulfide. After that we discussed in detail cathodic protection of
a metal structure using a third, sacrificial electrode. To solve these problems, a
dynamic equilibrium model was introduced based on the Nernst equation for each
half reaction and a linear overpotential-current relationship. Finally, we discussed
the redox potential and Pourbaix diagrams.
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In Ch. 7, the Nernst equation was extended to the Frumkin equation which
describes in detail electrode reactions including a model for the EDL. The sim-
plification of this equation is the Butler-Volmer (BV) equation which can be
combined with expressions for transport of ions across a film layer that is in
front of the electrode. We analyse in detail the functioning of a three-electrode
setup based on the BV-equation and analyse dynamic behaviour after a change in
setpoint. A final detailed dynamic calculation combines an EDL model and the
Frumkin equation and the film layer.

In Ch. 8, a modified framework is presented for electrode reactions where
the final electron-transfer reaction is assumed to be infinitely fast, i.e., locally at
equilibrium. But transfer of molecules across the surface, and accumulation for
dynamic problems, is assumed to play a role.

All of the above topics are first described conceptually, and after that analysed
mathematically. The equations from Ch. 7 are compared with equivalent results
in textbooks by Vetter (1961) and Bard and Faulkner (1980). We provide a
glossary of relevant terminology, an overview of certain technical conventions,
and provide a list of key literature references.
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Glossary

⊙ Binary salt solution - An electrolyte solution with only one type of cation and
one type of anion. The valencies of the two ions and their diffusion coefficients
can be different. Thus, a solution of NaCl is a binary salt, as well as a solution of
CaCl2.
⊙ Bulk (phase) - The volumetric phase next to an interface in which concentra-
tions and potentials change slower in time than the rate of change in the interfacial
region. Often to describe the bulk phase, the symbol ‘∞’ is used, referring to
‘of infinite extent’. The bulk phase generally has a concentration that does not
vary with position, or at least varies much less than in the interface. Local
electroneutrality holds in the bulk phase.
⊙ Capacitance of an EDL, of an electrode - The slope of the curve of electrode
charge versus electrode potential, measured at equilibrium. Capacitance is a
function of electrode potential and charge, it is not just a single number.
⊙ Capacitive electrode process - An electrode process in which the electrode
structure (gradually) changes when a current is applied, and thus, the electrode
potential also changes in time.
⊙ Capacity of an EDL, of an electrode - The measurable property of a capacitive
electrode as the change in charge of the electrode when the electrode potential is
changed from one to the other value (potential window), often divided by volume
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or mass of the electrode. If reference is made to ‘the’ capacity, this refers to
the maximum, or limiting, value, i.e., an even larger potential window will not
change the measured capacity.
⊙ Cell voltage - The measurable voltage between two electrodes.
⊙ Charge - An amount, often with unit C(oulomb). By dividing with Faraday’s
number, 𝐹 (𝐹 = 96485 C/mol), the number with unit C is converted to a number
with unit mol. Charge can be positive and negative, and charge can flow. The flow
of charge is called a current. Part of an ionic solution (electrolyte) can contain
charge, ionic charge, and likewise in a metal there can be charge. This latter
charge would then be called electronic charge. Important is to note that a positive
electronic charge in some region, means there is a deficit of electrons there. And
the statement ‘the electronic charge goes up,’ means electrons leave this region.
See also entries EDL charge and Electrode charge.
⊙ Charge tranfer electrode - An electrode where electrons or ions (i.e., charged
particles) are transferred across the full electrode in an ongoing electrode reaction,
i.e., an electrode in a Faradaic electrode process.
⊙ Charging step / Discharge step - In a cyclic electrochemical process, then
over a full cycle there is a period where the cell is charged, and a period where
it is discharged. These periods can be called ‘steps’. Some condition is changed
when we go from one step to the other, such as a change in current direction, or
a change in the setpoint of the cell voltage.
⊙ Chemical equilibrium - Equilibrium related to transport or reactions of species
(such as ions). For instance referring to an EDL structure where it can be assumed
that the structure of the EDL (as defined by concentration and potential profiles)
does not directly depend on transport processes. An EDL is an equilibrium struc-
ture because it directly adapts to a change in an external parameter. Also when
there is transport of ions or current across an interface, the equilibrium EDL
model can still be used. Chemical equilibrium also relates to chemical reactions
between species, with concentrations related by an equilibrium expression, in-
volving a constant, K. Also here, there can still be a non-zero reaction rate. Only
in the equilibrium state are these reaction rates zero.
⊙ Coion (also written as co-ion) - The ion of the same charge sign as the charge of
the surface, membrane, or other porous medium. Often at a lower concentration
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compared to outside the EDL or porous medium.
⊙ Conductivity - The conductivity, or conductance, of an ionic solution has unit
𝜎 or 𝜅, and can also be called electrical conductivity. The unit is S/m (with S for
Siemens) or (Ω.m)−1, where S = 1/Ω = A/V. Often Ω is called (and written as)
‘Ohm’. The volumetric resistance 𝜌 of an electrolyte solution is 𝜌 = 1/𝜎 with
unit Ω.m.
⊙ Conductor, or metal - A conducting phase, or conductor, conducts electrons
not ions. It will be the wires connecting electrodes to a power source or other type
of electrometer. There is no background charge. || The terms ‘Ion conductor’,
and ‘ion conductivity’ relate to the electrolyte phase.
⊙ Coulombic efficiency - For a cyclic process of charge and discharge, the ratio of
‘returned charge’ (the charge (unit Coulomb) transferred between the electrodes
during the discharge step), over ‘charge input’ (the charge transferred between the
electrodes during the charging step). A dimensionless number, less than unity.
⊙ Counterion - The ion of a charge sign opposite to the (fixed) charge of a surface
or porous material. Often therefore at an enhanced concentration compared to
outside the EDL or porous medium.
⊙ Dielectric - A dielectric (material) is a material, or a layer, that does not
contain any type of charged species, neither electrons nor ions. In the context
of the dielectric capacitor, it is also implied that it does not conduct any type
of charge. The Stern layer, a theoretical element of EDL modelling, is also a
dielectric layer, i.e., it does not contain charge, but charge can jump across the
Stern layer. A synonymous term is insulator or insulating layer.
⊙ Diffuse double layer - An erroneous term, conflating diffuse layer and EDL.
What is meant is: diffuse layer.
⊙ Diffuse layer - A theoretical element of an EDL model, relating to the ions and
potential profiles in an electrolyte, due to a balance of electrostatic and entropic
forces. The thickness of the diffuse layer relates to the Debye length, which
decreases with increasing salt concentration, as well as with increasing valency
of the ions.
⊙ Diffuse layer potential, Donnan potential - Both these potentials have the
symbol Δ𝜙D. In a Gouy-Chapman-(Stern) model, this is the potential across the
diffuse layer, thus the potential at the Stern plane relative to outside the EDL. In
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a Donnan model, for instance for ion-containing micropores, Δ𝜙D is the potential
inside the pore, relative to outside the pore.
⊙ Dynamic - A dynamic process is not at steady state, thus some or all process
elements change in time. Note that for many processes it is often the case that
certain elements are in chemical equilibrium (for instance the EDL structure),
other elements are in steady state (transport across a film layer), and yet other
elements are dynamic (accumulation of salts in reservoirs). Which modelling
approach to choose, and how to combine these elements, are key aspects of
electrochemical process modelling and design.
⊙ EDL, or electrical double layer - The EDL is the structure at the interface
between bulk phases (i.e., it is the interface), in situations where at least some
charged species such as ions are involved. Across the EDL there is a voltage
difference, and within the EDL are regions of opposite charge. On the two sides
outside the EDL there are two electroneutral bulk phases. These phases either
contain charge carriers (ions in an electrolyte, or electrons in a conductor) or do
not (insulator). The field strength, 𝐸 , in the EDL (very dependent on position
in the EDL) is much higher than in bulk, where is very low, or zero. The EDL
as a whole is electroneutral. EDL is also the name for the set of equations
describing the EDL structure, i.e., the relationships between charge, potential,
and ion adsorption.
⊙ EDL charge - If an EDL is overall electroneutral, how can it be we generally
use the term ‘EDL charge’ and related concepts such as the capacitance of an
EDL? The answer is that these terms, like EDL charge, refer to one of the regions
of the EDL. For instance, it refers to the region that can be associated with the
(electron-)conducting phase (inside the EDL), thus related to the electronic charge
stored in the EDL. See also entries Charge and Electrode charge.
⊙ Electrode - A special type of EDL, namely formed at the interface of a
(semi-)conductor and electrolyte. The EDL is an interface (see entry on Interface)
and includes the several regions of opposite charge formed in this region where
conductor and electrolyte are in contact. On one side of the electrode is the
electroneutral bulk metallic phase, and on the other side the electroneutral bulk
electrolyte. The processes at, or in, an electrode can be capacitive or Faradaic,
or both types of processes occur simultaneously. A Faradaic process involves
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transfer of ions or electrons across this interface. This is the formal, theoretical,
definition of an electrode.
⊙ ElectrodeTC - The technological convention (TC) of the word electrode refers
to the physical structure, to ‘the piece of metal’. In this definition of the word
electrode, in an oxidation reaction an electron ‘goes into the electrode.’ However,
in the theoretical meaning of the word electrode, in an oxidation reaction, an
electron is liberated from ions already in the electrode, and the electron then
leaves the electrode to go into the electronic circuit (metal wires).
⊙ Electrode charge - The charge in an electrode, by which is meant the charge
in one or more of the regions of the electrode. It does not refer to the electrode
charge as a whole, because the electrode as a whole is always electroneutral,
and thus the total charge is zero. Often the term refers to a difference in charge
between two situations (such as moments in time, as in ‘the charge was increased
by 5 C’), and generally refers to the charge on the metallic (electron-conducting)
side. See also entries Charge and EDL charge.
⊙ Electrode potential - The potential across the electrode. Note, the electrode
is the EDL structure at the interface of (multiple) phases, at least one of which
conducts electronic charge and at least one of which conducts ions. The electrode
potential is a function of the electrode (EDL) charge.
⊙ Electrode reaction - The reduction or oxidation reaction at an electrode, which
involves electrons, and species coming from nearby non-metallic bulk phases, of
which one phase at least is an electrolyte phase. Often the electrode reaction
involves reactant species adsorbed to the surface and the reaction product is also
an adsorbed species, which subsequently desorbs. An example is the oxidation
of an adsorbed H-atom, to a proton, H+, with an electron going into the metal
phase. Reactions at an electrode (for instance, between adsorbed species) that do
not consume or produce electrons, are not called an electrode reaction.
⊙ Electrolyte - A phase that contains ions, ions that move around because of
diffusional and electrostatic forces. In a liquid electrolyte there can also be
convection. Many porous materials contain an electrolyte. For instance, inside
the pores of intercalation materials, porous carbons, ion-exchange membranes, or
other gel-like structures made of charged polymer, there is a solvent (often, water)
and mobile ions dissolved in the solvent. In a solid electrolyte, or solid salt, for
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instance AgCl, ions can move relative to the other ions, but there is no solvent.
⊙ Electrometer - The name for all devices that can impose and record currents
and voltages applied to an electrochemical cell. Electrometer refers to a voltmeter,
power source, battery, load, potentiostat, as wll as galvanostat.
⊙ Electron acceptor - A species that (is able to) take(s) up an electron, in the
process being reduced. For simple ions, its charge then becomes more negative
(but there are exceptions when also one or more protons are simultaneously taken
up). Before the reaction, it is in the oxidized state, afterwards it is in the reduced
state. This could be at an electrode, but this terminology also refers to reactions
in solution. Then, while species A is the electron acceptor, another species D
donates the electron. While species A is reduced, species D is oxidized. Thus,
species A is the oxidant (the reaction leads to another species being oxidized).
⊙ Electron donor - A species that (is able to) give(s) off an electron, in the
process being oxidized; its charge becomes more positive. Before the reaction, it
is in the reduced state, afterwards it is in the oxidized state. This could be at an
electrode, but this terminology also refers to reactions in solution. Thus, while
species D is the electron donor, another species A accepts the electron. While
species D is oxidized, species A is reduced. Thus, species D is the reductant (the
reaction leads to another species being reduced).
⊙ Electroneutrality - The condition that at a certain position, or inside an entire
phase, a solution, electrolyte, has an equal numbers of positive charges as negative
charges. These numbers are based on a summation over all ions, of their valency
and concentration. Thus all these ionic charges add up to zero. When also a
charged ‘matrix’ structure, such as an ion-exchange membrane, is present, the
charge of that structure is also included in the electroneutrality balance (a balance
which adds up to zero). Also called charge neutrality.
⊙ Electronic circuit, or external circuit - The connection from one electrode
to the other via metallic wires. Often there is a potentiostat (electrometer) in the
circuit, or another device that functions as a load, or as a battery.
⊙ The equilibrium state - A situation where there are no net flows, no fluxes, no
net reactions. Of each reaction, the reaction rate is zero.
⊙ Faradaic electrode process - An electrode process with current flowing, and
that in principle can go on forever, because the composition of the electrode does
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not change in time. Ions and electrons enter the electrode (the EDL) from one
bulk phase adjacent to the electrode, and also leave the EDL again to the same, or
to another, bulk phase (after having reacted to other molecules). Ions or electrons
transfer across the EDL in a Faradaic process.
⊙ Field Strength - The (electrical) field strength, E, is a vector, and describes the
negative of the gradient of the electrostatic potential, E = −∇𝑉 . When only one
spacial coordinate needs to be considered, 𝑥, we have 𝐸 = −𝑑𝑉/𝑑𝑥. In this book
we general use the dimensionless potential 𝜙 = 𝑉/𝑉T, where 𝑉T is the thermal
voltage’ given by 𝑉T = 𝑅𝑇/𝐹, and thus 𝐸 = −𝑉T 𝑑𝜙/𝑑𝑥.
⊙ Interface - The region formed when two different phases or materials are
brought in contact. The interface is not an ideal mathematical infinitely thin 2D
layer, i.e., it is not a surface. Instead, it has a thickness. Others have then proposed
the term ‘interphase’ but we use the more common term ‘interface.’
⊙ Ionic current (density) - The current carried by ions. Current (density) can
have unit A, A/m2 or mol/m2/s.
⊙ Migration or Electromigration - The movement of an ion or other charged
solute inside an electrolyte phase or charged porous structure because of a local
non-zero electrical field. One of various driving forces that can act on an ion.
⊙ Molar flux - The molar flow rate of a species divided by the perpendicular
surface area through which the flow goes, thus with unit mol/s divided by m2,
resulting in the unit mol/(m2.s). In transport studies careful attention is required
to distinguish interstitial and superficial flow rates, fluxes, and velocities.
⊙ Oxidant, oxidizing species - see entry electron acceptor.
⊙ Porous electrode - A porous electrode is a multi-phase system containing
electroneutral regions with water and ions (electrolyte), containing an electron-
conducting (and -containing) ‘matrix’ phase, and a structure for mechanical
strength. The interface of electrolyte and conductor, i.e., the EDL, is often
formed inside sub-nm sized micropores, which are electrolyte-filled pores in
direct contact with the electron-conducting matrix.
⊙ Redox reaction - A reaction in a solution where an electron is transferred from
one molecule to another. In general these molecules are charged, and then change
their charge. Electron-transfer of course is more general, for instance when in a
gas phase methane and oxygen react to water and CO2, but then this term is not
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used. It is also not used for a reaction on an electrode; that is then called electrode
reaction, or reduction or oxidation (whichever applies).
⊙ Reductant - see entry electron donor.
⊙ Round trip efficiency - An efficiency number between 0 and 1, describing
how much energy (unit J) is provided by an energy storage device during use
(discharge), relative to the energy used to recharge the device.
⊙ Semi-conductor - Similar to a metal, a semi-conductor also has electrons
as charge carriers, but in addition the material has fixed charges (‘p-doping’ or
‘n-doping’). The conductivity is much lower than in a metal.
⊙ Space-charge region - The same as diffuse layer, often used to describe the
diffuse layer inside a semiconductor material.
⊙ Stern layer - A theoretical element of an EDL model. The Stern layer is a
constant-capacitance element between the diffuse layer and the charged surface.
It does not contain charge itself. Its thickness can be assumed to relate to
the (hydrated) radii of counterions, because that represents the closest-approach
distance of the centers of the counterions to the surface. A typical value is
𝐶=0.1−0.2 F/m2. Also called Helmholtz layer.
⊙ Stern plane (Outer Helmholtz plane) - Also a theoretical element of an
EDL model, being the surface, the dividing plane, between the Stern layer and the
diffuse layer. It is not a plane that contains counterions (though it is often depicted
like that in textbooks), but instead it is simply the closest approach distance for
the centers of ions to the charged surface. (In advanced EDL models, beyond
GCS theory, adsorption of ions in this plane can be included.)
⊙ Surface - Mathematical two-dimensional plane without a thickness.
⊙ Steady state - The condition that in a certain region, or everywhere in a process,
there are no observable (macroscopic) changes in time. In a theory, this means
that in that region, all accumulation terms 𝑑/𝑑𝑡 in mass and heat balances are
zero. There still may be non-zero flows and reactions in that region.
⊙ Valency - The valency of an ion, or an ion’s charge, is a discrete signed number,
such as +1, +2, or -1 or -2, etc. It does not have a unit. And it is ‘signed’, that is,
it is a positive number for a cation, and a negative number for an anion. A solute
can also have a valency of 0 (e.g. carbonic acid).
⊙ 1:1 salt solution - A salt solution with both the anion and cation monovalent,
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such as KCl and NaCl. See also binary salt.





Technical conventions

The following terminology can sometimes be ambivalent. Our approach is as
follows.

1. Two parameters x and y are linearly related when they relate according to
𝑦 = 𝑎 · 𝑥 + 𝑏, with a and b constants. Variables x and y are also proportional
to one another when 𝑏 = 0. Thus a proportional relationship is a special type
of linearity, i.e., a proportional relation is also linear, but a linear relationship is
not necessarily showing proportionality between x and y. When x and y relate
according to 𝑦 = 𝑥 + 𝑏, i.e., 𝑎 = 1, this is a specific type of linearity, for which we
have no specific term. We can write ‘are the same except for a constant offset b.’

2. Often we define an axis, a positional coordinate, which we generally give the
symbol 𝑥. By default this coordinate axis runs ‘left to right’ in the descriptions
that we use, i.e., it ‘points to the right’. If we then state that a flux, or velocity, or
current (density), is positive, has a positive value, or ‘points to the right’, all of
these statements mean the same thing.

3. If we then define a difference in a parameter, 𝑌 , often written as Δ𝑌 , this is
generally the value of the parameter on a position (more to the) right, minus its
value at a position (more to the) left, i.e., a Δ𝑌 is always defined ‘right minus
left’ in the axis convention just defined. Donnan and diffuse layer potentials in
an EDL model, Δ𝜙D, are always defined as inside the EDL/Donnan layer, minus
outside the EDL, or, at the Stern plane, minus outside the EDL. A Stern layer
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potential is likewise the potential at the 0-plane (or in the metallic phase), minus
the potential at the Stern plane. Electrode potentials, 𝑉𝑒, are the potential inside
the metallic phase minus that in the electrolyte (both outside the EDL).

4. The words ‘electric’ and ‘electrical’ can refer to the electron-conducting phase
(e.g., metal), as well as to electrolyte. i.e., they have a broad meaning also
encompassing the electrolyte. Thus ‘electric(-al) current’ can also refer to the
ionic current in solution.

5. However, the word ‘electronic’ does refer to the electron-conducting, metal-
lic, phase. Thus electronic charge or electronic current is charge or current in
the ‘wires’ or other external circuit elements. Note that ‘electronic charge’ or
‘electronic current’ is not defined as that of the electrons, i.e., the negative charge
carriers. Instead, all currents, ionic and electronic, describe the flow of charge.
Thus with a coordinate axis 𝑥 pointing ‘to the right’ (see point 2 above), a positive
current means that there is a net transport of positive charge carriers to the right,
or negative charge carriers to the left. This goes both for ionic current, as well
as for electronic current. Thus when we write that there is a certain electronic
current of 𝐼 = 5 A flowing through a wire to an anode, we can envision this is as
a flow of 𝐼/𝐹 ∼ 50 𝜇mol/s of electrons flowing in the opposite direction, out of
this anode through the wire.

6. We use both the terms current and current density to refer to a current in A/m2.
Sometimes a current (density) is also in mol/(m2.s) (with symbol 𝐽ch or 𝐽𝐹 then
often used), and multiplying by Faraday’s constant converts this to a current in
A/m2. Sometimes current has the unit of A for the overall (integrated) current
into an electrode (transported through a connecting wire). In all these cases the
symbol 𝐼 can be used.

7. We use the word adsorption and absorption without implying the formal dis-
tinction between adsorption at an interface and absorption inside a volumetric
medium. This distinction is not always easy, and therefore we use both words
interchangeably.

8. When we use the word ‘potential’ this most often refers to an electrical poten-
tial, i.e., a voltage, often in dimensionless units, with symbol 𝜙.
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9. Charge is often in C or C/m2 or C/m3, sometimes in mol/m2, or mol/m3.
Faraday’s constant makes the conversion between the C-based and mol-based
charge.

10. Concentrations are written as 𝑐 or as [...], and both notations have the same
meaning. For volumetric concentrations the official unit is mol/m3 which is the
same as mM. We also use M, but please remember this is mol/L. Concentrations
can also be in (𝜇)mol/m2 for a concentration per surface area.

11. We use the words ‘unit’ and ‘dimension’ interchangeably, i.e., they have the
same meaning.

12. When we include acid-base reactions, involving (de-)protonation of ions,
ions can be neutralized. For instance the bicarbonate ion can be protonated to a
neutral carbonic acid molecule. In problems involving such neutralized species,
we take the liberty to call all species ions, not just when the charge is positive or
negative, but also when the charge of an ion is zero.

13. In water the concentration and fluxes of H3O+- and OH– -ions are often of
relevance. Instead of writing H3O+ for the hydronium ion, we often use the
shorthand of writing proton, or H+-ion.

14. The words increase, decrease, lower, higher, up, and down are ambivalent
for properties that can be both negative and positive. For all these words two
meanings are possible, either referring to I. the numerical value moving left or
right on the number scale, for instance that a change from +1 to -2 is a decrease,
but II. it can also refer to a change in the magnitude of a numerical value. In that
second meaning a change from -2 to -1 is a decrease. We try to avoid ambiguities
and for instance in the latter case use the terminology ’becomes less negative’.
The words larger, smaller, more, and less, they do not have this ambiguity; they
refer to the magnitude of a property going up or down.
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Hyperbolic functions

In the theory of electrochemical processes, the hyperbolic functions are frequently
used. Therefore we summarize in the figures below their most important charac-
teristics, including limits for 𝑥 → 0 and 𝑥 → −∞, ∞.

The three hyperbolic functions sinh(𝑥), cosh(𝑥), and tanh(𝑥), often used in the theory of
electrochemical processes.



For comments, corrections, and questions, you can email the authors at
authors@physicsofelectrochemicalprocesses.com
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